首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of drought stress on soybean nodule conductance and the maximum rate of acetylene reduction were studied with in situ experiments performed during two seasons and under differing field conditions. In both years drought resulted in decreased nodule conductances which could be detected as early as three days after water was withheld. The maximum rate of acetylene reduction was also decreased by drought and was highly correlated with nodule conductance (r = 0.95). Since nodule conductance is equal to the nodule surface area times the permeability, the relationship of these variables to both whole-plant and unit-nodule nitrogenase activity was explored. Drought stress resulted in a decrease in nodule gas permeability followed by decreases in nodule surface area when drought was prolonged. Under all conditions studied acetylene reduction on a unit-nodule surface area basis was highly correlated with nodule gas permeability (r = 0.92). A short-term oxygen enrichment study demonstrated nodule gas permeability may limit oxygen flux into both drought-stressed and well-watered nodules of these field-grown soybeans.  相似文献   

2.
The role of water relations and abscisic acid (ABA) in the responsesto drought were studied in a mediterranean forage crop, Trifoliumsubterraneum L. under field conditions. Soil and plant waterstatus, leaf gas exchange parameters, and xylem sap ABA contentwere determined at different times during a long-term soil dryingepisode in irrigated and droughted plants. The diurnal time-coursesof these parameters were also measured at the end of a droughtperiod. In response to soil drying stomatal conductance (g) was reducedearly to 50% that of irrigated plants before any substantialchange in water potential was detected. A close logarithmicregression between photosynthesis rate (A) and g was present.For the first weeks of drought the decline in A was less pronouncedthan in g, thus increasing water use efficiency. Stomatal conductanceduring diurnal time-courses showed no consistent relationshipswith respect to etther ABA or leaf water potential. Throughoutthe experimental period dependence of g on leaf water statuswas evident from the tight correlation (r2=0.88, P<0.01)achieved between stomatal conductance and midday water potential,but the correlation was also high when comparing g with respectto ABA content in xylem sap (r=0.83, P<0.001). However, thestomata from drought acclimated plants were apparently moresensitive to xylem ABA content. For similar xylem ABA concentrationsstomatal conductance was significantly higher in irrigated thanin waterstressed plants. Key words: Drought, stomatal conductance, water potential, abscisic acid  相似文献   

3.
The effects of abscisic acid (ABA) on aquaporin content, root hydraulic conductivity (Lpr), whole plant hydraulic conductance, and leaf growth are controversial. We addressed these effects via a combination of experiments at different scales of plant organization and tested their consistency via a model. We analyzed under moderate water deficit a series of transformed maize (Zea mays) lines, one sense and three antisense, affected in NCED (for 9-cis-epoxycarotenoid dioxygenase) gene expression and that differed in the concentration of ABA in the xylem sap. In roots, the mRNA expression of most aquaporin PIP (for plasma membrane intrinsic protein) genes was increased in sense plants and decreased in antisense plants. The same pattern was observed for the protein contents of four PIPs. This resulted in more than 6-fold differences between lines in Lpr under both hydrostatic and osmotic gradients of water potential. This effect was probably due to differences in aquaporin activity, because it was nearly abolished by a hydrogen peroxide treatment, which blocks the water channel activity of aquaporins. The hydraulic conductance of intact whole plants was affected in the same way when measured either in steady-state conditions or via the rate of recovery of leaf water potential after rewatering. The recoveries of leaf water potential and elongation upon rehydration differed between lines and were accounted for by the experimentally measured Lpr in a model of water transfer. Overall, these results suggest that ABA has long-lasting effects on plant hydraulic properties via aquaporin activity, which contributes to the maintenance of a favorable plant water status.  相似文献   

4.
The protein quality of barley was determined by the measurement of the protein efficiency ratio (PER). Available lysine in the same samples was determined chemically and by microbiological assay, and relationships were obtained between PER and either total or available lysine content.In the PER test, groundnut meal was found to be a suitable protein supplement to barley for the purpose of detecting differences in the protein quality of barley. The method was sufficiently sensitive to detect a reduction in protein quality of one variety as a result of micronization. Available lysine values obtained by the modified Tetrahymena method were significantly correlated (r = 0.99) with PER values; there was no significant correlation between total lysine content and the PER value.The available lysine values measured by the two chemical methods were higher than the Tetrahymena values. The Silcock method gave results better correlated (r = 0.93) with the Tetrahymena values than did the Carpenter method (r = 0.82). The results of chemical methods were not significantly related with PER values, but the methods ranked the barleys in an order similar to that obtained with the PER and Tetrahymena tests.  相似文献   

5.
Thirty various pelleted diets were given to broilers (8/diet) for in vivo measurements of dietary metabolisable energy (ME) value and digestibilities of proteins, lipids, starch and sugars from day 27 to day 31, with ad libitum feeding and total collection of excreta. Water excretion was also measured. Amino acid formulation of diets was done on the basis of ratios to crude proteins. Mean in vivo apparent ME values corrected to zero nitrogen retention (AMEn) were always lower than the AMEn values calculated for adult cockerels using predicting equations from literature based on the chemical analyses of diets. The difference between mean in vivo AMEn values and these calculated AMEn values increased linearly with increasing amount of wheat in diets (P = 0.0001). Mean digestibilities of proteins, lipids and starch were negatively related to wheat introduction (P = 0.0001). The correlations between mean in vivo AMEn values and diet analytical parameters were the highest with fibre-related parameters, such as water-insoluble cell-walls (WICW) (r = −0.91) or Real Applied Viscosity (RAV) (r = −0.77). Thirteen multiple regression equations relating mean in vivo AMEn values to dietary analytical data were calculated, with R2 values ranging from 0.859 to 0.966 (P = 0.0001). The highest R2 values were obtained when the RAV parameter was included in independent variables. The direct regression equations obtained with available components (proteins, lipids, starch, sucrose and oligosaccharides) and the indirect regression equations obtained with WICW and ash parameters showed similar R2 values. Direct or indirect theoretical equations predicting AMEn values were established using the overall mean in vivo digestibility values. The principle of indirect equations was based on the assumption that WICW and ashes act as diluters. Addition of RAV or wheat content in variables improved the accuracy of theoretical equations. Efficiencies of theoretical equations for predicting AMEn values were almost the same as those of multiple regression equations. Water excretion was expressed either as the water content of excreta (EWC), the ratio of water excretion to feed intake (WIR) or the residual value from the regression equation relating water excretion to feed intake (RWE). The best regression predicting EWC was based on sucrose, fermentable sugars (lactose + oligosaccharides) and chloride variables, with positive coefficients. The best equations predicting WIR or RWE contained the sugar and chloride variables, with positive coefficients. Other variables appearing in these equations were AMEn or starch with negative coefficients, WICW, ‘cell-wall-retained water’, RAV or potassium with positive coefficients.  相似文献   

6.
The objectives of this study were to: (1) characterize the evolutional tendency of the non-hydraulic root-sourced signal (NRS) from wheat wild relatives to its modern hexaploid species, and (2) test whether species sensitivity to the NRS was allied with their drought tolerance profiles. The NRS was judged to begin when there was a significant lowering of stomatal conductance without change in leaf relative water content (RWC). The lethal soil water content (LSWC) was operationally characterized as the soil water content (SWC) at the drying lethal point of wheat plants. The threshold of soil water content (TSWC) at which the NRS was triggered, and the LSWC differed amongst six wheat species. For “MO1” and “MO4” representing ‘diploid’ species, the TSWC and the LSWC were initiated successively at about 51% FWC (field water capacity) and about 30% FWC, respectively. Conversely, “Plateau 602” and “Longchun 8139-2” (modern hexaploid species) exhibited the TSWC and the LSWC between about 68% FWC and less than 14% FWC, a much wider threshold range (TR). Increasing TSWC was significantly correlated with decreasing LSWC (r = 0.9464**). The widened TR from the TSWC to the LSWC was also significantly correlated with longer survival days (SD) and higher maintenance ratio of grain yield (MRGY), respectively (r = 0.9411** and 0.8068*, respectively). Meanwhile, those species having higher TSWC had the least reduction ratio of stomatal conductance under the decreasing soil moisture from −0.2 to −1 MPa. This suggests that advances in yield performance and drought tolerance would be made evolutionally by targeted selection for an earlier onset of NRS.  相似文献   

7.
Photosynthetic gas exchange, plant-water relations characteristics, and stable carbon isotope discrimination (Δ) were evaluated for five Coffea arabica L. genotypes growing under two soil moisture regimes in the field. The Δ of leaf tissue was strongly correlated (r = −0.95) with inherent water use efficiency (ratio of assimilation to stomatal conductance; A/g). The variation in inherent water use efficiency (WUE) among genotypes was 30% for plants irrigated weekly. The higher WUE exhibited by some of these plants resulted from reduced g rather than increased photosynthetic capacity at a given g. Withholding irrigation for 1 month caused Δ to decline substantially in expanding leaf tissue of all genotypes. A strong correlation (r = 0.92) was found between Δ and plant hydraulic efficiency estimated as the ratio of g to the diurnal range in leaf water potential (Ψl). The Δ values for plants irrigated weekly adequately predicted drought-induced changes in Δ (r = 0.99) and midday Ψl (r = 0.95). The results indicated that Δ might be used to evaluate several aspects of plant performance and response to specific environmental conditions, once suitable background physiological data have been gathered.  相似文献   

8.
《农业工程》2020,40(2):153-157
The aim of this study was to examine the possibility of using wheat straw (WS), cottonseed meal (CSM), sunflower meal (SFM), soybean straw (SBS) and bean straw (BS) as basal substrates in Ganoderma lucidum cultivation instead of oak (OS) and poplar (PS) sawdusts. In the study, effects of different growing substrates on spawn running period, yield and biological efficiency (BE) of G. lucidum were determined. Moreover, possible correlations among productivity and lignocellulosic content of substrates were assessed. Average spawn run period varied between 14.2 and 18.2 d. Total yields of G. lucidum grown on different substrates ranged from 28.6 g/kg to 86.1 g/kg, while the corresponding values for BE varied between 8.9%–24.7%. The highest yield and BE was exhibited by the OS followed by PS substrate. CSM gave the lowest yield and BE. Spawn running time was found to be positively correlated to nitrogen content of the substrates (r2 = 0.918) and negatively correlated to cellulose and hemicellulose content of substrate (r2 = −0.927 and r2 = −0.838, respectively). The total mushroom yield was correlated negatively to nitrogen content of the substrates (r2 = −0.850) and positively correlated to C:N ratio (r2=0.915). Moreover, there is a strong positive correlation between mushroom yield and cellulose and lignin content of the substrates (r2 = 0.794 and r2= 0.879). According to results, G. lucidum had a preference for substrates containing a high amount of cellulose and and lignin, and having a low amount of N and high cellulose:lignin ratio. Furthermore, SBS, WS and BS may be suggested as alternative basal substrates for cultivation of G. lucidum.  相似文献   

9.
Zhu GL  Steudle E 《Plant physiology》1991,95(1):305-315
A double pressure probe technique was used to measure simultaneously water flows and hydraulic parameters of individual cells and of excised roots of young seedlings of maize (Zea mays L.) in osmotic experiments. By following initial flows of water at the cell and root level and by estimating the profiles of driving forces (water potentials) across the root, the hydraulic conductivity of individual cell layers was evaluated. Since the hydraulic conductivity of the cell-to-cell path was determined separately, the hydraulic conductivity of the cell wall material could be evaluated as well (Lpcw = 0.3 to 6.10−9 per meter per second per megapascal). Although, for radial water flow across the cortex and rhizodermis, the apoplasmic path was predominant, the contribution of the hydraulic conductance of the cell-to-cell path to the overall conductance increased significantly from the first layer of the cortex toward the inner layers from 2% to 23%. This change was mainly due to an increase of the hydraulic conductivity of the cell membranes which was Lp = 1.9.10−7 per meter per second per megapascal in the first layer and Lp = 14 to 9.10−7 per meter per second per megapascal in the inner layers of the cortex. The hydraulic conductivity of entire roots depended on whether hydrostatic or osmotic forces were used to induce water flows. Hydrostatic Lpr was 1.2 to 2.3.10−7 per meter per second per megapascal and osmotic Lpr = 1.6 to 2.8.10−8 per meter per second per megapascal. The apparent reflection coefficients of root cells (σs) of nonpermeating solutes (KCI, PEG 6000) decreased from values close to unity in the rhizodermis to about 0.7 to 0.8 in the cortex. In all cases, however, σs was significantly larger than the reflection coefficient of entire roots (σsr). For KCI and PEG 6000, σsr was 0.53 and 0.64, respectively. The results are discussed in terms of a composite membrane model of the root.  相似文献   

10.
Diffusional limitations to photosynthesis, relative water content (RWC), pigment concentrations and their association with reflectance indices were studied in olive (Olea europaea) saplings subjected to water-stress and re-watering. RWC decreased sharply as drought progressed. Following rewatering, RWC gradually increased to pre-stress values. Photosynthesis (A), stomatal conductance (gs), mesophyll conductance (gm), total conductance (gt), photochemical reflectance index (PRI), water index (WI) and relative depth index (RDI) closely followed RWC. In contrast, carotenoid concentration, the carotenoid to chlorophyll ratio, water content reflectance index (WCRI) and structural independent pigment index (SIPI) showed an opposite trend to that of RWC. Photosynthesis scaled linearly with leaf conductance to CO2; however, A measured under non-photorespiratory conditions (A1%O2) was approximately two times greater than A measured at 21% [O2], indicating that photorespiration likely increased in response to drought. A1%O2 also significantly correlated with leaf conductance parameters. These relationships were apparent in saturation type curves, indicating that under non-photorespiratory conditions, CO2 conductance was not the major limitations to A. PRI was significant correlated with RWC. PRI was also very sensitive to pigment concentrations and photosynthesis, and significantly tracked all CO2 conductance parameters. WI, RDI and WCRI were all significantly correlated with RWC, and most notably to leaf transpiration. Overall, PRI correlated more closely with carotenoid concentration than SIPI; whereas WI tracked leaf transpiration more effectively than RDI and WCRI. This study clearly demonstrates that PRI and WI can be used for the fast detection of physiological traits of olive trees subjected to water-stress.  相似文献   

11.
蒸腾导度模型是衡量冠层-大气界面水汽输出的重要阻力模型,研究其特征及对环境因子的响应,为揭示森林冠层-大气界面水汽输出阻力机制提供理论依据。以首都圈森林生态系统定位观测研究站侧柏林为研究对象,采用TDP热探针法测定侧柏林树干液流密度,同步监测光合有效辐射、饱和水汽压差、气温、风速等主要环境因子,分析冠层导度和空气动力学导度的动态变化,构建冠层-大气蒸腾导度模型并模拟,明确冠层-大气蒸腾导度对各环境因子的响应关系。结果表明:蒸腾导度季节变化表现为非生长季与冠层导度趋势一致,生长季与空气动力学导度趋势一致,全年均为单峰趋势。冬季蒸腾导度与冠层导度保持较稳定差值(45 mol m^(-2 )s-1左右),其他季节蒸腾导度与冠层导度、空气动力学导度的最大差值,均在各季节冠层导度、空气动力学导度的峰值水平。全年日均蒸腾导度冬季最大(86.92 mol m^(-2 )s-1),其他季节较小且稳定(40—50 mol m^(-2 )s-1之间)。在非生长季各环境因子对蒸腾导度的影响与对冠层导度的影响基本一致,温度为主要影响因子(r=-0.198),其他环境因子影响较小(r<0.1);在生长季中风速为主要影响因子(r=0.488),光合有效辐射(r=0.228)和饱和水汽压差(r=-0.299)的影响明显升高,温度的影响降低(r=0.114)。蒸腾导度模型较好的模拟了冠层-大气界面侧柏蒸腾不同季节的变化规律,阐明了各环境因子和冠层导度、空气动力学导度对蒸腾导度的影响机制,证实在生长季应重视空气动力学导度对蒸腾的影响。  相似文献   

12.
Five winter oilseed rape cultivars (Benefit, Californium, Cortes, Ladoga, Navajo) were subjected to 30 days of cold treatment (4 °C) to examine the effect of cold on acquired frost tolerance (FT), dehydrin (DHN) content, and photosynthesis-related parameters. The main aim of this study was to determine whether there are relationships between FT (expressed as LT50 values) and the other parameters measured in the cultivars. While the cultivar Benefit accumulated two types of DHNs (D45 and D35), the other cultivars accumulated three additional DHNs (D97, D47, and D37). The similar-sized DHNs (D45 and D47) were the most abundant; the others exhibited significantly lower accumulations. The highest correlations were detected between LT50 and DHN accumulation (r = −0.815), intrinsic water use efficiency (WUEi; r = −0.643), net photosynthetic rate (r = −0.628), stomatal conductance (r = 0.511), and intracellular/intercellular CO2 concentration (r = 0.505). Those cultivars that exhibited higher Pn rate in cold (and further a significant increase in WUEi) had higher levels of DHNs and also higher FT. No significant correlation was observed between LT50 and E, PRI, or NDVI. Overall, we have shown the selected physiological parameters to be able to distinguish different FT cultivars of winter oilseed rape.  相似文献   

13.
《Annals of botany》1996,77(6):605-613
To evaluate the effect of drought and vapour pressure deficit (VPD) on stomatal behaviour and gas exchange parameters, young kiwifruit vines (Actinidia deliciosavar.deliciosacv. Hayward) were exposed to alternating periods of drought and drought-relief over two growing seasons. Vines were grown either in the field or in containers. Stomatal conductance of fully-expanded leaves rapidly decreased as pre-dawn leaf water potential was reduced below a threshold value of -0.3MPa. Stomatal conductance reached minimum values of 10–20mmol m-2s-1. Transpiration rate was similarly sensitive to changes in leaf water status, whereas more severe drought levels were necessary to affect photosynthesis significantly. Net daily carbon gains were estimated at 4.7 and 2.7gm-2for irrigated and droughted vines, respectively. Gas exchange parameters recovered to values of irrigated vines within a few hours after relief of stress. Rate of recovery depended on the level of stress reached during the previous drought period. There was a steady decline in stomatal conductance when VPD was increased from 0.8 to 2.5kPa in both irrigated and droughted vines. The VPD at which stomatal conductance reached 50% of maximum values was 2.1–2.2kPa for both treatments. We conclude that stomata were highly sensitive to changes in soil water status and that midday depression of photosynthesis measured in kiwifruit vines was related to water deficits arising in the leaf because of both transpirational losses and to the direct effect of increasing VPD.  相似文献   

14.
In the last decade extensive research has focused on the development of dose–response relationships based on stomatal plant ozone uptake (phytotoxic ozone dose, POD). So far most work has concentrated on crops and forest trees. This study provides a flux-based dose–response function for timothy (Phleum pratense), a widespread grassland species, which can be used in risk assessment for ground-level ozone. In 1996 and 2001 timothy was exposed in open-top chambers to ozone concentrations ranging from around 10 nmol mol−1 in the charcoal filtered treatments up to 60 nmol mol−1 in the fumigated treatments (08:00–20:00) in. In 1996 there was a negative effect of ozone on biomass production in the non-filtered treatment while in 2001 no such ozone effect in the non-filtered treatment could be seen. Measurements of stomatal conductance on four timothy genotypes in 2001 were used to calibrate a Jarvis-type multiplicative stomatal conductance model. The maximum conductance varied between the genotypes, from 477 to 589 mmol O3 m−2 s−1 (projected leaf area). The model includes functions describing the reduction of stomatal conductance of senescing leaves and the direct effects on stomatal conductance by light, temperature and water vapour pressure deficit. A function describing ozone induced senescence of the leaves was included since exposure to ozone is known to cause premature senescence. The function for ozone was applied when it suggested ozone to be more limiting to stomatal conductance than phenology. To avoid overestimation of stomatal conductance in days with high VPD, a function reflecting the effect on leaf water potential on stomatal conductance was included. Comparison between modelled and measured conductance for the four timothy genotypes resulted in an r2 value at 0.57 and a very small average deviation of observed from modelled values. The calibrated stomatal conductance model was used to estimate the accumulated POD, i.e. the accumulated stomatal flux of ozone, of the plants in the 1996 and 2001 experiments. The strongest relationship between ozone relative effects on biomass was obtained when POD was accumulated from 105 degree days after emergence to 1000 degree days after emergence, and integrated using an uptake rate threshold of 7 nmol m−2 s−1 (POD7). The response relationship between biomass and POD7 resulted in an r2 value of 0.71 over all four genotypes. This r2 value was somewhat higher than for the corresponding relationship based on the accumulated ozone exposure over 40 nmol mol−1 (AOT40; r2 = 0.66). With an uptake rate threshold at 7 nmol m−2 s−1, ozone concentrations above ∼20 nmol mol−1, contribute to reduce the biomass production of timothy if meteorological conditions promote maximum stomatal conductance.  相似文献   

15.
Osmotic adjustment occurred during drought in expanded leaves of sunflowers (Helianthus annuus var Hysun 30) which had been continuously exposed to 660 microliters CO2 per liter or had been previously acclimated to drought. The effect was greatest when the treatments were combined and was negligible in nonacclimated plants grown at 340 microliters CO2 per liter. The concentrations of ethanol soluble sugars and potassium increased during drought but they did not account for the osmotic adjustment. The delay in the decline in conductance and relative water content and in the loss of structural integrity with increasing drought was dependent on the degree of osmotic adjustment. Where it was greatest, conductance fell from 5.8 millimeters per second on the first day of drought to 1.3 millimeters per second on the fourth day and was at approximately the same level on the eighth day. The relative water content remained constant at 85% for three days and fell to 36% on the sixth day. There was no evidence of leaf desiccation even on the eighth day. In contrast, the conductance of leaves showing minimal adjustment fell rapidly after the first day of drought and was negligible after the fourth, at which time the relative water content was 36%. By the sixth day of drought, areas near the margins of the leaves were desiccating and the plants did not recover upon rewatering. Despite the differences in the rate of change of conductance and relative water content during drought, photosynthetic electron transport activity, inferred from measurements of chlorophyll a fluorescence in vivo and PSII activity of isolated thylakoids, remained functional until desiccation occurred.  相似文献   

16.
Patterns in soil moisture availability affect plant survival, growth and fecundity. Here we link patterns in soil moisture to physiological and demographic consequences in Florida scrub plants. We use data on different temporal scales to (1) determine critical soil moisture content that leads to loss of turgor in leaves during predawn measurements of leaf water status (Ψ crit), (2) describe the temporal patterns in the distribution of Ψ crit, (3) analyze the strength of relationship between rainfall and soil moisture content based on 8 years of data, (4) predict soil moisture content for 75 years of rainfall data, and (5) evaluate morphological, physiological and demographic consequences of spring 2006 drought on dominant shrubs in Florida scrub ecosystem in the light of water-uptake depth as determined by stable isotope analysis (δ18O). Based on 1998–2006 data, the soil moisture content at 50 cm depth explained significant variation in predawn leaf water potential of two dominant shrubs, Quercus chapmanii and Ceratiola ericoides (r 2?=?0.69). During 8 years of data collection, leaves attained Ψ crit only during the peak drought of 2000 when the soil moisture fell below 1% by volume at 50 and 90 cm depth. Precipitation explained a significant variation in soil moisture content (r 2?=?0.62). The patterns in predicted soil moisture for 75 year period, suggested that the frequency of drought occurrence has not increased in time. In spring 2006, the soil reached critical soil moisture levels, with consequences for plant growth and physiological responses. Overall, 24% of plants showed no drought-induced damage, 51% showed damage up to 50%, 21% had intense leaf shedding and 2% of all plants died. Over the drought and recovery period (May–October 2006), relative height growth was significantly lower in plants with greater die-back. All species showed a significant depression in stomatal conductance, while all but deep-rooted palms Sabal etonia and Serenoa repens showed significantly lower predawn (Ψ pd) and mid-day (Ψ md) leaf water potential in dry compared to wet season. Plants experiencing less severe die-back exhibited greater stomatal conductance, suggesting a strong relationship between physiology and morphology. Based on results we suggest that the restoration efforts in Florida scrub should consider the soil moisture requirements of key species.  相似文献   

17.
The primary objective of the research is to estimate the dependence between hair mercury content, hair selenium, mercury-to-selenium ratio, serum lipid spectrum, and gamma-glutamyl transferase (GGT) activity in 63 adults (40 men and 23 women). Serum triglyceride (TG) concentration in the high-mercury group significantly exceeded the values obtained for low- and medium-mercury groups by 72 and 42 %, respectively. Serum GGT activity in the examinees from high-Hg group significantly exceeded the values of the first and the second groups by 75 and 28 %, respectively. Statistical analysis of the male sample revealed similar dependences. Surprisingly, no significant changes in the parameters analyzed were detected in the female sample. In all analyzed samples, hair mercury was not associated with hair selenium concentrations. Significant correlation between hair mercury content and serum TG concentration (r?=?0.531) and GGT activity (r?=?0.524) in the general sample of the examinees was detected. The respective correlations were observed in the male sample. Hair mercury-to-selenium ratios significantly correlated with body weight (r?=?0.310), body mass index (r?=?0.250), serum TG (r?=?0.389), atherogenic index (r?=?0.257), and GGT activity (r?=?0.393). The same correlations were observed in the male sample. Hg/Se ratio in women did not correlate with the analyzed parameters. Generally, the results of the current study show the following: (1) hair mercury is associated with serum TG concentration and GGT activity in men, (2) hair selenium content is not related to hair mercury concentration, and (3) mercury-to-selenium ratio correlates with lipid spectrum parameters and GGT activity.  相似文献   

18.
The rate of photosynthesis under high light (1000 micromole quanta per square meter per second) and at 25°C was measured during development of the third leaf on wheat plants and compared with the activity of several photosynthetic enzymes and the level of metabolites. The rate of photosynthesis reached a maximum the 7th day after leaf emergence and declined thereafter. There was a high and significant correlation between the rate of photosynthesis per leaf area and the activities of the enzymes ribulose 5-phosphate kinase (r = 0.91), ribulose 1,5-bisphosphate (RuBP) carboxylase (r = 0.94), 3-phosphoglycerate (PGA) kinase (r = 0.82), and fructose 1,6-bisphosphatase (r = 0.80) per leaf area. There was not a significant correlation of photosynthesis rate with chlorophyll content. The rate of photosynthesis was strongly correlated with the level of PGA (r = 0.85) and inversely correlated with the level of triose phosphate (dihydroxyacetone phosphate and glyceraldehyde 3-phosphate) (r = 0.92). RuBP levels did not change much during leaf development; therefore photosynthesis rate was not correlated with the level of RuBP. The rate of photosynthesis was at a maximum when the ratio of PGA/triose phosphate was high, and when the ratio of RuBP/PGA was low. Although several enzymes change in parallel with leaf development, the metabolite changes suggest the greatest degree of control may be through RuBP carboxylase. The sucrose content of the leaf was highest under high rates of photosynthesis. There was no evidence that later in leaf development, photosynthesis (measured under high light and at 25°C) was limited by utilization of photosynthate.  相似文献   

19.
Understanding the spatial variability of soil organic carbon (SOC) must be enhanced to improve sampling design and to develop soil management strategies in terrestrial ecosystems. Moso bamboo (Phyllostachys pubescens Mazel ex Houz.) forests have a high SOC storage potential; however, they also vary significantly spatially. This study investigated the spatial variability of SOC (0-20 cm) in association with other soil properties and with spatial variables in the Moso bamboo forests of Jian’ou City, which is a typical bamboo hometown in China. 209 soil samples were collected from Moso bamboo stands and then analyzed for SOC, bulk density (BD), pH, cation exchange capacity (CEC), and gravel content (GC) based on spatial distribution. The spatial variability of SOC was then examined using geostatistics. A Kriging map was produced through ordinary interpolation and required sample numbers were calculated by classical and Kriging methods. An aggregated boosted tree (ABT) analysis was also conducted. A semivariogram analysis indicated that ln(SOC) was best fitted with an exponential model and that it exhibited moderate spatial dependence, with a nugget/sill ratio of 0.462. SOC was significantly and linearly correlated with BD (r = −0.373**), pH (r = −0.429**), GC (r = −0.163*), CEC (r = 0.263**), and elevation (r = 0.192**). Moreover, the Kriging method requires fewer samples than the classical method given an expected standard error level as per a variance analysis. ABT analysis indicated that the physicochemical variables of soil affected SOC variation more significantly than spatial variables did, thus suggesting that the SOC in Moso bamboo forests can be strongly influenced by management practices. Thus, this study provides valuable information in relation to sampling strategy and insight into the potential of adjustments in agronomic measure, such as in fertilization for Moso bamboo production.  相似文献   

20.
In the last two decades drought and elevated toxic metal concentration phenomena in plants have gained the interest of the scientific world. Nevertheless, up to day relatively little ecophysiological research concerning the effect of water stress and elevated selenium (Se) concentration on plant water relations is available. A pot experiment was conducted in order to evaluate the effects of the implied synergy of drought and Se uptake on water relations of yellow sweetclover (Melilotus officinalis L.). The effects of two different Se concentrations (0 mg Se L?1 irrigation water, 3 mg Se L?1 irrigation water) and two water regimes (full irrigation — limited irrigation) applied to seedlings of yellow sweetclover were detected by measuring changes in water potential, relative water content, stomatal conductance, transpiration rate and tissue Se concentration. The findings suggest that yellow sweetclover, concentrating up to 200 μg Se g?1 dry weight in its tissues, could be considered a secondary Se accumulator. Se effect on water relations was more evident under limited irrigation, as expressed by decreased values of leaf water potential, transpiration rate and stomatal conductance, limiting the flux rate of the water solution in the conducting system of the plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号