首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The human pathogenic bacterium Helicobacter pylori has been ascertained to be an aetiological agent for chronic active gastritis and a significant determinant in peptic and duodenal ulcer diseases. Endophytic metabolites are being recognized as a versatile arsenal of antimicrobial agents, since some endophytes have been shown to possess superior biosynthetic capabilities owing to their presumable gene recombination with the host, while residing and reproducing inside the healthy plant tissues. A total of 32 endophytic fungi isolated from the medicinal herb Cynodon dactylon(Poaceae) were grown in in vitroculture, and the ethyl acetate extracts of the cultures were examined in vitro for the anti-H. pylori activity. As a result, a total of 16 endophyte culture extracts were identified as having potent anti-H. pyloriactivities. Subsequently, a detailed bioassay-guided fractionation of the extract of the most active endophyte (strain number: CY725) identified as Aspergillussp., was performed to afford eventually four anti-H. pylori secondary metabolites. The four isolated compounds were identified through a combination of spectral and chemical methods (IR, MS, 1H- and 13C-NMR) to be helvolic acid, monomethylsulochrin, ergosterol and 3β-hydroxy-5α,8α-epidioxy- ergosta-6,22-diene with corresponding MICs of 8.0, 10.0, 20.0 and 30.0 μg/ml, respectively. The MIC of ampicillin co-assayed as a reference drug against H. pylori was 2.0 μg/ml. Furthermore, preliminary examination of the antimicrobial spectrum of helvolic acid, the most active anti-H. pylori metabolite characterized from the endophyte culture, showed that it was inhibitory to the growth of Sarcina lutea, Staphylococcus aureusand Candida albicans with MICs of 15.0, 20.0 and 30.0 μg/ml, respectively.  相似文献   

2.

Background  

The natural product Emodin demonstrates a wide range of pharmacological properties including anticancer, anti-inflammatory, antiproliferation, vasorelaxant and anti-H. pylori activities. Although its H. pylori inhibition was discovered, no acting target information against Emodin has been revealed to date.  相似文献   

3.

Background  

The worldwide appearance of drug-resistant strains of H. pylori motivates a search for new agents with therapeutic potential against this family of bacteria that colonizes the stomach, and is associated with adenocarcinoma development. This study was designed to assess in vitro the anti-H. pylori potential of cathelicidin LL-37 peptide, which is naturally present in gastric juice, its optimized synthetic analog WLBU2, and the non-peptide antibacterial agent ceragenin CSA-13.  相似文献   

4.
Aims: To investigate the effects of simulated gastric conditions upon the anti-Helicobacter pylori effects of garlic oil (GO). Methods and Results: Time course viability experiments assessed the anti-H. pylori activity of GO (16 and 32 μg ml−1) in simulated gastric environments. Rapid anti-H. pylori action of GO was observed in artificial gastric juice. Mucus (1–5%) was strongly protective of H. pylori both alone and in the presence of GO, but its protective effect was antagonized by GO. Peptone (5–15 g l−1) caused a dose-dependent reduction in the anti-H. pylori activity of GO. Rapeseed oil (5·7–17 g l−1) greatly diminished the anti-H. pylori activity of GO. Dextrin (44 and 133 g l−1) exhibited direct anti-H. pylori effects and added to those of GO. Simulated meal mixtures decreased but did not eliminate the anti-H. pylori activity of 32 μg ml−1 GO. Conclusions: The anti-H. pylori activity of GO was noticeably affected by food materials and mucin. However, substantial activity remained under simulated gastric conditions. Further investigation of the therapeutic potential of GO against H. pylori is therefore warranted. Significance and Impact of the Study: Garlic oil may be useful as an alternative treatment against H. pylori, a major cause of gastrointestinal infections in humans.  相似文献   

5.

Background

Helicobacter pylori has undergone considerable adaptation to allow chronic persistence within the gastric environment. While H. pylori‐associated diseases are driven by an excessive inflammation, severe gastritis is detrimental to colonization by this pathogen. Hence, H. pylori has developed strategies to minimize the severity of gastritis it triggers in its host. Superoxide dismutase (SOD) is well known for its role in protecting against oxidative attack; less recognized is its ability to inhibit immunity, shown for SOD from mammalian sources and those of some bacterial species. This study examined whether H. pylori SOD (HpSOD) has the ability to inhibit the host immune response to these bacteria.

Materials and Methods

The ability of recombinant HpSOD to modify the response to LPS was measured using mouse macrophages. A monoclonal antibody against HpSOD was generated and injected into H. pylori‐infected mice.

Results

Addition of HpSOD to cultures of mouse macrophages significantly inhibited the pro‐inflammatory cytokine response to LPS stimulation. A monoclonal antibody was generated that was specific for SOD from H. pylori. When injected into mice infected with H. pylori for 3 months, this antibody was readily detected in both sera and gastric tissues 5 days later. While treatment with anti‐HpSOD had no effect on H. pylori colonization at this time point, it significantly increased the levels of a range of pro‐inflammatory cytokines in the gastric tissues. This did not occur with antibodies against other antioxidant enzymes.

Conclusions

SOD from H. pylori can inhibit the production of pro‐inflammatory cytokine during in vivo infection.  相似文献   

6.
In this study, 39 specimens belonging to Lespedeza species (Lespedeza cyrtobotrya, L. bicolor, L. maximowiczii, and Lespedeza cuneata) (Leguminosae) were classified phenotypically and genotypically. We constructed a phylogenetic tree based on the combined nrDNA (internal transcribed spacer; ITS) and cpDNA (trnL-trnF) sequences with the aim of classifying the genotypes. Samples were mainly divided into three genotypes. Samples of L. cyrtobotrya and L. bicolor were mixed in a single branch, whereas samples of L. maximowiczii and L. cuneata were clustered within species, respectively. We performed a liquid chromatography–electrospray ionization–mass spectrometry-based metabolite profiling analysis to classify the phenotypes. Multivariate statistical analyses such as principal component analysis (PCA) and hierarchical clustering analysis (HCA) were used for the clustering pattern analysis and distance analysis between species, respectively. According to the PCA and HCA results, leaves were classified into four phenotypes according to species. In both the genetic and chemotaxonomic classification methods, the distance between L. cyrtobotrya and L. bicolor was the closest between species, and L. cuneata was the farthest away from the other three species. Additionally, orthogonal partial least squares-discriminant analysis was employed to identify significantly different phytochemicals between species. We classified L. cyrtobotrya and L. bicolor by identifying significantly different phytochemicals. Interestingly, leaves and stems showed different phenotypic classifications based on the chemotaxonomic classification. Stem samples of the other three species were mixed regardless of species, whereas L. cyrtobotrya stem samples were clustered within species. The phenotypic classification of leaves coincided more with the genotypic classification than that of stems. Key message We classified four wild-type Lespedeza sp. by analyzing the combined nrDNA (ITS) and cpDNA (trnL-trnF) sequences. We also classified leaves and stems of Lespedeza sp. by applying liquid chromatography–mass spectroscopy-based metabolite profiling.  相似文献   

7.
Antibiotic resistance in Helicobacter pylori has been growing worldwide with current treatment regimens. Development of new compounds for treatment of H. pylori infections is urgently required to achieve a successful eradication therapy in the future. Armeniaspirols, a novel class of natural products isolated from Streptomyces armeniacus, have been previously identified as antibacterial agents against Gram-positive pathogens. In this study, we found that armeniaspirol A (ARM1) exhibited potent antibacterial activity against H. pylori, including multidrug-resistant strains, with MIC range values of 4–16 μg ml-1. The underlying mechanism of action of ARM1 against H. pylori involved the disruption of bacterial cell membranes. Also, ARM1 inhibited biofilm formation, eliminated preformed biofilms and killed biofilm-encased H. pylori in a dose-dependent manner. In a mouse model of multidrug-resistant H. pylori infection, dual therapy with ARM1 and omeprazole showed efficient in vivo killing efficacy comparable to the standard triple therapy, and induced negligible toxicity against normal tissues. Moreover, at acidic pH 2.5, ARM1 exhibited a much more potent anti-H. pylori activity than metronidazole. Thus, these findings demonstrated that ARM1 is a novel potent anti-H. pylori agent, which can be developed as a promising drug lead for treatment of H. pylori infections.  相似文献   

8.
为了筛选分离入侵植物猫爪藤的细胞毒活性成分,采用MTT法以75%乙醇提取物的不同组分分别处理人肝癌细胞SMMC7721、Bel7402和正常肝细胞Chang Liver,对他们的体外增殖抑制率进行了研究。结果表明,总醇提物的氯仿组分对肝癌细胞表现出明显的体外增殖抑制作用,其次是石油醚组分。从氯仿萃取组分中分离出具有更强细胞毒活性的成分熊果酸。因此,入侵植物猫爪藤具有体外细胞毒活性,熊果酸是其体外细胞毒活性的主要成分之一。  相似文献   

9.
Helicobacter pylori is a causative agent of gastritis and peptic ulceration in humans. As the first step towards development of a vaccine against H. pylori infection, we have attempted to identify protective antigens. A potential target of vaccine development would be a H. pylori specific protein, which is surface-exposed and highly antigenic. We identified a 22 kDa outer-membrane protein (Omp22) from H. pylori, which was highly immunoreactive. By screening a H. pylori genomic DNA library with rabbit anti-H. pylori outer-membrane protein antibodies, the omp22 gene was cloned and 1.4 kb of the nucleotide sequence was determined. One open reading frame, encoding a 179-residue polypeptide, was identified and the amino acid sequence deduced showed homology with peptidoglycan-associated lipoproteins. The sequence was conserved among other H. pylori strains. Omp22 protein is expressed as a precursor polypeptide of 179 residues and undergoes lipid modification and cleavage of an 18 amino acid signal peptide to yield a mature protein. Omp22 protein in H. pylori as well as recombinant Omp22 protein expressed in E. coli was localized into the outer membrane and exposed on the cell surface. Omp22 may have the potential as a target antigen for the development of a H. pylori vaccine.  相似文献   

10.
The discovery of new compounds active against Toxoplasma gondii is extremely important due to the severe disease caused by this pathogen in immunocompromised hosts and to congenital infection. Type II fatty acid biosynthesis has shown to be a promising target for drug intervention in toxoplasmosis. Here we describe the inhibitory effect of 8 thiolactomycin (TLM) analogues against tachyzoite-infected LLC-MK2 cells. The TLM analogues demonstrated anti-T. gondii activity, arresting tachyzoite proliferation with IC50 values in the micromolar level after 24 h and 48 h of treatment. Metabolic labelling of extracellular parasites treated with TLM analogues using [3H]acetate demonstrated that these drugs affected acylglycerol synthesis. The rapid reduction of parasite load suggests that these compounds have selective cytotoxic effects against T. gondii. Transmission electron microscopy demonstrated that TLM analogues interfered with membrane-bounded organelles and parasite division and this in turn affected parasite development and survival.  相似文献   

11.

Background  

H. pylori infection is less prevalent in childhood. This study validated whether the rates of H. pylori colonization depend on different acquisition ages, and correlate with the different gastric Lewis antigens or cytokine expressions after H. pylori acquisition.  相似文献   

12.
Antibacterial activity of 17 strains of lactobacilli was tested against 10 strains of H. pylori. The inhibition observed was related to the acid production and the low pH attained. No relationship between CagA phenotype of H. pylori strains and tolerance to lactic acid was observed. In mixed cultures, L. acidophilus CRL 639 showed an autolytic behavior after 24 h of culture. At this moment, H. pylori CCUG17874 showed a decrease of 2 log-cycle, and no viable count was detected after 48 h. The bactericidal effect of L. acidophilus CRL 639 in mixed cultures is related to a proteinaceous compound released after cell lysis. Received: 19 June 2000 / Accepted: 12 July 2000  相似文献   

13.
The mechanochemical synthesis and characterization of a zinc complex with famotidine is described. The complex was characterized by microanalysis and a number of spectroscopic techniques. The complex was of M:L dihydrate type. Derivatization of famotidine with zinc appears to enhance the activity of the drug by inhibiting the growth of Helicobacter pylori (two reference and 34 clinical isolates). The complex inhibited the growth of H. pylori in an MIC range of 1–8 μg mL?1. The anti-H. pylori activity of the zinc–famotidine complex against antibiotic-resistant strains was nearly comparable to that of antibiotic-susceptible strains. The complex was found to be far less toxic than the parent drug, as demonstrated by its higher LD50 value. In the human urease enzyme inhibition assay the complex exhibited significant inhibition. The new complex appears to be more useful in eradicating both the antibiotic-susceptible and antibiotic-resistant strains of H. pylori.  相似文献   

14.
The objective of this study was to determine the effect of two endophytic bacterial elicitors (Pseudomonas sp. and Enterobacter sp.) on the production of alkaloids in protocorm-like bodies (PLBs) of Pinellia ternata Breit. Both bacterial strains increased the growth rate of P. ternata PLBs. Pseudomonas sp. promoted the differentiation of the PLBs, whereas Enterobacter sp. inhibited PLB differentiation. The bacterial strains increased guanosine production in PLBs by 9–166%, inosine production by 2–33%, and trigonelline production by 114–1140% compared to the control. For Pseudomonas sp., guanosine and trigonelline production was greater when bacterial extracts were added to the PLB suspension cultures rather than living cells (co-culture treatment). Inosine production was similar in both the bacterial extract and co-culture treatments. For the Enterobacter sp., guanosine, inosine, and trigonelline production tended to be greatest when living cells were added to the PLB suspension cultures rather than bacterial extracts. These results suggest that Pseudomonas sp. and Enterobacter sp. could increase alkaloid yield from P. ternata under field or tissue culture conditions. We also observed that Pseudomonas sp. and Enterobacter sp. produced some of the same alkaloids as their host plants. Additional study needs to be done to determine if these endophytic bacteria could be used to produce alkaloids in the fermentation industry.  相似文献   

15.
Probiotics and bovine colostrums had been proven to be beneficial for human health. Lactobacillus rhamnosus ZDY114 and anti-Helicobacter pylori bovine colostrums were used for the preparation of microecological additives, and their synergistic antidigestion effect in the simulated gastrointestinal tract (in vitro) was investigated. Either L. rhamnosus or purified IgG from immune colostrums was very sensitive in simulated gastric environment and slightly sensitive in simulated intestinal tract. No viable counts were recovered from the solution of dissolved freeze-dried powder (7.14 log10 CFU/ml) of L. rhamnosus when digested at pH 3.0 with pepsin for 30 min. Activity of purified IgGs from immune colostrums could not be detected when digested at pH 3.0 with pepsin for 30 min; 29% titer could be detected when digested at pH 8.0 with trypsin for 5 h. The IgGs in nonpurified immune colostrums presented stronger resistance against gastrointestinal digestion than purified IgGs. Moreover, the combination of L. rhamnosus ZDY114 and immune colostrums strengthened their antidigestion ability. Even under pH 3.0, 4.0 with pepsin, the titer of anti-HP IgG maintained above 123 and 83.3%, respectively. Similarly, that titer was above 93.3% when digested at pH 8.0 with trypsin for 4.5 h. In conclusion, L. rhamnosus and anti-Helicobacter pylori bovine colostrums had synergistic antidigestion effect in simulated gastrointestinal tract (in vitro).  相似文献   

16.

Background  

Contamination of endoscopy equipment by Helicobacter pylori (H. pylori) frequently occurs after endoscopic examination of H. pylori-infected patients. In the hospital, manual pre-cleaning and soaking in glutaraldehyde is an important process to disinfect endoscopes. However, this might not be sufficient to remove H. pylori completely, and some glutaraldehyde-resistant bacteria might survive and be passed to the next patient undergoing endoscopic examination through unidentified mechanisms. We identified an Imp/OstA protein associated with glutaraldehyde resistance in a clinical strain, NTUH-C1, from our previous study. To better understand and manage the problem of glutaraldehyde resistance, we further investigated its mechanism.  相似文献   

17.
Helicobacter pylori colonizes the gastric epithelium of 50 % of world population and it is the main etiological agent of human chronic gastritis, peptic ulcer, and gastric cancer. In this study, we synthesized and characterized a series of 14 chalcones and evaluated their anti-H. pylori, NO inhibition (in vitro and in silico), and AGS cells cytotoxic effects. Compounds 3b and 3h showed MIC of 8 μg/mL. We observed structure-activity relationships, mainly related to the influence of methoxy substituent at C-2 ( 3b ) and the nitro group at C-4 ( 3h ) in chalcone scaffold. The fourteen chalcones inhibited the NO production in LPS-stimulated macrophages and showed potential for interaction on the active site of the iNOS enzyme. Finally, 3b and 3h showed the highest selectivity to the AGS cell lines. Thus, ours results suggest 3b and 3h as potential candidates for design of new and effective agents against H. pylori and related diseases.  相似文献   

18.
《Autophagy》2013,9(4):540-542
Autophagosome formation is induced by Helicobacter pylori infection and these autophagic vesicles are adopted for replication of H. pylori and subsequent eradication of the invading H. pylori in macrophages. Some Taiwanese clinical isolates of H. pylori can replicate in certain macrophage cell lines. After entry, there was a 5-10 fold increment of re-cultivable H. pylori from the infected permissible cells at 12 h post infection. The dividing H. pylori are observed to reside in double-layered autophagosomes. Therefore, H. pylori can be considered as a kind of intracellular microorganism. The autophagy induction by H. pylori is not only found in macrophages, but also in dendritic cells and gastric epithelial cells. This new finding has several implications for the life cycle of H. pylori in the host. The bacterium’s residence inside infected cells will increase its resistance to antimicrobial treatment, avoid neutralization by anti-H. pylori antibodies, impair antigen presentation, and alter the cellular immune response. The replication of H. pylori in autophagic vesicles, and the consequences of this provide an important hint as to why this microorganism causes so such a broad spectrum of diseases.  相似文献   

19.
In this study, we examined the anti-Helicobactor pylori effects of the main protoberberine-type alkaloids in Rhizoma Coptidis. Coptisine exerted varying antibacterial and bactericidal effects against three standard H. pylori strains and eleven clinical isolates, including four drug-resistant strains, with minimum inhibitory concentrations ranging from 25 to 50?μg/mL and minimal bactericidal concentrations ranging from 37.5 to 125?μg/mL. Coptisine’s anti-H. pylori effects derived from specific inhibition of urease in vivo. In vitro, coptisine inactivated urease in a concentration-dependent manner through slow-binding inhibition and involved binding to the urease active site sulfhydryl group. Coptisine inhibition of H. pylori urease (HPU) was mixed type, while inhibition of jack bean urease was non-competitive. Importantly, coptisine also inhibited HPU by binding to its nickel metallocentre. Besides, coptisine interfered with urease maturation by inhibiting activity of prototypical urease accessory protein UreG and formation of UreG dimers and by promoting dissociation of nickel from UreG dimers. These findings demonstrate that coptisine inhibits urease activity by targeting its active site and inhibiting its maturation, thereby effectively inhibiting H. pylori. Coptisine may thus be an effective anti-H. pylori agent.  相似文献   

20.
《Autophagy》2013,9(9):1387-1388
Autophagy plays key roles both in host defense against bacterial infection and in tumor biology. Helicobacter pylori (H. pylori) infection causes chronic gastritis and is the single most important risk factor for the development of gastric cancer in humans. Its vacuolating cytotoxin (VacA) promotes gastric colonization and is associated with more severe disease. Acute exposure to VacA initially triggers host autophagy to mitigate the effects of the toxin in epithelial cells. Recently, we demonstrated that chronic exposure to VacA leads to the formation of defective autophagosomes that lack CTSD/cathepsin D and have reduced catalytic activity. Disrupted autophagy results in accumulation of reactive oxygen species and SQSTM1/p62 both in vitro and in vivo in biopsy samples from patients infected with VacA+ but not VacA- strains. We also determined that the Crohn disease susceptibility polymorphism in the essential autophagy gene ATG16L1 increases susceptibility to H. pylori infection. Furthermore, peripheral blood monocytes from individuals with the ATG16L1 risk variant show impaired autophagic responses to VacA exposure. This is the first study to identify both a host autophagy susceptibility gene for H. pylori infection and to define the mechanism by which the autophagy pathway is affected following H. pylori infection. Collectively, these findings highlight the synergistic effects of host and bacterial autophagy factors on H. pylori pathogenesis and the potential for subsequent cancer susceptibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号