共查询到20条相似文献,搜索用时 0 毫秒
1.
Signal amplification in immunohistochemistry at the light microscopic level using biotinylated tyramide and nanogold-silver staining. 总被引:3,自引:0,他引:3
A K?hler B Lauritzen C J Van Noorden 《The journal of histochemistry and cytochemistry》2000,48(7):933-941
Signal amplification techniques greatly enhance the sensitivity of immunohistochemical (IHC) and in situ hybridization (ISH) methods. In particular, catalyzed signal amplification (CSA) using labeled tyramide or Nanogold-silver staining is an important signal amplification tool. We have applied a combination of both techniques, as has been introduced for ISH, for a further increase in sensitivity of an IHC method to detect cathepsin B. This lysosomal proteinase can also be expressed extracellularly, particularly in relation to cancer metastasis. Higher sensitivity of the IHC method was needed because existing methods failed to demonstrate cathepsin B protein where cathepsin B activity was found with a fluorescence enzyme histochemical method. Combined CSA and Nanogold-silver staining provided the sensitivity that was required. Moreover, this signal amplification method enabled the use of a 10-fold lower concentration of primary antibody (1 microg/ml). Nonspecific background staining was low provided that endogenous biotin, avidin, and peroxidase were completely blocked. The method was reproducible when all steps, and particularly the silver enhancement step, were rigidly controlled. The method resulted in localization patterns of cathepsin B protein that were in agreement with those of cathepsin B activity in serial sections of rat liver containing colon cancer metastases. We concluded that combined application of CSA and Nanogold-silver staining provides high sensitivity for immunohistochemical methods and that activity localization by an enzyme histochemical method is a very attractive alternative to IHC localization of an enzyme because it is at least as sensitive, it is rapid and simple, and it provides direct information on the function of an enzyme. 相似文献
2.
A Büki S A Walker J R Stone J T Povlishock 《The journal of histochemistry and cytochemistry》2000,48(1):153-161
Fluorescent immunocytochemistry (FICC) allows multiple labeling approaches when enzyme-based techniques are difficult to combine, such as in double-labeling experiments targeting small-caliber axonal segments. Nevertheless, the conversion of FICC to a product visible at the electron microscopic (EM) level requires labor-intensive procedures, thus justifying the development of more user-friendly conversion methods. This study was initiated to simplify the conversion of FICC to EM by employing the unique properties of tyramide signal amplification (TSA), which allowed the simultaneous targeting of a fluorescent tag and biotin label to the same antigenic site. Briefly, one of two antigenic sites typically co-localized in damaged axonal segments was visualized by the application of a fluorescent secondary antibody, with the other tagged via a biotinylated antibody. Next, an ABC kit was used, followed by the simultaneous application of fluorophore-tyramide and biotin-tyramide. After temporary mounting for fluorescent digital photomicroscopy, sections were incubated in ABC and reacted with diaminobenzidine before EM analysis. Double-labeling fluorescent immunocytochemistry with TSA clearly delineated damaged axonal segments. In addition, these same axonal segments yielded high-quality EM images with discrete electron-dense reaction products, thereby providing a simple and reproducible means for following fluorescent analysis with EM. 相似文献
3.
4.
Summary Rabbits were immunized with histoplasmin emulsified in Freund's complete adjuvant. Antibody raised in these rabbits was exposed to Histoplasma capsulatum yeast cells, either in tissue culture medium, or after in vitro or in vivo phagocytosis by mouse macrophages. The sites of antibody binding were identified using an immunoperoxidase technique. At least two sites of antibody binding were identified, one to the fungal cell wall and the other to the outer cell membrane. Within 6 h after phagocytosis by macrophages, fungal cell walls appeared roughened, with what appeared to be cell wall antigen released into the phagolysosome, appearing associated with the phagolysosome membrane, and possibly adjacent macrophage cytoplasm. Similar staining of fungal antigen was noted in alveolar macrophages which had ingested Histoplasma capsulatum after a respiratory challenge. This method may be useful in detailing the host/pathogen interactions which occur in human pulmonary histoplasmosis. 相似文献
5.
Ethidium bromide- and propidium iodide-PTA staining of nucleic acids at the electron microscopic level 总被引:1,自引:0,他引:1
Ultra-thin sections of various tissues were stained with ethidium bromide or propidium iodide, two fluorescent markers widely used for quantitation of nucleic acids. The fluorochromes, tested at different concentrations, were then revealed by incubation of the sections with neutralized phosphotungstic acid. We showed that at the electron microscopic level only nucleic acid-containing structures are revealed. Chromatin, nucleolus, and ribosomes appear to be stained by the end-product of the reaction. Furthermore, controls with proteases and nucleases showed that the staining is related to the binding of the fluorochromes to DNA and RNA and to the subsequent detection of the dyes by neutralized PTA. 相似文献
6.
mRNA-targeted fluorescent in situ hybridization (FISH) of Gram-negative bacteria without template amplification or tyramide signal amplification 总被引:1,自引:0,他引:1
Technologies are needed to study gene expression at the level of individual cells within a population or microbial community. Fluorescent in situ hybridization (FISH) supplies high-resolution spatial information and has been widely applied to study microbial communities at the rRNA level. While mRNA-targeted FISH has been popular for studying gene expression in eukaryotic cells, very little success has been achieved with prokaryotes. At present, detection of specific mRNAs in individual prokaryotic cells requires the use of in situ RT-PCR or tyramide signal amplification (TSA). In this study we used DNA oligonucleotide probes labeled with a single near-infrared dye in FISH assays to detect multi-copy plasmid-based and endogenous mRNA molecules in Escherichia coli and Shewanella oneidensis MR-1. We took advantage of the fact that there is much less background signal produced by biological materials and support matrices in the near-infrared spectrum and thus long camera exposure times could be used. In addition, we demonstrate that a combination of probes targeting both rRNA and mRNA could be successfully employed within the same FISH assay. These results, as well as ongoing R&D improvements in NIR and infrared dyes, indicate that the FISH approach we demonstrated could be applied in certain environmental settings to monitor gene expression in mixed populations. 相似文献
7.
Toth ZE Shahar T Leker R Szalayova I Bratincsák A Key S Lonyai A Németh K Mezey E 《Experimental cell research》2007,313(9):1943-1950
The green fluorescent protein (GFP) is among the most commonly used expression markers in biology. GFP-tagged cells have played a particularly important role in studies of cell lineage. Sensitive detection of GFP is crucially important for such studies to be successful, and problems with detection may account for discrepancies in the literature regarding the possible fate choices of stem cells. Here we describe a very sensitive technique for visualization of GFP. Using it we can detect about 90% of cells of donor origin while we could only see about 50% of these cells when we employ the methods that are in general use in other laboratories. In addition, we provide evidence that some cells permanently silence GFP expression. In the case of the progeny of bone marrow stem cells, it appears that the more distantly related they are to their precursors, the more likely it is that they will turn off the lineage marker. 相似文献
8.
L M Schriml H M Padilla-Nash A Coleman P Moen W G Nash J Menninger G Jones T Ried M Dean 《BioTechniques》1999,27(3):608-613
Tyramide signal amplification (TSA)-FISH was used to map one mouse and two human DNA probes of less than 1 kb in size. The two human probes were 319 and 608 bp, and the mouse probe was 855 bp. Probes, made from PCR products, were labeled by incorporating biotin-11-dUTP (human) and biotin-16-dUTP (mouse) during PCR amplification. Signals were readily observed in both interphase and metaphase cells following TSA-FISH for all three genes, whereas conventional FISH experiments produced no signals. The two human ATP-binding cassette (ABC) genes, EST883227 (GenBank Accession No. AA243820) and EST990006 (GenBank Accession No. AA348546), mapped to human chromosomes 7p21 and 17q25. The mouse gene, cmyc (exon 2) mapped to band D2 of mouse chromosome 15. These findings demonstrate the ability of this technique to map small probes (PCR products and expressed sequence tags) of less than 1 kb through highly increased signal amplification. 相似文献
9.
After immunohistochemistry (IHC) began to be used routinely, a number of investigators worked on methods for staining multiple molecules in the same tissue sections or cells. Achieving this goal was not easy, however. One reason for this is that the majority of primary antibodies used in IHC reactions are raised in rabbits, and recognizing signals from two different rabbit antibodies is not trivial. Thus, all of the protocols described to date have serious limitations. Here we report a simple, quick, and inexpensive solution to the problem. It has two major advantages over existing methods. First, by using antibodies from the same host, two or more antigens can be visualized in the same section with commercially available fluorescent dyes. Second, because the technique relies on signal amplification, both rare and abundant antigens can be detected. 相似文献
10.
L Nonnotte A Buisson F Nagy M Moulins 《The journal of histochemistry and cytochemistry》1991,39(11):1579-1583
We have developed a new double labeling method for electron microscopy to characterize selectively two physiologically identified neurons on the same preparation. The stomatogastric nervous system of crustaceans was used to test the distinguishing staining characteristics of the two labels. Neurons were labeled on one side with horseradish peroxidase (HRP) and on the other side with Lucifer yellow (LY). After blue light irradiation of the tissue in the presence of diaminobendizine, the two labeled neurons could be easily observed and discriminated on the same section by the two different reaction products. This simple technique of double labeling is useful in experimental neuroanatomy for the detailed study of synaptic relationships. 相似文献
11.
A newly developed technique allows cytological (light microscope level) chromosome preparations to be examined at the electron microscopic level. Ultrathin (50 nm) sections of highly condensed Hela cell metaphase chromosomes show the characteristic mitotic chromosome morphology. In addition a fibrous network (presumably chromosome fibers) can be seen within them. Fibers appear to be gathered at foci along each chromatid. Treatment of chromosomes with trypsin in a trypsin/G-banding procedure reduces the amount of staining material at the electron microscopic level and results in more prominent foci. Thicker (100 nm) sections of less condensed chromosomes prepared from human lymphocytes display a banding pattern similar to G-banding, even without pretreatment with proteases. 相似文献
12.
Improved sensitivity of whole-cell hybridization by the combination of horseradish peroxidase-labeled oligonucleotides and tyramide signal amplification. 总被引:8,自引:11,他引:8 下载免费PDF全文
The substrate fluorescein-tyramide was combined with oligonucleotide probes directly labeled with horseradish peroxidase to improve the sensitivity of in situ hybridization of whole fixed bacterial cells. Flow cytometry and quantitative microscopy of cells hybridized by this technique showed 10- to 20-fold signal amplifications relative to fluorescein-monolabeled probes. The application of the new technique to the detection of natural bacterial communities resulted in very bright signals; however, the number of detected cells was significantly lower than that detected with fluorescently monolabeled, rRNA-targeted oligonucleotide probes. 相似文献
13.
The new avidin--biotin--peroxidase complex (ABC) technique was applied to ultrathin sections of rat pituitary that were fixed with glutaraldehyde and embedded in Araldite 6005. The primary antisera dilutions that are normally applied for 24-48 hr with the peroxidase-antiperoxidase (PAP) complex technique were used. High background was observed with the ABC method when incubation times were 12-48 hr. Tests were then conducted with shorter incubation times. The staining intensity was measured with a densitometer. Detectable stain was seen after only 15 min in dilutions of 1:10,000 anti-bovine luteinizing hormone (bLH beta), 1:8000 anti-rat thyroid-stimulating hormone (rTSH beta), and 1:20,000 anti-25-39-adrenocorticotropic hormone (25-39ACTH). Optimal LH staining was seen after 30 min, whereas optimal staining for TSH or ACTH required 1 hr. Stain was detectable with a dilution of 1:4000 anti-human follicle-stimulating hormone (hFSH beta) after 30 min and was optimal after 4 hr. Prolonged incubation times with these dilutions decreased the staining intensity because a deposit of high background was produced that appeared as a filigreed network over the cells. When higher dilutions were tested with 2-hr incubation times, optimal staining was seen with 1:30,000 anti-bLH beta, 1:24,000 anti-rTSH beta, 1:30,000 anti-25-39ACTH, and 1:8000 anti-hFSH beta. These tests demonstrate the potential of the ABC method for the rapid detection of small amounts of specific and nonspecific antibodies that are bound to pituitary cells. 相似文献
14.
The sensitivity of fluorescence in situ hybridization (FISH) for mapping plant chromosomes of single-copy DNA sequences is limited. We have adapted for plant cytogenetics a new signal-amplification method termed tyramide-FISH (Tyr-FISH). Until present this technique has only been applied to human chromosomes. The method is based on enzymatic deposition of fluorochrome-conjugated tyramide. With Tyr-FISH it was possible to detect target T-DNA sequences on plant metaphase chromosomes as small as 710 bp without using a cooled CCD camera. Short detection time and high sensitivity, in combination with a low background, make the Tyr-FISH method very suitable for routine application in plant cytogenetic research. With Tyr-FISH we analysed the position of T-DNA inserts in transgenic shallots. We found that the inserts were preferentially located in the distal region of metaphase chromosomes. Sequential fluorescence in situ hybridization with a 375 bp satellite sequence suggested that a specific T-DNA insert was located within the satellite sequence hybridization region on a metaphase chromosome. Analysis of less-condensed prophase and interphase chromosomes revealed that the T-DNA was integrated outside the satellite DNA-hybridization region in a more proximal euchromatin region. 相似文献
15.
Catalyzed reporter deposition (CARD) is a technique that allows amplification of routine immunolabeling in light microscopy. This procedure takes advantage of the horseradish peroxidase (HRP) from an HRP-avidin complex to catalyze the accumulation of reporter-conjugated tyramine (a phenolic compound) onto a surface displaying biotinylated antigen-antibody complexes. The large amount of labeled tyramine deposited allows the detection of an antigenic site with multiple reporter molecules. In this study we modified this amplification protocol to combine it with the immunogold technique for the ultrastructural localization of antigens in electron microscopy. We constructed various tyramide conjugates that permit the combination of this amplification method with a particulate colloidal gold marker. The new probes yield results of high specificity and enhanced intensity. Assessment of the level of resolution of the labeling has demonstrated that, in spite of the amplification, the resolution remains very good. Therefore, once associated, the immunogold and the CARD techniques lead to specific, high-resolution, sensitive and amplified signals that exhibit the advantages of both approaches.(J Histochem Cytochem 47:421-429, 1999) 相似文献
16.
A novel procedure for pre-embedding double immunogold-silver labeling at the ultrastructural level. 总被引:2,自引:0,他引:2
H Yi J Leunissen G Shi C Gutekunst S Hersch 《The journal of histochemistry and cytochemistry》2001,49(3):279-284
Pre-embedding double immunogold-silver labeling using two ultrasmall gold conjugates has not been attempted previously because a means of distinguishing labels by conjugates of identical sizes was lacking. This study investigated the feasibility of creating a particle size segregation between two ultrasmall gold conjugates through sequential immunogold incubations and silver enhancements. Two primary antibodies, mouse anti-synaptophysin and rabbit anti-glial fibrillary acidic protein (GFAP), were used in the model system. Differentiation of the double labeling was achieved by incubating with one ultrasmall gold conjugate, followed by silver enhancement, and then incubating with the second ultrasmall gold conjugate, followed by additional silver enhancement. This resulted in two groups of silver-enhanced particles: smaller particles enhanced once and larger particles enhanced twice. Electron microscopic examination revealed two readily distinguished populations of gold-silver particles within the appropriate structures, with very little size overlap. The quality of the ultrastructure permitted identification of most subcellular organelles. This procedure provides for the first time a pre-embedding immunogold-silver labeling protocol that allows the precise subcellular co-localization of multiple antigens. 相似文献
17.
A double-labeling approach was applied to nonisotopic in situ hybridization with individual cosmid and plasmid clones, using digoxigenin or biotin as label and a combination of two separate enzymatic labeling methods. Probe labeling was achieved by nick translation, followed by tailing of the probe by terminal deoxynucleotidyl transferase. The double-labeling method, in conjunction with an improved detection protocol, provides for a higher signal intensity than that obtainable with single-labeled probes. 相似文献
18.
Signal enhancement at the electron microscopic level using Nanogold and gold-based autometallography
We investigated the enzyme cytochemical localization of sarcosine oxidase (SOX) in the liver and kidney of several mammals using a cerium technique. First we measured the enzyme activities in the liver and kidney of several mammals and in several organs of mice. The highest activity was found in the Chinese hamster, followed by the mouse. Therefore, we used hamster and mouse tissues for enzyme cytochemistry. The liver and kidneys were fixed by perfusion with various concentrations of glutaraldehyde for 10 min. Tissue slices were incubated in reaction medium consisting of 50 mM TRIS-maleate buffer (pH 7.8), 9 mM sodium azide, 9.8 mM sarcosine, 25 microM FAD, 2 mM cerium chloride, 0.002% saponin, and 0.003% Triton X-100 for 0.5-8 h at 37 degrees C. Optimum staining reaction was obtained in tissues fixed with 0.2% glutaraldehyde, followed by incubation for 2-4 h. Electron-dense reaction products were present exclusively in peroxisomes. Within the peroxisomes strong reactions were observed in the matrix subjacent to the limiting membrane decreasing toward the center. The staining reaction was completely inhibited by 2 mM N-bromosuccinimide. These results indicated that SOX is a peroxisomal enzyme and that the enzyme might be associated with the peroxisomal membrane. 相似文献
19.
To increase the sensitivity of fluorescence in situ hybridization (FISH) for detection of low-abundance mRNAs, we performed FISH on cryostat sections of rat hypothalamus with biotin-labeled riboprobes to leptin receptor (ObRb) and amplified the signal by combining tyramide signal amplification (TSA) and Enzyme-Labeled Fluorescent alkaline phosphatase substrate (ELF) methods. First, TSA amplification was done with biotinylated tyramide. Second, streptavidin-alkaline phosphatase was followed by the ELF substrate, producing a bright green fluorescent reaction product. FISH signal for ObRb was undetectable when TSA or ELF methods were used alone, but intense ELF FISH signal was visible in hypothalamic neurons when the ELF protocol was preceded by TSA. The TSA-ELF was combined with FISH for pro-opiomelanocortin (POMC) and neuropeptide Y (NPY) mRNAs by hybridizing brain sections in a cocktail containing digoxigenin-labeled riboprobes to NPY or POMC mRNA and biotin-labeled riboprobes to ObRb mRNA. Dioxigenin-labeled NPY or POMC mRNA hybrids were subsequently detected first with IgG-Cy3. Then biotin-labeled leptin receptor hybrids were detected with the TSA-ELF method. Combining the ELF and TSA amplification techniques enabled FISH detection of scarce leptin receptor mRNAs and permitted the identification of leptin receptor mRNA in cells that also express NPY and POMC gene products. 相似文献
20.
《Cell biology international reports》1981,5(9):889-899
A new, simple procedure is described for the production of 5 nm colloidal gold/secondary antibody reagents. Utilizing them with antitubulin shows 1) that they can be used for high resolution ultrastructural localization studies and 2) that this can be done with retention of satisfactory preservation of cell structure. The same, simple procedure can be used to prepare 20 nm colloidal gold/antibody reagents. These can be used for the high resolution light microscopic visualization of microtubules in interphase and mitotic cells. Colloidal gold labelled serum or monoclonal antibodies can be used in a new, general purpose immunocytochemical technique: the IGS (immuno gold staining) method. 相似文献