首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Aims: To establish if tetradecyltrimethylammonium (TDTMA) might be degraded by pure culture of Pseudomonas strains, and how the presence of a Lewis’ acid in the medium influences its biodegradability. Methods and Results: From different strains of Pseudomonas screened, only Pseudomonas putida A ATCC 12633 grows with 50 mg l?1 of TDTMA as the sole carbon and nitrogen source. A monooxygenase activity catalyzed the initial step of the biodegradation. The trimethylamine (TMA) produced was used as nitrogen source or accumulated inside the cell. To decrease the intracellular TMA, the culture was divided, and 0·1 mmol l?1 AlCl3 added. In this way, the growth and TDTMA consumption increased. The internal concentration of TMA, determined using the fluorochrome Morin, decreased by the formation of Al3+ : TMA complex. Conclusions: Pseudomonas putida utilized TDTMA as its sole carbon and nitrogen source. The TMA produced in the initial step of the biodegradation by a monooxygenase activity was used as nitrogen source or accumulated inside the cell, affecting the bacterial growth. This effect was alleviated by the addition of AlCl3. Significance and Impact of the Study: The use of Lewis’ acids to sequester intracellular amines offers an alternative to achieve an efficient utilization of TDTMA by Ps. putida.  相似文献   

2.
The aerobic and anaerobic degradation of trimethylamine by a newly isolated denitrifying bacterium from an enrichment culture with trimethylamine inoculated with activated sludge was studied. Based on 16S rDNA analysis, this strain was identified as a Paracoccus sp. The isolate, strain T231, aerobically degraded trimethylamine, dimethylamine and methylamine and released a stoichiometric amount of ammonium ion into the culture fluid as a metabolic product, indicating that these methylated amines were completely degraded to formaldehyde and ammonia. The strain degraded trimethylamine also under denitrifying conditions and consumed a stoichiometric amount of nitrate, demonstrating that complete degradation of trimethylamine was coupled with nitrate reduction. Cell-free extract prepared from cells grown aerobically on trimethylamine exhibited activities of trimethylamine mono-oxygenase, trimethylamine N-oxide demethylase, dimethylamine mono-oxygenase, and methylamine mono-oxygenase. Cell-free extract from cells grown anaerobically on trimethylamine and nitrate exhibited activities of trimethylamine dehydrogenase and dimethylamine dehydrogenase. These results indicate that strain T231 had two different pathways for aerobic and anaerobic degradation of trimethylamine. This is a new feature for trimethylamine metabolism in denitrifying bacteria.  相似文献   

3.
Summary Washed microsomal preparations (100 000 xg sediment) from the yeast Sporopachydermia cereana that had been grown on trimethylamine N-oxide as sole nitrogen source catalysed the NAD(P)H-dependent reduction of trimethylamine N-oxide to trimethylamine. Under anaerobic conditions, this was the sole reaction product, but under aerobic conditions only small amounts of trimethylamine accumulated, most being further metabolized to methylamine and formaldehyde (no detectable dimenthylamine accumulated due to its rapid turnover). In the absence of NAD(P)H, no formation of amines or formaldehyde from trimethylamine N-oxide was detected. The trimethylamine N-oxide reductase activity was inhibited by quinacrine, Cu2+ ions, triethylamine N-oxide (apparent K i 0.43 mM) and dimethyl sulphoxide (K i 0.94 mM). Chlorate and nitrate failed to inhibit the enzyme. The K m for trimethylamine N-oxide was 29 M. Triethylamine N-oxide was also reduced by the microsomal preparation with the formation of acetaldehyde, and this reduction was sensitive to the same inhibitors as trimethylamine N-oxide, suggesting that both amine oxides are metabolized by the same enzyme(s). It is concluded that trimethylamine N-oxide is metabolized in this yeast via an NAD(P)H-dependent reductase.Abbreviations TMAO triemthylamine N-oxide  相似文献   

4.
Trimethylamine metabolism in obligate and facultative methylotrophs   总被引:13,自引:6,他引:7  
1. Twelve bacterial isolates that grow with trimethylamine as sole source of carbon and energy were obtained in pure culture. All the isolates grow on methylamine, dimethylamine and trimethylamine. One isolate, bacterium 4B6, grows only on these methylamines whereas another isolate, bacterium C2A1, also grows on methanol but neither grows on methane; these two organisms are obligate methylotrophs. The other ten isolates grow on a variety of C(i) and other organic compounds and are therefore facultative methylotrophs. 2. Washed suspensions of the obligate methylotrophs bacteria 4B6 and C2A1, and of the facultative methylotrophs bacterium 5B1 and Pseudomonas 3A2, all grown on trimethylamine, oxidize trimethylamine, dimethylamine, formaldehyde and formate; only bacterium 5B1 and Ps. 3A2 oxidize trimethylamine N-oxide; only bacterium 4B6 does not oxidize methylamine. 3. Cell-free extracts of trimethylamine-grown bacteria 4B6 and C2A1 contain a trimethylamine dehydrogenase that requires phenazine methosulphate as primary hydrogen acceptor, and evidence is presented that this enzyme is important for the growth of bacterium 4B6 on trimethylamine. 4. Cell-free extracts of eight facultative methylotrophs, including bacterium 5B1 and Ps. 3A2, do not contain trimethylamine dehydrogenase but contain instead a trimethylamine monooxygenase and trimethylamine N-oxide demethylase. It is concluded that two different pathways for the oxidation of trimethylamine occur amongst the isolates.  相似文献   

5.
In this study, the degradation of tetradecyltrimethylammonium bromide (TTAB) by freely suspended and alginate-entrapped cells from the bacteria Pseudomonas putida (P. putida) A ATCC 12633 was investigated in batch cultures. The optimal conditions to prepare beads for achieving a higher TTAB degradation rate were investigated by changing the concentration of sodium alginate, pH, temperature, agitation rate and initial concentration of TTAB. The results show that the optimal embedding conditions of calcium alginate beads are 4 % w/v of sodium alginate content and 2 × 108 cfu ml?1 of P. putida A ATCC 12633 cells that had been previously grown in rich medium. The optimal degradation process was carried out in pH 7.4 buffered medium at 30 °C on a rotary shaker at 100 rpm. After 48 h of incubation, the free cells degraded 26 mg l?1 of TTAB from an initial concentration of 50 mg l?1 TTAB. When the initial TTAB concentration was increased to 100 mg l?1, the free cells lost their degrading activity and were no longer viable. In contrast, when the cells were immobilized on alginate, they degraded 75 % of the TTAB after 24 h of incubation from an initial concentration of 330 mg l?1 of TTAB. The immobilized cells can be stored at 4 °C for 25 days without loss of viability and can be reused without losing degrading capacity for three cycles.  相似文献   

6.
Summary The mechanism of antimicrobial action of hexahydro-1,3,5-triethyl-s-triazine (HHTT) was studied using the HHTT-resistant isolate,Pseudomonas putida 3-T-152, its HHTT-sensitive, novobiocin-cured derivative,P. putida 3-T-152 11:21,P. putida ATCC 12633,Pseudomonas aeruginosa PA01 andEscherichia coli J53 (RP4). HHTT was oxidized byP. putida 3-T-152, while respiration ofP. putida 3-T-152 11:21 was inhibited by HHTT. Chemical assays showed that HHTT released formaldehyde.P. putida 3-T-152 was highly resistant to formaldehyde, whileP. putida 3-T-152 11:21 was highly sensitive to formaldehyde. Both HHTT and formaldehyde acted similarly to inhibit proline uptake in bacterial cells and to inhibit the synthesis of the inducible enzymes, -galactosidase and glucose-6-phosphate dehydrogenase. HHTT did not have uncoupler-like activity.P. putida 3-T-152 used either HHTT or ethylamine, a component of HHTT, as a nitrogen source for growth, but neither HHTT, ethylamine or formaldehyde served as a carbon and energy source for growth. We concluded that a major mechanism of antimicrobial action of HHTT was through its degradation product, formaldehyde.  相似文献   

7.
Aromatic and heterocyclic aldehydes may be produced by the mandelate pathway of Pseudomonas putida ATCC 12633 via the biotransformation of benzoyl formate and substrate analogues. Under optimised biotransformation conditions (37 °C, pH 5.4) and with benzoyl formate as a substrate, benzaldehyde may be accumulated with yields above 85%. Benzaldehyde is toxic to P. putida ATCC 12633; levels above 0.5 g/l (5 mM) reduce the biotransformation activity. Total activity loss occurs at an aldehyde concentration of 2.1 g/l (20 mM). To overcome this limitation, the rapid removal of the aldehyde is desirable via in situ product removal. The biotransformation of benzoyl formate (working volume 1 l) without in situ product removal accumulates 2.1 g/l benzaldehyde. Benzaldehyde removal by gas stripping produces a total of 3.5 g/l before inhibition. However, the most efficient method is solid-phase adsorption using activated charcoal as the sorbant, this allows the production of over 4.1 g/l benzaldehyde. Addition of bisulphite as a complexing agent causes inhibition of the biotransformation and bisulphite is therefore is not suitable for in situ product removal. Received: 16 March 1998 / Received revision: 20 May 1998 / Accepted: 21 May 1998  相似文献   

8.
Abstract Sporopachydermia cereana , an ascosporogenous yeast, grew on dimethylamine, trimethylamine or trimethylamine N -oxide as sole nitrogen sources and produced mono-oxygenases for dimethylamine and trimethylamine that were significantly more stable than the corresponding enzymes found in Candida utilis . No trimethylamine mono-oxygenase activity was found in S. cereana grown on dimethylamine. In cells grown on trimethylamine N -oxide (but not on the other nitrogen sources), evidence for an enzyme metabolizing the N -oxide, possibly an aldolase, but more probably a reductase was obtained. All these activities showed a similar requirement for the presence of FAD or FMN in the extract buffer during isolation to retain activity. Amine mono-oxygenase activities showed a similar sensitivity to inhibitors, including proadifen hydrochloride and carbon monoxide as the corresponding enzymes in C. utilis . The trimethylamine N -oxide-dependent oxidation of NADH was more sensitive to inhibition by EDTA, N -ethylmaleimide and β-phenylethylamine than the mono-oxygenases, and less sensitive to KCN, and activity was significantly higher with NADPH than was observed with the 2 mono-oxygenases.  相似文献   

9.
Measurements of the passage of Pseudomonas putida ATCC 12633 and a phage-resistant mutant through Berea sandstone rock were made. When bacteriophage gh-1 was adsorbed within the rock matrix, a reduction in the passage of the susceptible but not the resistant cells through the rock was observed.  相似文献   

10.
Iminodiacetate (IDA) is a xenobiotic intermediate common to both aerobic and anaerobic metabolism of nitrilotriacetate (NTA). It is formed by either NTA monooxygenase or NTA dehydrogenase. In this paper the detection and characterization of a membrane-bound iminodiacete dehydrogenase (IDA-DH) from Chelatobacter heintzii ATCC 29600 is reported, which oxidizes IDA to glycine and glyoxylate. Out of 15 compounds tested, IDA was the only substrate for the enzyme. Optimum activity of IDA-DH was found at pH 8.5 and 25°C, respectively, and the Km for IDA was found to be 8mM. Activity of the membrane-bound enzyme was inhibited by KCN, antimycine and dibromomethylisopropyl-benzoquinone. When inhibited by KCN IDA-DH was able to reduce the artificial electron acceptor iodonitrotetrazolium (INT). It was possible to extract IDA-DH from the membranes with 2% cholate, to reconstitute the enzyme into soybean phospholipid vesicles and to obtain IDA-DH activity (more than 50% recovery) using ubiquinone Q1 as the intermediate electron carrier and INT as the final electron acceptor. Growth experiments with different substrates revealed that in all NTA-degrading strains tested both NTA monooxygenase and IDA-DH were only expressed when the cells were grown on NTA or IDA. Furthermore, in Cb. heintzii ATCC 29600 growing exponentially on succinate and ammonia, addition of 0.4 g l-1 NTA led to the induction of the two enzymes within an hour and NTA was utilized simultaneously with succinate. The presence of IDA-DH was confirmed in ten different NTA-degrading strains belonging to three different genera.Abbreviations cA component A - cB component B - DBMIB dibromomethylisopropyl-benzoquinone - HEPES hydroxyethylpiperazinethanesulfonic acid - IDA iminodiacetate, HN(CH2COOH)2 - IDA-DH iminodiacetate dehydrogenase - INT iodonitrotetrazolium chloride - NTA nitrilotriacetate, N(CH2COOH)3 - NTA-MO nitrilotriacetate monooxygenase - PMS phenazine methosulphate - SDS-PAGE sodium dodecylsulfate polyacrylamide gel electrophoresis - Suc-DH succinate dehydrogenase  相似文献   

11.
The camphor-degrading microorganism, Pseudomonas putida strain ATCC 17453, is an aerobic, gram-negative soil bacterium that uses camphor as its sole carbon and energy source. The genes responsible for the catabolic degradation of camphor are encoded on the extra-chromosomal CAM plasmid. A monooxygenase, cytochrome P450cam, mediates hydroxylation of camphor to 5-exo-hydroxycamphor as the first and committed step in the camphor degradation pathway, requiring a dioxygen molecule (O2) from air. Under low O2 levels, P450cam catalyzes the production of borneol via an unusual reduction reaction. We have previously shown that borneol downregulates the expression of P450cam. To understand the function of P450cam and the consequences of down-regulation by borneol under low O2 conditions, we have studied chemotaxis of camphor induced and non-induced P. putida strain ATCC 17453. We have tested camphor, borneol, oxidized camphor metabolites and known bacterial attractants (d)-glucose, (d) - and (l)-glutamic acid for their elicitation chemotactic behavior. In addition, we have used 1-phenylimidazole, a P450cam inhibitor, to investigate if P450cam plays a role in the chemotactic ability of P. putida in the presence of camphor. We found that camphor, a chemoattractant, became toxic and chemorepellent when P450cam was inhibited. We have also evaluated the effect of borneol on chemotaxis and found that the bacteria chemotaxed away from camphor in the presence of borneol. This is the first report of the chemotactic behaviour of P. putida ATCC 17453 and the essential role of P450cam in this process.  相似文献   

12.
Diguanidinobutanase (EC 3.5.3.20), which catalyses the hydrolysis of 1,4-diguanidinobutane (DGB) to agmatine (1-amino-4-guanidinobutane) and urea, was purified to homogeneity from Pseudomonas putida ATCC 12633. The enzyme had a molecular mass of 170 kDa and was suggested to be a tetramer of subunits that had a molecular mass of 38 kDa. The enzyme contained two Mn2+ ions per subunit. DGB was the most effective substrate and its K m was 0.65 mM. The turnover number for the subunit at saturation with DGB was 1330 molecules s–1. The higher homologues of DGB with five to seven methylene groups were also hydrolysed effectively. Agmatine was hydrolysed at a rate of 0.6% of that observed with DGB. The agmatine homologues with five to seven methylene groups were hydrolysed, although the rates were low. The enzyme was sensitive to p-chloromercuribenzoate. Agmatine sulphate was enzymatically prepared from DGB. The purified product, free from detectable putrescine and DGB, was obtained with a yield of 93% (mol/mol).Student of the United Graduate School of Agricultural Sciences, Gifu University  相似文献   

13.
For the survival of individual isolates of gram-negative bacteria Pseudomonas putida, Achromobacter xylosoxidans, and the gram-positive bacterium Bacillus megaterium, in an environment polluted with crude oil products, the production of catalases exhibiting both catalase and dianisidine-peroxidase activity is important. Electrophoretic resolution of cell-free extracts of aerobically grown strains in Luria–Bertani medium during exponential phase revealed distinctive expression of catalatic and peroxidatic activities detected with 3,3′-diaminobenzidine tetrahydrochloride. A considerable diversity in microbial catalase and peroxidase responses to 20 or 40 mM H2O2 stress, resulted from hydroperoxidase’s variant of original isolates, indicating an environmental selective pressure. However, catalase was important for the adaptation of cultures to high concentration of 60 mM H2O2. Appreciable differences in the sensitivity to toxic effect of H2O2 (20 or 40 mM) treatment between individual isolates and their adapted variants during growth were observed until the middle of exponential phase, but they were insignificant at the entry to stationary phase. Isolates also exhibited a considerable diversity in catalases responses to phenolic contaminants 1 and 2 mM o- or p-phenylenediamine. Catalase activity of bacterium P. putida was visibly stimulated only by p-phenylenediamine and not by its positional isomer o-PDA. This study contributes to a better understanding of the role catalases play in bacterial responses to a polluted environment.  相似文献   

14.
The metabolism of trimethylamine (TMA) and dimethylamine (DMA) in Arthrobacter P1 involved the enzymes TMA monooxygenase and trimethylamine-N-oxide (TMA-NO) demethylase, and DMA monooxygenase, respectively. The methylamine and formaldehyde produced were further metabolized via a primary amine oxidase and the ribulose monophosphate (RuMP) cycle. The amine oxidase showed activity with various aliphatic primary amines and benzylamine. The organism was able to use methylamine, ethylamine and propylamine as carbon-and nitrogen sources for growth. Butylamine and benzylamine only functioned as nitrogen sources. Growth on glucose with ethylamine, propylamine, butylamine and benzylamine resulted in accumulation of the respective aldehydes. In case of ethylamine and propylamine this was due to repression by glucose of the synthesis of the aldehyde dehydrogenase(s) required for their further metabolism. Growth on glucose/methylamine did not result in repression of the RuMP cycle enzyme hexulose-6-phosphate synthase (HPS). High levels of this enzyme were present in the cells and as a result formaldehyde did not accumulate. Ammonia assimilation in Arthrobacter P1 involved NADP-dependent glutamate dehydrogenase (GDH), NAD-dependent alanine dehydrogenase (ADH) and glutamine synthetase (GS) as key enzymes. In batch cultures both GDH and GS displayed highest levels during growth on acetate with methylamine as the nitrogen source. A further increase in the levels of GS, but not GDH, was observed under ammonia-limited growth conditions in continuous cultures with acetate or glucose as carbon sources.Abbreviations HPS hexulose-6-phosphate synthase - RuMP ribulose monophosphate - DMA dimethylamine - TMA trimethylamine - TMA-NO trimethylamine-N-oxide - ICL isocitrate lyase - GS glutamine synthetase - GDH glutamate dehydrogenase - ADH alanine dehydrogenase - GOGAT glutamate synthase  相似文献   

15.
A growth selection system was established using Pseudomonas putida, which can grow on benzaldehyde as the sole carbon source. These bacteria presumably metabolize benzaldehyde via the β-ketoadipate pathway and were unable to grow in benzoylformate-containing selective medium, but the growth deficiency could be restored by expression in trans of genes encoding benzoylformate decarboxylases. The selection system was used to identify three novel benzoylformate decarboxylases, two of them originating from a chromosomal library of P. putida ATCC 12633 and the third from an environmental-DNA library. The novel P. putida enzymes BfdB and BfdC exhibited 83% homology to the benzoylformate decarboxylase from P. aeruginosa and 63% to the enzyme MdlC from P. putida ATCC 12633, whereas the metagenomic BfdM exhibited 72% homology to a putative benzoylformate decarboxylase from Polaromonas naphthalenivorans. BfdC was overexpressed in Escherichia coli, and the enzymatic activity was determined to be 22 U/ml using benzoylformate as the substrate. Our results clearly demonstrate that P. putida KT2440 is an appropriate selection host strain suitable to identify novel benzoylformate decarboxylase-encoding genes. In principle, this system is also applicable to identify a broad range of different industrially important enzymes, such as benzaldehyde lyases, benzoylformate decarboxylases, and hydroxynitrile lyases, which all catalyze the formation of benzaldehyde.  相似文献   

16.
13C/12C and D/H stable isotope fractionation during aerobic degradation was determined for Pseudomonas putida strain mt-2, Pseudomonas putida strain F1, Ralstonia pickettii strain PKO1, and Pseudomonas putida strain NCIB 9816 grown with toluene, xylenes, and naphthalene. Different types of initial reactions used by the respective bacterial strains could be linked with certain extents of stable isotope fractionation during substrate degradation.  相似文献   

17.
Here, we present an improved whole-cell biocatalysis system for the synthesis of heteroaromatic N-oxides based on the production of a soluble di-iron monooxygenase PmlABCDEF in Pseudomonas sp. MIL9 and Pseudomonas putida KT2440. The presented biocatalysis system performs under environmentally benign conditions, features a straightforward and inexpensive procedure and possesses a high substrate conversion and product yield. The capacity of gram-scale production was reached in the simple shake-flask cultivation. The template substrates (pyridine, pyrazine, 2-aminopyrimidine) have been converted into pyridine-1-oxide, pyrazine-1-oxide and 2-aminopyrimidine-1-oxide in product titres of 18.0, 19.1 and 18.3 g l-1, respectively. To our knowledge, this is the highest reported productivity of aromatic N-oxides using biocatalysis methods. Moreover, comparing to the chemical method of aromatic N-oxides synthesis based on meta-chloroperoxybenzoic acid, the developed approach is applicable for a regioselective oxidation that is an additional advantageous option in the preparation of the anticipated N-oxides.  相似文献   

18.
The AlkBGTL proteins coded on the alk operon from Pseudomonas putida GPo1 can selectively ω‐oxidize ethyl esters of C6 to C10 fatty acids in whole‐cell conversions with Escherichia coli. The major product in these conversions is the ω‐alcohol. However, AlkB also has the capacity to overoxidize the substrate to the ω‐aldehyde and ω‐acid. In this study, we show that alcohol dehydrogenase AlkJ and aldehyde dehydrogenase AlkH are able to oxidize ω‐alcohols and ω‐aldehydes of esterified fatty acids respectively. Resting E. coli expressing AlkBGTHJL enabled exclusive mono‐ethyl azelate production from ethyl nonanoate, with an initial specific activity of 61 U gcdw?1. Within 2 h, this strain produced 3.53 mM mono‐ethyl azelate, with a yield of 0.68 mol mol?1. This strain also produced mono‐ethyl dicarboxylic acids from ethyl esters of C6 to C10 fatty acids and mono‐methyl azelate from methyl nonanoate. Adding ethyl nonanoate dissolved in carrier solvent bis‐(2‐ethylhexyl) phthalate enabled an increase in product titres to 15.55 mM in two‐liquid phase conversions. These findings indicate that E. coli expressing AlkBGTHJL is an effective producer of mono‐esterified dicarboxylic acids from fatty acid esters.  相似文献   

19.
The current practices of using monooxygenase enzymes to perform regio- and stereoselective oxidation reactions in organic syntheses are reviewed. The isolation of a monooxygenase from Pseudomonas putida NCIMB 10007 and its use in the conversion of bicyclo[3.2.0]hept-2-en-6-one into two isomeric optically active lactones is described. The monooxygenase utilises NADH as cofactor and NADH-recycling is accomplished using formate and formate dehydrogenase. As alternative methodology, it is shown that a secondary alcohol can be converted into a chiral lactone using a dehydrogenase and a monooxygenase working in tandem with in situ cofactor recycling. © 1993 Wiley-Liss, Inc.  相似文献   

20.
A bacterium, CP1, identified as Pseudomonas putida strain, was investigated for its ability to grow on and degrade mono-chlorophenols and phenols as sole carbon sources in aerobic shaking batch culture. The organism degraded up to 1.56 mM 2- and 3-chlorophenol, 2.34 mM 4-chlorophenol and 8.5 mM phenol using an ortho-cleavage pathway. P. putida CP1, acclimated to degrade 2-chlorophenol, was capable of 3-chlorocatechol degradation, while P. putida, acclimated to 4-chlorophenol degradation, degraded 4-chlorocatechol. Growth of P. putida CP1 on higher concentrations of the mono-chlorophenols, ≥1.56 mM 4-chlorophenol and ≥0.78 mM 2- and 3-chlorophenol, resulted in decreases in cell biomass despite metabolism of the substrates, and the formation of large aggregates of cells in the culture medium. Increases in cell biomass with no clumping of the cells resulted from growth of P. putida CP1 on phenol or on lower concentrations of mono-chlorophenol. Bacterial adherence to hydrocarbons (BATH) assays showed cells grown on the higher concentrations of mono-chlorophenol to be more hydrophobic than those grown on phenol and lower concentrations of mono-chlorophenol. The results suggested that increased hydrophobicity and autoaggregation of P. putida CP1 were a response to toxicity of the added substrates. Journal of Industrial Microbiology & Biotechnology (2002) 28, 316–324 DOI: 10.1038/sj/jim/7000249 Received 27 June 2001/ Accepted in revised form 09 February 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号