首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present work we characterized the ecto-ATP diphosphohydrolase activity of the trypanosomatid parasite Herpetomonas muscarum muscarum. This parasite hydrolyzed ATP at a rate of 15.52 nmol Pi/mg protein/min and this activity reached a maximum at pH 7.5. Classical inhibitors of acid phosphatases, such as sodium orthovanadate (NaVO3), sodium fluoride (NaF), and ammonium molybdate presented no effect on this activity. MgCl2, ZnCl2, and MnCl2 stimulated the ATP hydrolysis by H. m. muscarum. The ecto-ATPase activity was insensitive to oligomycin and sodium azide, two inhibitors of mitochondrial Mg-ATPase, bafilomycin A1, a V-ATPase inhibitor, ouabain, a Na++K+-ATPase inhibitor and to levamizole, an inhibitor of alkaline phosphatase. An extracellular impermeant inhibitor 4,4-diisothiocyanostylbene 2,2-disulfonic acid (DIDS) and a inhibitor of some ecto-ATPases, suramin, which is also a competitive antagonist of P2-purinergic receptors, promoted a great inhibition on the ATP hydrolysis. This enzyme is able to hydrolysis ATP, ADP, UTP, and UDP, but not GTP, GDP, CTP, or CDP. ADP inhibited the enzymatic activity in a concentration dependent manner, reaching 70% inhibition. Received: 17 September 2002 / Accepted: 19 November 2002  相似文献   

2.
In the present work we characterized the ecto-ATP diphosphohydrolase activity of the trypanosomatid parasite Herpetomonas muscarum muscarum. This parasite hydrolyzed ATP at a rate of 15.52 nmol Pi/mg protein/min and this activity reached a maximum at pH 7.5. Classical inhibitors of acid phosphatases, such as sodium orthovanadate (NaVO3), sodium fluoride (NaF), and ammonium molybdate presented no effect on this activity. MgCl2, ZnCl2, and MnCl2 stimulated the ATP hydrolysis by H. m. muscarum. The ecto-ATPase activity was insensitive to oligomycin and sodium azide, two inhibitors of mitochondrial Mg-ATPase, bafilomycin A1, a V-ATPase inhibitor, ouabain, a Na(+)+K+-ATPase inhibitor and to levamizole, an inhibitor of alkaline phosphatase. An extracellular impermeant inhibitor 4,4'-diisothiocyanostylbene 2',2'-disulfonic acid (DIDS) and a inhibitor of some ecto-ATPases, suramin, which is also a competitive antagonist of P2-purinergic receptors, promoted a great inhibition on the ATP hydrolysis. This enzyme is able to hydrolysis ATP, ADP, UTP, and UDP, but not GTP, GDP, CTP, or CDP. ADP inhibited the enzymatic activity in a concentration dependent manner, reaching 70% inhibition.  相似文献   

3.
Summary By differentiation of substrate specificity, pH optimum range, and sensitivity to various inhibitors, 2 isoenzymes of acid phosphatase in bone cells have been studied at the electron-microscopic level. When p-nitrophenyl phosphate was used for the substrate, the demonstrable enzyme activity was affected by neither tartrate nor sodium fluoride. The reaction product, when incubated at pH 5–6, was detected in all sites along the pathway for the biosynthesis of acid phosphatase in the osteoclast, including the perinuclear space, cisternae of the endoplasmic reticulum, Golgi complex, various vesicles, and vacuoles. In the osteoclasts attached to bone, the enzymatic activity was demonstrated at the extracellular ruffled border and on the eroded bone surface. Reaction products became confined to lysosomes and extracellular ruffled border when incubated at pH 6–7. Unattached osteoclasts showed a similar intracytoplasmic localization of enzyme as the attached ones, except for the absence of the extracellular enzyme activity. The mononuclear, immature type of osteoclast also resembled the mature osteoclast in terms of enzymatic localization. Except for the osteoclasts, the acid p-nitrophenyl phosphatase activity was restricted to lysosomal vesicles in various bone cells, monocytes, and macrophages. Such activity was inhibited by adding 50 mM tartrate to the p-nitrophenyl phosphate medium. When -glycerophosphate or p-nitrocatechol sulfate was the substrate, most of the reaction product was localized intracellularly. Unlike the acid p-nitrophenyl phosphatase, the acid -glycerophosphatase or arylsulfatase activity in osteoclasts and other bone cells was inhibited completely by 10 mM tartrate or 10 mM sodium fluoride. Even preincubation of 100 mM tartrate in the buffer inhibited -glycerophosphatase activity completely, but p-nitrophenyl phosphatase activity was inhibited incompletely. Consequently, our results suggest that acid p-nitrophenyl phosphatase is a useful cytochemical marker for identification of the osteoclast family at electron-microscopic levels of resolution.  相似文献   

4.
In the present work we have partially characterized an ecto-phosphatase activity in Crithidia deanei, using viable parasites. This enzyme hydrolyzed p-nitrophenylphosphate at a rate of 3.55 +/- 0.47 nmol Pi/h x 10(8) cells. The dependence on p-NPP concentration shows a normal Michaelis-Menten kinetics for this phosphatase activity and the value of the apparent Km for p-NPP was 5.35 +/- 0.89 mM. This phosphatase activity was inhibited by the product of the reaction, the inorganic phosphate. Experiments using classical inhibitors of acid phosphatases, such as ZnCl2 and sodium fluoride, as well as inhibitors of phosphotyrosine phosphatase, such as sodium orthovanadate and ammonium molybdate, showed a decrease in this phosphatase activity, with different patterns of inhibition.  相似文献   

5.
Toxoplasma gondii is a human protozoan parasite that belongs to the phylum of Apicomplexa and causes toxoplasmosis. As the other members of this phylum, T. gondii obligatory multiplies within a host cell by a peculiar type of mitosis that leads to daughter cell assembly within a mother cell. Although parasite growth and virulence have been linked for years, few molecules controlling mitosis have been yet identified and they include a couple of kinases but not the counteracting phosphatases. Here, we report that in contrast to other animal cells, type 2C is by far the major type of serine threonine phosphatase activity both in extracellular and in intracellular dividing parasites. Using wild type and transgenic parasites, we characterized the 37 kDa TgPP2C molecule as an abundant cytoplasmic and nuclear enzyme with activity being under tight regulation. In addition, we showed that the increase in TgPP2C activity significantly affected parasite growth by impairing cytokinesis while nuclear division still occurred. This study supports for the first time that type 2C protein phosphatase is an important regulator of cell growth in T. gondii.  相似文献   

6.
Summary Claviceps purpurea strain 129 was cultivated under submerged conditions in a sucrose-citrate medium containing high (36.8 mM) or low (1.84 mM) KH2PO4 concentrations. The permeabilized cells and culture supernatants contained alkaline and acid phosphatases. In the medium containing a high phosphate concentration, the synthesis of extracellular phosphatases was repressed, but that of cellular phosphatases was not. Extracellular phosphatases, especially alkaline phosphatases, were derepressed by transferring the mycelium into a phosphate-free medium. This derepression was inhibited by cycloheximide. In the presence of cycloheximide, the activities of the cellular phosphatases decreased markedly, indicating turnover of these enzymes. The cellular acid phosphatase was inhibited by phosphate (0.025 M–0.1 M) and NaF (0.01 M) while the cellular alkaline phosphatase was only inhibited by phosphate. Both cellular and extracellular alkaline phosphatases were more sensitive to repression by phosphate than the acid phosphatases. The alkaloid synthesizing enzymes were: a) present in mycelia grown in high levels of phosphate and b) activated by decreasing the intracellular phosphate level.  相似文献   

7.
Lipid uptake and metabolism by trypanosomatid parasites from vertebrate host blood have been well established in the literature. However, there is a lack of knowledge regarding the same aspects concerning the parasites that cross the hemolymph of their invertebrate hosts. We have investigated the lipid composition and metabolism of the insect trypanosomatid Herpetomonas muscarum by 3H- palmitic acid and phosphate (32Pi) and the parasite interaction with Lipophorin (Lp) the main lipid carrying protein of insect hemolymph. Gas chromatography-mass spectrometry (GC–MS) analyses were used to identify the fatty acids and sterols composition of H.muscarum. Furthermore, we investigated the Lp binding site in the plasma membrane of parasite by Immunolocalization. We showed that H. muscarum incorporated 3H-palmitic acid and inorganic phosphate (32Pi) which were readily used as precursor molecules of lipid biosynthetic pathways. Furthermore, H. muscarum was able to take up both protein and lipid moieties of Lp which could be used as nutrient sources. Moreover, we have also demonstrated for the first time the presence of a Lp binding site in the membrane of a parasite. Such results point out the role of describing the metabolic pathways of trypanosomatids in order to provide a better understanding of parasite-host interaction peculiarities. Such studies may enhance the potential form the identification of novel chemotherapeutic targets in harmful parasites.  相似文献   

8.
ABSTRACT. Extracts of the pathogenic ameba Naegleria fowleri, prepared by freeze-thawing and sonication, were analyzed for their content of various hydrolytic enzymes that have acid pH optima. The organism is rich in acid phosphatase activity as well as a variety of glycosidases which include β-glucosidase, β-galactosidase, β-fucosidase, α-mannosidase, hexosaminidase, arylsulfatase A, and β-glucuronidase. The crude extract contained only negligible levels of sphingomyelinase, neuraminidase, or arylsulfatase B. All of the hydrolases exhibited higher activity at pH 5.5 than at 7.0, indicating that they are truly “acid” hydrolases. In general, after centrifugation (100,000 g, 1 h), except for arylsulfatase B, more than half of the activity of each of the various hydrolases was recovered in the supernatant fraction. The acid phosphatase in the high-speed supernatant was purified 45-fold (32% yield) by chromatography on QAE-Sephadex and Sephadex G-200 and shown to have the following properties: 1) pH optima, 5.5; 2) Km (4-methylumbelliferyl phosphate), 0.60 mM; 3) molecular weight (estimated by gel filtration chromatography), 92,000; 4) inhibited by heteropolymolybdate complexes but not by L(+) sodium tartrate (0.5 mM) or sodium fluoride (0.5 mM). In addition, unlike the tartrate-resistant acid phosphatase of Leishmania donovani, the major acid phosphatase of N. fowleri is less than 5% as effective in inhibiting superoxide anion production by f-Met-Leu-Phe-stimulated human neutrophils. The finding of high levels of a number of acid hydrolases in Naegleria fowleri raises several questions that merit further study: Do the hydrolases perform a housekeeping function in this single cell eukaryote or do they play some role in the pathogenic process that ensues when the organism infects a suitable host?  相似文献   

9.
Marine sponges (Porifera) live in a symbiotic relationship with microorganisms, primarily bacteria. Recently, several studies indicated that sponges are the most prolific source of biologically-active compounds produced by symbiotic microorganisms rather than by the sponges themselves. In the present study we characterized the bacterial symbionts from two Demospongiae, Ircinia muscarum and Geodia cydonium. We amplified 16S rRNA by PCR, using specific bacterial-primers. The phylogenetic analysis revealed the presence of nine bacterial clones from I. muscarum and ten from G. cydonium. In particular, I. muscarum resulted enriched in Bacillus species and G. cydonium in Proteobacterium species. Since these bacteria were able to produce secondary metabolites with potential biotechnological and biopharmaceutical applications, we hypothesized that I. muscarum and G. cydonium could be a considered as a “gold mine” of natural products.  相似文献   

10.
In order to use leakage of lysosomal acid phosphatase (AP) as a biomarker of stress to earthworms, more information about AP’s in earthworms are needed. This paper describes the details about tentatively classified APs in the earthworm Eisenia veneta. Two isoenzymes (enzyme I and II) of acid phosphatase (AP) and one alkaline phosphatase (enzyme III) from the earthworm E. veneta were separated by gel filtration. All three enzymes were further purified and concentrated on a Con A Sepharose 4B column. Enzyme I was inhibited by tartrate, showed an optimal pH range between 4.0 and 5.0 and was assumed to be of lysosomal origin. Enzyme II was the major enzyme showing the highest activity of the three enzymes. It was expected to be a lysosomal AP under physiological conditions. Enzyme II had a molecular mass 113 kDa and was composed of apparently identical polypeptide chains of 36 kDa each. This enzyme was inhibited by tartrate, showed an optimal pH in the range 6.0–7.5 and was slowly degraded at temperatures above 40°C. Enzyme III is not inhibited by tartrate and has a pH-optimum >9. The subcellular location under physiological conditions was assumed to be the cytosol.  相似文献   

11.
Recently, we identified and characterized the genes encoding several distinct members of the histidine-acid phosphatase enzyme family from Leishmania donovani, a primitive protozoan pathogen of humans. These included genes encoding the heavily phosphorylated/glycosylated, tartrate-sensitive, secretory acid phosphatases (Ld SAcP-1 and Ld SAcP-2) and the unique, tartrate-resistant, externally-oriented, surface membrane-bound acid phosphatase (Ld MAcP) of this parasite. It had been previously suggested that these enzymes may play essential roles in the growth, development and survival of this organism. In this report, to further examine this hypothesis, we assessed whether members of the L. donovani histidine-acid phosphatase enzyme family were conserved amongst other pathogenic Leishmania and related trypanosomatid parasites. Such phylogenetic conservation would clearly indicate an evolutionary selection for this family of enzymes and strongly suggest and support an important functional role for acid phosphatases to the survival of these parasites. Results of pulsed field gel electrophoresis and Southern blotting showed that homologs of both the Ld SAcPs and Ld MAcP were present in each of the visceral and cutaneous Leishmania species examined (i.e. isolates of L. donovani, L. infantum,L. tropica, L. major and L. mexicana, respectively). Further, results of enzyme assays showed that all of these organisms expressed both tartrate-sensitive and tartrate-resistant acid phosphatase activities. In addition, homologs of both the Ld SAcPs and Ld MAcP genes and their corresponding enzyme activities were also identified in two Crithidia species (C. fasciculata and C. luciliae) and in Leptomonas seymouri. In contrast, Trypanosoma brucei, Trypanosoma cruzi and Phytomonas serpens had only very low levels of such enzyme activities. Cumulatively, results of this study showed that homologs of the Ld SAcPs and Ld MAcP are conserved amongst all pathogenic Leishmania sps. suggesting that they may play significant functional roles in the growth, development and survival of all members of this important group of human pathogens.  相似文献   

12.
We have established a primary cell culture of the marine demosponge Ircinia muscarum. The culture was started from a cell suspension obtained by a combination of mechanical chemical means. Microbial contamination was controlled by the use of a pool of antibiotics. Optical density, rather than hemocytometer count, is suggested to monitor the cellular growth. Analysis of the chemical composition of I. muscarum cells revealed absence of sterols, showing that the cells were unable to biosynthesize sterols. When the medium was supplemented with cholesterol an increase of about 70% in the number of cells was observed. These results suggest that the classic mammalian nutrient medium was not satisfactory for I. muscarum cell growth, and sterols were needed to satisfy the membrane requirements. Received November 11, 2000; accepted January 14, 2001  相似文献   

13.
Here we demonstrate for the first time that growth of Trypanosoma rangeli, a protozoa parasite, is strongly dependent on the presence of inorganic phosphate (Pi) in the culture medium and that the replacement of the inorganic phosphate in the culture medium by β-glycerophosphate, a substrate for phosphatases lead the cells to achieve its maximal growth. The ecto-phosphatase activity present on the external surface of T. rangeli decreased during the growth phase of the parasite, suggesting that this enzyme could be important for the development. Accordingly, the inhibition of this ecto-phosphatase activity by sodium orthovanadate also inhibited the proliferation of T. rangeli. Parasites maintained in a Pi-starved culture medium (2 mM Pi) had 4-fold more ecto-phosphatase activity as compared to parasites maintained in a Pi-supplemented culture medium (50 mM Pi). Altogether, these results presented here suggest that this ecto-phosphatase activity leads to hydrolysis of phosphorylated compounds present in the extracellular medium, which could contribute to the acquisition of inorganic phosphate during the development of T. rangeli epimastigotes.  相似文献   

14.
The aim of this work was to investigate whether an alkaline ecto-phosphatase activity is present in the surface of Trypanosoma rangeli. Intact short epimastigote forms were assayed for ecto-phosphatase activity to study kinetics and modulators using β-glycerophosphate (β-GP) and p-nitrophenyl phosphate (pNPP) as substrates. Its role in parasite development and differentiation was also studied. Competition assays using different proportions of β-GP and pNPP evidenced the existence of independent and non-interacting alkaline and acid phosphatases. Hydrolysis of β-GP increased progressively with pH, whereas the opposite was evident using pNPP. The alkaline enzyme was inhibited by levamisole in a non-competitive fashion. The Ca2+ present in the reaction medium was enough for full activity. Pretreatment with PI-PLC decreased the alkaline but not the acid phosphatase evidence that the former is catalyzed by a GPI-anchored enzyme, with potential intracellular signaling ability. β-GP supported the growth and differentiation of T. rangeli to the same extent as high orthophosphate (Pi). Levamisole at the IC50 spared significantly parasite growth when β-GP was the sole source of Pi and stopped it in the absence of β-GP, indicating that the alkaline enzyme can utilize phosphate monoesters present in serum. These results demonstrate the existence of an alkaline ecto-phosphatase in T. rangeli with selective requirements and sensitivity to inhibitors that participates in key metabolic processes in the parasite life cycle.  相似文献   

15.
Summary Two acid phosphatases have been demonstrated histochemically in mouse ventral prostate, seminal vesicles, coagulating glands, and liver and in human prostate. The first is the lysosomal acid phosphatase demonstrable by the Gomori technique. The second differs from thisβ-glycerophosphatase in that it splits naphthol AS phosphates but notβ-glycerophosphate; it has a different histochemical pH optimum and it is not inhibited by MoO4 or NaF. The enzyme does not represent the “tail” of alkaline phosphatase activity as it is not inhibited by inhibitors of alkaline phosphatase and it has a different localization in liver and in human prostate. The enzyme may be membrane-bound but a lysosomal localization has still to be confirmed.  相似文献   

16.
S6 phosphatase activities, which dephosphorylate the phosphorylated S6 synthetic peptide, RRLSSLRASTSKSESSQK, were purified to near homogeneity from the membrane and cytosolic fractions of the rat parotid gland. Multiple S6 phosphatases were fractionated on Mono Q and gel filtration columns. In the cytosolic fraction, at least three forms of S6 phosphatase, termed peaks I, II, and III, were differentially resolved. The three forms had different sizes and protein compositions. The peak I enzyme, which had an approximately Mr of 68 kDa on gel filtration, appears to represent a dimeric form of the 39 kDa protein. This S6 phosphatase showed the high activity in the presence of EGTA and was completely inhibited by nanomolar concentrations of either okadaic acid or inhibitor 2. The peak II S6 phosphatase enzyme, with an Mr of 35 kDa, was activated by Mn2+. This form could be a proteolytic product of the catalytic subunit of type 1 phosphatase, due to its sensitivities to okadaic acid and inhibitor 2. The peak III enzyme, with an Mr of 55 kDa, is a Mn2+-dependent S6 phosphatase. This S6 phosphatase can be classified as a type 1 phosphatase, due to its sensitivity to okadaic acid, since the IC50 of okadaic acid is 4 nM. However, the molecular mass of this S6 phosphatase differs from that of the type 1 catalytic subunit (37 kDa) and showed less sensitivity to inhibitor 2. On the other hand, the membrane fraction contained one form of the S6 phosphatases, termed peak V (Mr 34 and 28 kDa), which could be classified as a type 1 phosphatase. This S6 phosphatase activity was greatly stimulated by Mn2+.Abbreviations PP1-C catalytic subunit of type 1 protein phosphatase - SDS sodium dodecyl sulfate - Hepes 4-(2-hydroxyethyl)-1-piperazineethane sulfonic acid - PMSF phenylmethylsulfonyl fluoride - Mops 4-morpholine propanesulfonic acid - EDTA ethylenediaminetetraacetate - EGTA [ethylenbis (oxyethylenenitrilo)]-tetra acetic acid  相似文献   

17.
Summary Cell fractionation of bloodstream Trypanosoma rhodesiense, using isopycnic sucrose gradient centrifugation, reveals acid phosphatase activities against a range of substrates to be associated, to varying degrees, with subcellular particle populations identified as derived from flagella pocket membrane and surface membrane. Using these same substrates ( and glycerophosphate, p-nitrophenyl phosphate and glucose-6-phosphate) at least two distinct acid phosphatase activities can be distinguished. One is thermolabile ( 80% inactivated after 30 min. at 60°C), sensitive to tartrate (50% inhibited at 1.8 mM Na tartrate) with a pH optimum 4.5 and appears to exhibit little substrate preference. The other acid phosphatase is relatively heat stable (30% inactivated), insensitive to tartrate (> 5.0% inhibited using 1.8 mM Na tartrate) exhibits a somewhat higher pH optimum ( 6.0) and is more substrate specific (6 × more active toward glucose-6-PO4 than -glycerophosphate). Further cell fractionation experiments reveal 85% of the tartrate sensitive acid phosphatase to be associated with flagella pocket membrane and to account for 80% of the organisms hydrolytic activity toward -glycerophosphate. The tartrate resistant acid phosphatase however, has a much less exclusive localization being almost equally distributed between surface membrane (40%) and flagella pocket membrane (60%).  相似文献   

18.
Sporozoite extracts of E. vermiformis, E. stiedai, and E. tenella are rich in acid phosphatase activity. They contain specific enzyme activities equal to or greater than those reported for other highly virulent protozoan parasites. The absolute amount of enzyme activity per oocyst dramatically increases during sporulation of E. stiedai and E. vermiformis. Partial characterization of the acid phosphatase activity of E. vermiformis indicates that sporozoites account for greater than 92% of the total activity in sporubted oocysts, that the enzyme is resistant to inhibition by tartrate, and that it can be separated into two forms by anion exchange chroma-tography.  相似文献   

19.
Sexual development in malaria parasites involves multiple signal transduction pathways mediated by reversible protein phosphorylation. Here, we functionally characterised a protein phosphatase, Ser/Thr protein phosphatase 5 (PbPP5), during sexual development of the rodent malaria parasite Plasmodium berghei. The recombinant protein phosphatase domain displayed obvious protein phosphatase activity and was sensitive to PP1/PP2A inhibitors including cantharidic acid (IC50 = 122.2 nM), cantharidin (IC50 = 74.3 nM), endothall (IC50 = 365.5 nM) and okadaic acid (IC50 = 1.3 nM). PbPP5 was expressed in both blood stages and ookinetes with more prominent expression during sexual development. PbPP5 was localised in the cytoplasm of the parasite and highly concentrated beneath the parasite plasma membrane in free merozoites and ookinetes. Targeted deletion of the pbpp5 gene had no influence on asexual blood-stage parasite multiplication or the survival curve of the infected hosts. However, male gamete formation and fertility were severely affected, resulting in almost complete blockade of ookinete conversion and oocyst development in the Δpbpp5 lines. This sexual development defect was rescued by crossing Δpbpp5 with the female defective Δpbs47 parasite line, but not with the male defective Δpbs48/45 line, thus confirming the essential function of the pbpp5 gene in male gamete fertility. Furthermore, the aforementioned PP1/PP2A inhibitors all had inhibitory effects on exflagellation of male gametocytes and ookinete conversion. In particular, endothall, a selective inhibitor of PP2A, completely blocked exflagellation and ookinete conversion at ~548.3 nM. This study elucidated an essential function of PbPP5 during male gamete development and fertility.  相似文献   

20.
Phosphatase activities were characterized in intact mycelial forms of Pseudallescheria boydii, which are able to hydrolyze the artificial substrate p-nitrophenylphosphate (p-NPP) to p-nitrophenol (p-NP) at a rate of 41.41 ± 2.33 nmol p-NP per h per mg dry weight, linearly with increasing time and with increasing cell density. MgCl2, MnCl2 and ZnCl2 were able to increase the (p-NPP) hydrolysis while CdCl2 and CuCl2 inhibited it. The (p-NPP) hydrolysis was enhanced by increasing pH values (2.5-8.5) over an approximately 5-fold range. High sensitivity to specific inhibitors of alkaline and acid phosphatases suggests the presence of both acid and alkaline phosphatase activities on P. boydii mycelia surface. Cytochemical localization of the acid and alkaline phosphatase showed electron-dense cerium phosphate deposits on the cell wall, as visualized by electron microscopy. The product of p-NPP hydrolysis, inorganic phosphate (Pi), and different inhibitors for phosphatase activities inhibited p-NPP hydrolysis in a dose-dependent manner, but only the inhibition promoted by sodium orthovanadate and ammonium molybdate is irreversible. Intact mycelial forms of P. boydii are also able to hydrolyze phosphoaminoacids with different specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号