首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peatlands subjected to sulfate deposition have been shown to produce less methane, believed to be due to competitive exclusion of methanogenic archaea by sulfate-reducing bacteria. Here, we address whether sulfate deposition produces impacts on a higher microbial group, the testate amoebae. Sodium sulfate was applied to experimental plots on a Scottish peatland and samples extracted after a period of more than 10 years. Impacts on testate amoebae were tested using redundancy analysis and Mann–Whitney tests. Results showed statistically significant impacts on amoebae communities particularly noted by decreased abundance of Trinema lineare, Corythion dubium, and Euglypha rotunda. As the species most reduced in abundance are all small bacterivores we suggest that our results support the hypothesis of a shift in dominant prokaryotes, although other explanations are possible. Our results demonstrate the sensitivity of peatland microbial communities to sulfate deposition and suggest sulfate may be a potentially important secondary control on testate amoebae communities.  相似文献   

2.
Peatlands represent globally-important ecosystems and carbon stores. However, large areas of peatland have been drained for agriculture, or peat has been harvested for use as fuel or in horticulture. Increasingly, these landscapes are being restored through ditch blocking and rewetting primarily to improve biodiversity and promote peat accumulation. To date we have little knowledge of how these interventions influence the microbial communities in peatlands. We compared the responses of dominant microbial consumers (testate amoebae) to drainage ditch restoration relative to unblocked ditches in a UK upland blanket peatland (Migneint, North Wales). Two techniques were used for restoration: (i) dammed ditches with re-profiling; and (ii) dammed ditches with pools of open water behind each dam. Testate communities in the inter-ditch areas changed markedly over time and between treatments illustrating the potential of this group of organisms as indicators of blanket peatland restoration status. However, the responses of testate amoebae to peat rewetting associated with restoration were partially obscured by inter-annual variability in weather conditions through the course of the experiment. Although there was considerable variability in the response of testate amoebae communities to peatland drain blocking, there were clearly more pronounced changes in samples from the dammed and reprofiled treatments including an increase in diversity, and the appearance of unambiguous wet-indicator species in relatively high abundances (including Amphitrema stenostoma, Archerella flavum, Arcella discoides type, Difflugia bacillifera and Difflugia bacillarium). This reflects a shift towards overall wetter conditions across the site and the creation of new habitats. However, water-table was not a significant control on testate amoebae in this case, suggesting a poor relationship between water table and surface moisture in this sloping blanket peatland. Our findings highlight the potential of testate amoebae as bioindicators of peatland restoration success; however, there is a need for caution as mechanisms driving change in the microbial communities may be more complex than first assumed. Several factors need to be taken into account when implementing biomonitoring studies in peatlands including: (i) the natural variability of the peatland ecosystem under changing weather conditions; (ii) any disturbance connected with the restoration procedures; and (iii) the timescales over which the ecosystem responds to the management intervention. Our results also suggest an indicator species approach based on population dynamics may be more appropriate for biomonitoring peatland restoration than examining changes at the community level.  相似文献   

3.
As most ecosystems, peatlands have been heavily exploited for different human purposes. For example, in Finland the majority is under forestry, agriculture or peat mining use. Peatlands play an important role in carbon storage, water cycle, and are a unique habitat for rare organisms. Such properties highlight their environmental importance and the need for their restoration. To monitor the success of peatland restoration sensitive indicators are needed. Here we test whether testate amoebae can be used as a reliable bioindicator for assessing peatland condition. To qualify as reliable indicators, responses in testate amoebae community structure to ecological changes must be stronger than random spatial and temporal variation. In this study, we simultaneously assessed differences between the effects of seasonality, intermediate scale spatial variation and land uses on living testate amoebae assemblages in natural, forested and restored peatlands. We expected the effects of seasonality on testate amoebae communities to be less pronounced than those of land use and within site variation. On average, natural sites harboured the highest richness and density, while the lowest numbers were found at forestry sites. Despite small changes observed in taxa dominance and differences in TA community structure between seasons and years at some sites, spatial heterogeneity, temperature, pH, nor water table depth seemed to significantly affect testate amoebae communities. Instead, observed differences were related to type of land use, which explained 75% of the community variation. Our results showed that testate amoebae community monitoring is a useful tool to evaluate impacts of human land use on boreal peatlands.  相似文献   

4.
Testate amoebae are a group of moisture-sensitive, shell-producing protozoa that have been widely used as indicators of changes in mean water-table depth within oligotrophic peatlands. However, short-term environmental variability (i.e., sub-annual) also probably influences community composition. The objective of this study was to assess the potential influence of short-term environmental variability on the composition of testate amoeba communities in Sphagnum-dominated peatlands. Testate amoebae and environmental conditions, including hourly measurements of relative humidity within the upper centimeter of the peatland surface, were examined throughout the 2008 growing season at 72 microsites within 11 peatlands of Pennsylvania and Wisconsin, USA. Relationships among testate amoeba communities, vegetation, depth to water table, pH, and an index of short-term environmental variability (EVI), were examined using nonmetric multidimensional scaling and correlation analysis. Results suggest that EVI influences testate amoeba communities, with some taxa more abundant under highly variable conditions (e.g., Arcella discoides, Difflugia pulex, and Hyalosphenia subflava) and others more abundant when environmental conditions at the peatland surface were relatively stable (e.g., Archerella flavum and Bullinularia indica). The magnitude of environmental variability experienced at the peatland surface appears to be primarily controlled by vegetation composition and density. In particular, sites with dense Sphagnum cover had lower EVI values than sites with loose-growing Sphagnum or vegetation dominated by vascular plants and/or non-Sphagnum bryophytes. Our results suggest that more environmental information may be inferred from testate amoebae than previously recognized. Knowledge of relationships between testate amoebae and short-term environmental variability should lead to more detailed and refined environmental inferences.  相似文献   

5.
Paleoecological records suggest that growing season length and/or cloudiness may affect peatland carbon accumulation and testate amoeba-based environmental reconstructions, highlighting a need to understand how light intensity affects microbial communities. We shaded plots on two peatlands for two years to examine effects on testate amoeba communities, the relative abundance of mixotrophic and heterotrophic testate amoebae, transfer-function performance, and δ13C values of two species of mixotrophic testate amoebae. Surprisingly, relative abundance of mixotrophic species increased in shade, although compositional changes did not affect transfer-function performance. Shading did not affect δ13C values of Hyalosphenia papilio and Heleopera sphagni, which ranged from −23.5 to −19.6‰ and −23.2 to −19.2‰, respectively. These δ13C values were higher than those of potential food sources and lower than literature-derived values for Chlorella, the zoochlorellae inhabiting mixotrophic testate amoebae. δ13C values thus suggest that these mixotrophic species obtain some carbon from Chlorella, although coupled dietary and isotope studies are needed to quantify this contribution. More research is needed to assess impacts of light variability on peatland microbial communities; however, carbon sources are recorded by δ13C values of testate amoebae, indicating potential for studies of carbon cycling and how mixotrophy varies temporally and spatially.  相似文献   

6.
Sphagnum peatlands host a high abundance of protists, especially testate amoebae. Here, we designed a study to investigate the functional diversity of testate amoebae in relation to wetness and forest cover in Baltic bogs. We provided new data on the influence of openness/wetness gradient on testate amoebae communities, showing significant differences in selected testate amoebae (TA) traits. Three key messages emerged from our investigations: 1) we recorded an effect of peatland surface openness on testate amoebae functional traits that led us to accept the hypothesis that TA traits differ according to light intensity and hydrology. Mixotrophic species were recorded in high relative abundance in open plots, whereas they were nearly absent in forested sites; 2) we revealed a hydrological threshold for the occurrence of mixotrophic testate amoebae that might be very important in terms of peatland functioning and carbon sink vs. source context; and 3) mixotrophic species with organic tests were nearly absent in forested sites that were dominated by heterotrophic species with agglutinated or idiosomic tests. An important message from this study is that taxonomy of TA rather indicates the hydrological gradient whereas traits of mixotrophs the openness gradient.  相似文献   

7.
Mountainous peatlands of Western Sudetes are considered a unique habitat in Central Europe. The region contains one of the largest raised bog complexes in temperate Europe and is thus of great importance for biodiversity conservation. In this first high-resolution study from this region we use long-term ecological data to assess how these mountain wetland ecosystems responded to anthropogenic impacts and climate change. We used testate amoebae morphological traits, micro- and macroscopic charcoal, pollen and plant macrofossils to reconstruct the history of peatland development over 800 years, illustrating shifts in its development and fire dynamics. Five hydrological stages of peatland development were recognized. Testate amoebae morphological traits reflected several abrupt ecological changes linked to anthropogenic modifications of landscape openness. A shift towards mixotrophic taxa, linked to hydrological change or shrubs expansion and shading, preceded aperture position change, which was associated to dust input through surrounding deforestation and simultaneous water-table increase. Fire reconstruction revealed increasing burning together with intensifying human activity, including the expansion of a nearby settlement. This study confirms the potential of testate amoeba communities and the use of morpho-functional traits as indicators of ecological effects of land-use change over long-temporal scales.  相似文献   

8.
Testate amoebae (Protozoa) were studied in spring, summer, and fall from the same microhabitats in a small Sphagnum-dominated peatland in southern Ontario, Canada. A total of 32 sampling stations were established in two wetland plant communities, 19 in an open Ericaceae low-shrub community and 13 in a closed Picea mariana and Larix laricina swamp community. Sphagnum was collected in each station for analysis of testate amoebae and measurement of soil water content parameters and water table depth in May, August, and October 2001. pH and dissolved oxygen of the groundwater under the Sphagnum were measured also. A total of 52 taxa including the rotifer, Habrotrocha angusticollis, were identified. Soil water content and water table variables emerged as the primary factors separating testate amoebae between the open bog/fen community and swamp community. Testate amoebae in the open bog/fen community showed a clear separation between the May sampling period and the August and October sampling periods. Sampling stations in May had much higher water table and were wetter than those in August and October. Conversely, testate amoebae in the swamp community did not show a clear difference between sampling periods. Soil moisture and water tables appear to be more constant in the swamp communities. Biological factors or other microscale environmental factors may need to be considered to explain seasonal changes in testate amoebae. A greater understanding of relationships between testate amoebae and microenvironmental factors is necessary to track seasonality in testate amoebae distributions.  相似文献   

9.
Monitoring tools are needed to assess changes in peatland biotic communities and ecosystem functions in response to on-going climate and other environmental changes. Although the responses of soil organisms and plants to ecological gradients and perturbations do not always correlate, peatland monitoring is mainly based on vegetation surveys. Testate amoebae, a group of protists, are important contributors to carbon and nitrogen cycling in organic soils and are useful bioindicators in peatland ecology and paleoecology. There is however little comparative data on the value of testate amoebae, vascular plants and bryophytes as bioindicators of micro-environmental gradients in peatlands.We compared the relationships of testate amoebae, bryophytes, and vascular plants with soil temperature, water table depth, micro-habitats and the carbon and nitrogen content of Sphagnum mosses in four peatlands along a 1300 m altitudinal gradient in Switzerland. We used the full diversity of vascular plants and bryophyte but only a selection of ten easily identifiable testate amoeba morpho-taxa (i.e. species or species-complexes).Indirect and direct gradient ordinations, multiple factor analysis (MFA) and transfer function models for inferring water table depth showed that a selection of ten testate amoeba taxa are more powerful (% variance explained in RDA) and accurate (discrimination among habitats) indicators of local conditions (micro-habitat type, water table depth and Sphagnum C/N ratio) than the vegetation (vascular plants and bryophytes either individually or combined and considering the full diversity).Our study showed that a limited list of ten easily identifiable testate amoeba taxa have higher bioindication value than the full bryophytes and vascular plants. Furthermore, testate amoebae can be analyzed on samples collected at any season (accessibility allowing and if precise sampling sites are well marked) – a clear advantage for biomonitoring and can be used to infer past changes from the peat record at the same taxonomic resolution. This simple approach could therefore be very useful for biomonitoring of peatlands.  相似文献   

10.
Payne RJ  Mitchell EA 《Protist》2007,158(2):159-171
Testate amoebae are useful environmental indicators in ecological and palaeoecological studies from peatlands. Previous quantitative studies have focused on the peatlands of Northern and Central Europe, North America, and New Zealand and have considered a relatively restricted variety of peatland types, mostly ombrotrophic or Sphagnum-dominated while more minerotrophic fens have been less studied. Here we present the first quantitative ecological study of testate amoebae from four small mesotrophic fens (pH 5.5-8.1) in the Elatia Forest, northern Macedonia province, Greece. Relationships with the environmental data were investigated using redundancy analysis and mantel tests. Transfer function models were derived using a variety of techniques. Results demonstrate that as for Sphagnum-dominated mires hydrology is the most important control on amoebae community composition. Transfer function models should enable water tables to be predicted within 2.5 cm, when data selection is used this is reduced to less than 2 cm. pH is also an important environmental control on testate amoebae communities, a transfer function model enables pH prediction within 0.4 pH units. The hydrological transfer function is the best performing such model yet produced in terms of prediction error. This study provides new data on the ecology of testate amoebae in fens, and the transfer function models should allow quantitative palaeohydrological reconstruction.  相似文献   

11.
The ecology of peatland testate amoebae is well studied along broad gradient from very wet (pool) to dry (hummock) micro-sites where testate amoebae are often found to respond primarily to the depth to water table (DWT). Much less is known on their responses to finer-scale gradients, and nothing is known of their possible response to phenolic compounds, which play a key role in carbon storage in peatlands. We studied the vertical (0–3, 3–6, and 6–9 cm sampling depths) micro-distribution patterns of testate amoebae in the same microhabitat (Sphagnum fallax lawn) along a narrow ecological gradient between a poor fen with an almost flat and homogeneous Sphagnum carpet (fen) and a “young bog” (bog) with more marked micro-topography and mosaic of poor fen and bog vegetation. We analyzed the relationships between the testate amoeba data and three sets of variables (1) “chemical” (pH, Eh potential, and conductivity), (2) “physical” (water temperature, altitude, i.e., Sphagnum mat micro-topography, and DWT), and (3) phenolic compounds in/from Sphagnum (water-soluble and primarily bound phenolics) as well as the habitat (fen/bog) and the sampling depth. Testate amoeba Shannon H′ diversity, equitability J of communities, and total density peaked in lower parts of Sphagnum, but the patterns differed between the fen and bog micro-sites. Redundancy analyses revealed that testate amoeba communities differed significantly in relation to Eh, conductivity, water temperature, altitude, water-soluble phenolics, habitat, and sampling depth, but not to DWT, pH, or primarily bound phenolics. The sensitivity of testate amoebae to weak environmental gradients makes them particularly good integrators of micro-environmental variations and has implications for their use in paleoecology and environmental monitoring. The correlation between testate amoeba communities and the concentration of water-soluble phenolic suggests direct (e.g., physiological) and/or indirect (e.g., through impact on prey organisms) effects on testate amoebae, which requires further research.  相似文献   

12.
To study the relationships between groups of organisms and the degree to which these relationships are consistent across major climatic gradients, we analysed the testate amoeba ( Protozoa ) communities, vegetation and water chemistry of one peatland in five countries: Switzerland, The Netherlands, Great Britain, Sweden and Finland, as part of the BERI (Bog Ecosystem Research Initiative) project. The relationships between the different data sets and subsets were investigated by means of detrended correspondence analysis, canonical correspondence analysis and Mantel permutation tests. The comparison of data on vegetation and testate amoebae showed that inter-site differences are more pronounced for the vegetation than for the testate amoebae species assemblage. Testate amoebae are a useful tool in multi-site studies and in environmental monitoring of peatlands because: (1) the number of species in Sphagnum -dominated peatlands is much higher than for mosses or vascular plants; (2) most peatland species are cosmopolitan in their distributions and therefore less affected than plants by biogeographical distribution patterns, thus differences in testate amoeba assemblages can be interpreted primarily in terms of ecology; (3) they are closely related to the ecological characteristics of the exact spot where they live, therefore they can be used to analyse small-scale gradients that play a major role in the functioning of peatland ecosystems. This study revealed the existence of small-scale vertical gradients within the vegetation and life-form niche separation in response to water chemistry. The deep-rooted plants such as Carex spp. and Eriophorum spp. are related to the chemistry of water sampled at or near the ground water table, whereas the mosses are not. Testate amoebae were shown to be ecologically more closely related to the chemistry of water sampled at or near the water table level and to the mosses than to the deep-rooted plants.  相似文献   

13.
Soil microbial communities significantly contribute to global fluxes of nutrients and carbon. Their response to climate change, including winter warming, is expected to modify these processes through direct effects on microbial functions due to osmotic stress, and changing temperature regimes. Using four European peatlands reflecting different frequencies of frost events, we show that peatland testate amoeba communities diverge among sites with different winter climates, and that this is reflected through contrasting functions. We found that exposure to harder soil frost promoted species β-diversity (species turnover) thus shifting the community composition of testate amoebae. In particular, we found that harder soil frost, and lower water-soluble phenolic compounds, induced functional turnover through the decrease of large species (−68%, >80 μm) and the increase of small-bodied mixotrophic species (i.e. Archerella flavum; +79%). These results suggest that increased exposure to soil frost could be highly limiting for large species while smaller species are more resistant. Furthermore, we found that β-glucosidase enzymatic activity, in addition to soil temperature, strongly depended of the functional diversity of testate amoebae (R2 = 0.95, ANOVA). Changing winter conditions can therefore strongly impact peatland decomposition process, though it remains unclear if these changes are carried-over to the growing season.  相似文献   

14.
Turner TE  Swindles GT 《Protist》2012,163(6):844-855
Testate amoebae represent a crucial component of soil microfauna and have been studied extensively in ombrotrophic peatlands. However, little is known about their ecology in moorlands which are important habitats in terms of biodiversity and carbon storage potential. Moorlands are under threat from a range of factors such as drainage, burning, over grazing, pollution and climate change. In this study we investigate testate amoebae communities within three zones of a UK moorland characterised by contrasting fire histories, and use these data to examine the potential of testate amoebae as environmental bioindicators in moorlands. Although several factors control testate amoebae communities in moorlands, it is clear that there are marked differences in testate amoebae communities between the zones which primarily relate to hydrological status, influenced by fire regime. The taxon Hyalosphenia subflava is a clear indicator of severe disturbance as it was found to be abundant in mosses which colonised a hydrophobic peat surface following a severe wild-fire event. Testate amoebae have much potential for ecosystem monitoring of moorlands which can inform sustainable land management practices.  相似文献   

15.
The species composition and community structure of soil-inhabiting testate amoebae communities have been studied in biotopes of different types in the southern tundra and forest-tundra of the Tazovskaya Lowland, Western Siberia. A total of 93 species and forms have been identified. It has been found that the species richness of testate amoebae is much lower in dry than in moist biotopes due to a lower level of beta-diversity, with alpha diversity being the same (on average, 16.9 and 17.1 species per sample, respectively). Factors acting at the microbiotope level (biotope type and moisture) play the most important role in the formation of species richness; biotope features (soils and vegetation) are second in importance. In moist habitats, local communities of testate amoebae from different microbiotopes (mosses, lichens, or litter) are fairly similar in species structure, and communities from different moist biotopes are heterogeneous. In dry areas, the opposite situation is observed: local communities differ at the microbiotope level but are similar at the biotope level. The abundance of testate amoebae in moist biotopes reaches 200 × 103 ind./g dry soil, being an order of magnitude lower in dry biotopes.  相似文献   

16.
We present the first detailed analysis of subfossil testate amoebae from a tropical peatland. Testate amoebae were analysed in a 4-m peat core from western Amazonia (Peru) and a transfer function developed from the site was applied to reconstruct changes in water table over the past ca. 8,000 years. Testate amoebae were in very low abundance in the core, especially in the lower 125 cm, due to a combination of poor preservation and obscuration by other organic matter. A modified preparation method enabled at least 50 testate amoebae to be counted in each core sample. The most abundant taxa preserved include Centropyxis aculeata, Hyalosphenia subflava, Phryganella acropodia and Trigonopyxis arcula. Centropyxis aculeata, an unambiguous wet indicator, is variably present and indicates several phases of near-surface water table. Our work shows that even degraded, low-abundance assemblages of testate amoebae can provide useful information regarding the long-term ecohydrological developmental history of tropical peatlands.  相似文献   

17.
Plant functional group diversity promotes soil protist diversity   总被引:1,自引:0,他引:1  
Ledeganck P  Nijs I  Beyens L 《Protist》2003,154(2):239-249
We tested whether effects of plant diversity can propagate through food webs, down to heterotrophic protists not linked directly to plants. To this end we synthesised grassland ecosystems with varying numbers of plant functional groups (FGN) and assessed corresponding changes in testate amoebae communities. The number of plant species was kept constant. When FGN was increased from 1 to 3, species number and total community density of live testate amoebae were enhanced according to a linear and a saturating function, respectively. From FGN 1 to 2, the appearance of new testate amoebae species did not affect the presence of the resident species, whereas, from FGN 2 to 3 about one quarter of the resident testate amoebae species was replaced, without altering the total species number. Overall, density by species increased, while evenness of the testate amoebae community was not affected by FGN; although Trinema lineare, one of the most common species, became more abundant. The observed relationship between plant functional group diversity and testate amoebae diversity could shed new light on the biogeographical distribution patterns of protists.  相似文献   

18.
Testate amoebae are an abundant and diverse polyphyletic group of shelled protozoa living in aquatic to moist habitats ranging from estuaries to lakes, rivers, wetlands, soils, litter, and moss habitats. Owing to the preservation of shells in sediments, testate amoebae are useful proxy indicators complementary to long-established indicators such as pollen and spores or macrofossils. Their primary use to date has been for inferring past moisture conditions and climate in ombrotrophic peatlands and, to a lesser extent, to infer pH in peatlands and the trophic or nutrient status of lakes. Recent research on these organisms suggests other possible uses in paleoecology and ecology such as sea-level reconstruction in estuarine environments, as indicators of soil or air pollution, and monitoring recovery of peatland. We review the past and present use of testate amoebae, the challenges in current research, and provide some ideas on future research directions.  相似文献   

19.
Testate amoebae are an abundant and functionally important group of protists in peatlands, but little is known about the seasonal patterns of their communities. We investigated the relationships between testate amoeba diversity and community structure and water table depth and light conditions (shading vs. insolation) in a Sphagnum peatland in Northern Poland (Linje mire) in spring and summer 2010. We monitored the water table at five sites across the peatland and collected Sphagnum samples in lawn and hummock micro-sites around each piezometer, in spring (3 May) and mid-summer (6 August) 2010. Water table differed significantly between micro-sites and seasons (Kruskal–Wallis test, p = 0.001). The community structure of testate amoebae differed significantly between spring and summer in both hummock and lawn micro-sites. We recorded a small, but significant drop in Shannon diversity, between spring and summer (1.76 vs. 1.72). Strongest correlations were found between testate amoeba communities and water table lowering and light conditions. The relative abundance of mixotrophic species Hyalosphenia papilio, Archerella flavum and of Euglypha ciliata was higher in the summer.  相似文献   

20.
Climate warming is likely to have pronounced impacts on soil biota in arctic ecosystems. In a warmer climate, heatwaves are more frequent and intense, but it is unclear to what extent soil communities are buffered against this. We studied the effects of an artificially induced heatwave on the structure of testate amoebae communities in dry heath tundra in Qeqertarsuaq (Disko Island, West Greenland) during the summer of 2003. While the heatwave was severe enough to induce significant leaf mortality in the aboveground vegetation, overall testate amoebae abundance did not react to the difference in temperature. However, in the heated plots transient shifts in species populations occurred during the exposure, followed by increases in species richness weeks after the heatwave had ended. The most important taxa appearing after the heating period belonged to bacterivorous genera, in agreement with a transient peak in bacterial colony forming units, caused by the heatwave. Lobose testate amoebae resisted the heating and its associated desiccation better than their filose counterparts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号