首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
In this study, we have used the mouse intestine and the Ussing short circuit technique to compare the effects and mechanism of action of somatostatin (SST, 0.1 μM) on cAMP- and Ca2+-mediated ion secretion in the duodenum and colon of the Swiss-Webster mouse. The cAMP-dependent secretagogues, prostaglandin E2 (1 μM) and dibutyryl-cAMP (150 μM) increased short circuit current (Isc) in both regions, but only the colonic response was inhibited by SST. This inhibition was independent of enteric nerves, suggesting a direct action on the epithelial cells. The Ca2+-dependent secretagogue carbachol (10 μM) stimulated a transient increase in Isc in both intestinal segments. In the duodenum, SST partially inhibited this increase in Isc and both the responses to carbachol and SST were independent of enteric nerves. In the colon, while SST inhibited the carbachol induced increase in Isc, pre-treatment with tetrodotoxin (750 nM) profoundly inhibited the carbachol induced increase in Isc, thus markedly reducing the inhibitory effect of SST. This indicates an involvement of the enteric nervous system in the response to carbachol and the action of SST in the colon. These data indicate marked regional differences within the mouse intestine of the effects of SST on ion secretion and demonstrate different mechanisms of action of SST in the duodenum and colon.  相似文献   

2.
Summary Porcine distal colon epithelium was mounted in Ussing chambers and bathed in plasma-like Ringer solution. Tissue conductances ranged from 10 to 15 mS and the short-circuit current (Isc) ranged from-15 to 220 A·cm-2. Variations in basal Isc resulted from differences in the amount of amiloride (10M mucosal addition)-sensitive Na+ absorption. Ion substitution and transepithelial flux experiments showed that 10 M amiloride produced a decrease in the mucosal-to-serosal (M-S) and net Na flux, and that this effect on Isc was independent of Cl- and HCO 3 - replacement. When the concentration of mucosal amiloride was increased from 10 to 100 M, little change in Isc was observed. However, increasing the concentration to 1 mM produced a further inhibition, which often reversed the polarity of the Isc. The decrease in Isc due to 1 mM amiloride was dependent on both Cl- and HCO 3 - , and was attributed to reductions in the M-S and net Na+ fluxes as well as the M-S unidirectional Cl- flux. Ion replacement experiments demonstrated that Cl- substitution reduced the M-S and net Na fluxes, while replacement of HCO 3 - with HEPES abolished net Cl- absorption by reducing the M-S unidirectional Cl- flux. From these data it can be concluded that: (1) Na+ absorption is mediated by two distinct amiloride-sensitive transport pathways, and (2) Cl- absorption is completely HCO 3 - -dependent (presumably mediated by Cl-/HCO 3 - exchange) and occurs independently of Na+ absorption.Abbreviations Gt tissue conductance - HEPES tris (hydroxymethyl) aminomethane - (tris) N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - Isc short-circuit current - Jr residual flux - M-S mucosal-to-scrosal - S-M serosal-to-mucosal - TTX tetrodotoxin  相似文献   

3.
The pH-sensitivity of transepithelial K+ transport was studied in vitro in isolated vestibular dark cell epithelium from the gerbil ampulla. The cytosolic pH (pH iwas measured microfluorometrically with the pH-sensitive dye 2,7-bicarboxyethyl-5(6)-carboxyfluorescein (BCECF) and the equivalent short-circuit current (I sc), which is a measure for transepithelial K+ secretion, was calculated from measurements of the transepithelial voltage (V t)and the transepithelial resistance (R t) in a micro-Ussing chamber. All experiments were conducted in virtually HCO 3 -free solutions. Under control conditions, pH iwas 7.01±0.04 (n=18), V twas 9.1±0.5 mV, R t16.7±0.09 cm2, and I sc was 587±30 A/cm2 (n=49). Addition of 20 mm propionate caused a biphasic effect involving an initial acidification of pH i, increase in V tand I sc and decrease in R tand a subsequent alkalinization of pH i, decrease of V tand increase of R t. Removal of propionate caused a transient effect involving an alkalinization of pH i, a decrease of V tand I sc and an increase in R t. pH iin the presence of propionate exceeded pH iunder control conditions. Effects of propionate on V t, R tand I sc were significantly larger when propionate was applied to the basolateral side rather than to the apical side of the epithelium. The pH i-sensitivityof I sc between pH 6.8 and 7.5 was –1089 A/(cm2 · pH-unit) suggesting that K+ secretion ceases at about pH i7.6. Acidification of the extracellular pH (pH o)caused an increase of V tand I sc and a decrease of R tmost likely due to acidification of pH i. Effects were significantly larger when the extracellular acidification was applied to the basolateral side rather than to the apical side of the epithelium. The pH osensitivity of I sc between pH 7.4 and 6.4 was –155 A/(cm2 · pH unit). These results demonstrate that transepithelial K+ transport is sensitive to pH iand pH oand that vestibular dark cells contain propionate uptake mechanism. Further, the data suggest that cytosolic acidification activates and that cytosolic alkalinization inactivates the slowly activating K+ channel (I sK)in the apical membrane. Whether the effect of pH ion the I sK channel is a direct or indirect effect remains to be determined.The authors wish to thank Drs. Daniel C. Marcus, Zhjiun Shen and Hiroshi Sunose for helpful discussions. This work was supported by grants NIH-R29-DC01098 and NIH-R01-DC00212.  相似文献   

4.
The response of confluent monolayers of HT29-Cl.16E cells to stimulation by extracellular ATP and ATP analogues was investigated in terms of mucin and electrolyte secretion. Mucin secretion was measured as release of glucosamine-labeled macromolecules trapped at the stacking/running gel interface of polyacrylamide gels and electrolyte secretion as shortcircuit current (Isc). Luminal ATP stimulated a transient increase in the release of mucins and of I sc corresponding to a secretory Cl current. Both secretions peaked at 3 to 5 min after addition of ATP. Maximal ATP-stimulated mucin secretion over 15 min was up to 18-fold above control with an apparent ED50 of approximately 40 m. Maximal peak I sc after stimulation with ATP was approximately 35 A/cm2 with an apparent ED50 of about 0.4 mm. ATP-dependent I sc was at least in part due to Cl secretion since removal of Cl from the medium reduced the peak I sc by 40% and the I sc integrated over 40 min by 80%. The secretory responses were not associated with cell damage as assessed by failure of ethidium bromide to enter into the cells, absence of release of lactate dehydrogenase, maintenance of monolayer conductance, viability, and responses to repeated applications of ATP. The order of efficacy of nucleotide agonists was similar for both processes with ATP>ADP>AMPadenosine. Luminal ATP was much more effective than basolateral addition of this compound. These results suggest involvement of a luminal P2-type receptor which can initiate signaling pathways for granule fusion and mucin release as well as for activation of Cl channels. P2-receptor-stimulated mucin and I sc release was strongly inhibited by a 30 min preincubation with the classical K+ channel blockers quinine (1 mm), quinidine (1 mm), and Ba2+ (3 mm). Experiments with amphotericin B to measure separately the conductance changes of either luminal or basolateral plasma membrane revealed that quinidine did not directly block the ATP-induced basolateral K+ or the luminal anion channels. The quinidine inhibition after preincubation is therefore most easily explained by interference with granule fusion and location of anion channels in granule membranes. Luminal P2 receptors may play a role in intestinal defense mechanisms with both fluid and mucin secretion aiding in the removal of noxious agents from the mucosal surface.Supported by grants from the National Institutes of Health (DK 39658) to U.H., the Philippe Foundation to D.M., the French Cystic Fibrosis Foundation (AFLM) and L'Association Pour La Recherche Sur Le Cancer to C.L. The authors thank Mr. J. Polack for his efforts and skill with electron microscopy and Dr. George Dubyak for helpful discussions. We also acknowledge the Cystic Fibrosis Center Core grant (DK-27651) for its support of electron and light microscopy.  相似文献   

5.
1. 1. Cu2+ at a concentration of 10−4 M, when applied to the external side of the frog skin produces an increase in the short-circuit current (Isc).
2. 2. This effect was studied in skins of Rana temporaria adapted to cold (5°C) and room temperature (20°C), skins of Rana pipiens adapted to cold, and the results compared with those obtained previously with Rana ribibunda.
3. 3. The observed effect is less dependent upon the adaptation to cold than upon the functional state of the skin: skins with low short circuit currents have a bigger response to Cu2+ than skins with high Isc.
4. 4. A species difference cannot be ruled out since skins of Rana ribibunda exhibiting high Isc give good responses to Cu2+.
5. 5. 5,5′-dithiobis(2-nitrobenzoic acid), a sulphydryl-oxidizing reagent, produces an effect similar to that of Cu2+, and dithiothreitol an SH-reducing agent, reverses the effect of this ion.
6. 6. Cu2+ also induces an increase in the unidirectional K+ fluxes and unmasks a net outward potassium flux.
7. 7. The outward K+ flux induced by Cu2+ is sensitive to ouabain.
8. 8. It is concluded that Cu2+ increases the permeability of the external barrier of the frog skin to Na+ and K+, probably by reacting with SH groups.
Abbreviations: DTNB; 5; 5′-dithiobis(2-nitrobenzoic acid)  相似文献   

6.
The effect of adenosine regulation on sodium and chloride transport was examined in cultured A6 renal epithelial cells. Adenosine and its analogue N6-cyclopentyladenosine (CPA) had different effects on short-circuit current (I sc) depending on the side of addition. Basolateral CPA addition induced an approximately threefold increase of the I sc that reached a maximum effect 20 min after addition and was completely inhibited by preincubation with either an A2 selective antagonist, CSC, or the sodium channel blocker, amiloride. Apical CPA addition induced a biphasic I sc response characterized by a rapid fourfold transient increase over its baseline followed by a decline and a plateau phase that were amiloride insensitive. The A1 adenosine antagonist, CPX, completely prevented this response. This I sc response to apical CPA was also strongly reduced in Cl-free media and was significantly inhibited either by basolateral bumetanide or apical DPC preincubation. Only basolateral CPA addition was able to induce an increase in cAMP level. CPA, added to cells in suspension, caused a rapid rise in [Ca2+] i that was antagonized by CPX, not affected by CSC and prevented by thapsigargin preincubation. These data suggest that basolateral CPA regulates active sodium transport via A2 adenosine receptors stimulating adenylate cyclase while apical CPA regulates Cl secretion via A1 receptor-mediated changes in [Ca2+] i .  相似文献   

7.
Summary The effects of epinephrine, glucagon and vasoactive intestinal polypeptide on chloride secretion by chloride cell-containing isolated opercular membranes from the seawater-adapted euryhaline teleost, the tilapiaSarotherodon mossambicus, have been examined. Epinephrine inhibits chloride secretion, measured as the short-circuit current (I sc), via -receptors, in a dose-dependent fashion. The minimum effective dose is 10–9 M, ED50 equals 2×10–7 M and maximal inhibition at 10–5 M is nearly 80%. Inhibition of phosphodiesterase by isobutylmethylxanthine (IBMX; 10–4 M), does not alterI sc in untreated tissues, but it completely reverses the epinephrine inhibition ofI sc, suggesting that hormones which modulate cAMP in chloride cells may alter chloride secretion. Glucagon and vasoactive intestinal polypeptide also stimulateI sc in epinephrine-inhibited tissues, an effect potentiated by IBMX. The effect of glucagon is dose-dependent with a minimum effective dose of 10–9 M, ED50 equal to 8×10–8 M and a maximum stimulation of 72% at 10–5 M.Analysis of the effects of epinephrine and IBMX onI sc and tissue conductance suggests that these agents act antagonistically on a nonconductive transport mechanism. It is proposed that IBMX and hormones which increase intracellular cAMP levels stimulate chloride secretion in epinephrine-inhibited tissues by stimulating a neutral sodium chloride cellular entry-step mechanism.Abbreviations ED 50 effective dose causing half-maximal inhibition or stimulation - IBMX isobutylmethylxanthine - VIP vasoactive intestinal polypeptide  相似文献   

8.
Vestibular dark cell epithelium secretes K+ via I sKchannels in the apical membrane. The previous observation that disulfonic stilbenes increased the equivalent short circuit current (I sc) suggested that these agents might be useful investigative tools in this tissue. The present experiments were conducted to determine if the increase in I scwas associated with an increase in K+ flux and if the effect was directly on the I sKchannel or indirectly via a cytosolic intermediary. Measurements of transepithelial K+ flux with the K+-selective vibrating probe and of changes in net cellular solute flux by measurements of epithelial cell height showed that 4,4-diisothiocyanatostilbene-2,2-disulfonic acid (DIDS) increased K+ flux by a factor of 1.96±0.71 and caused net solute efflux. The apical membrane was partitioned with a macropatch pipette and DIDS was applied either to the membrane outside the pipette, inside the pipette or to the entire apical membrane. DIDS inside the pipette increased the current across the patch, the membrane conductance, the slowly-inactivating (I sK) component of the membrane current and shifted the reversal voltage toward the equilibrium potential for K+. DIDS outside the patch decreased the patch current and conductance, consistent with shunting of current away from the membrane patch. These findings strongly support the notion that DIDS increases K+ secretion through I sKchannels in the apical membrane of vestibular dark cell epithelium by acting directly on the channels or on a tightly colocalized membrane component.We thank Dr. Peter J.S. Smith and Alan Shipley of the National Vibrating Probe Facility at the Marine Biological Laboratory at Woods Hole, MA for their support and assistance in the measurements of K+ flux. This work was supported by National Institutes of Health grants R01-DC00212, R29-DC1098 and P41-RR01395.  相似文献   

9.
Short-circuit current (I sc ), transepithelial conductance (G t ), electrical capacitance (C T ) and the fluctuation in I sc were analyzed in polarized epithelial cells from the distal nephron of Xenopus laevis (A6 cell line). Tissues were incubated with Na+- and Cl-free solutions on the apical surface. Basolateral perfusate was NaCl-Ringer. Agents that increase cellular cAMP evoked increases in G t , C T , I sc and generated a Lorentzian I sc -noise. The responses could be related to active, electrogenic secretion of Cl. Arginine-vasotocin and oxytocin caused a typical peak-plateau response pattern. Stimulation with a membrane-permeant nonhydrolyzable cAMP analogue or forskolin showed stable increases in G t with only moderate peaking of I sc . Phosphodiesterase inhibitors also stimulated Cl secretion with peaking responses in G t and I sc . All stimulants elicited a spontaneous Lorentzian noise, originating from the activated apical Cl channel, with almost identical corner frequency (40–50 Hz). Repetitive challenge with the hormones led to a refractory behavior of all parameters. Activation of the cAMP route could overcome this refractoriness. All agents caused C T , a measure of apical membrane area, to increase in a manner roughly synchronous with G t . These results suggest that activation of the cAMP-messenger route may, at least partly, involve exocytosis of a vesicular Cl channel pool. Apical flufenamate depressed Cl current and conductance and apparently generated blocker-noise. However, blocking kinetics extracted from noise experiments could not be reconciled with those obtained from current inhibition, suggesting the drug does not act as simple open-channel inhibitor. Received: 20 May 1998/Revised: 8 September 1998  相似文献   

10.
Summary Single gill lamellae from posterior gills of Chinese crabs (Eriocheir sinensis) were isolated, separated into halves and mounted in a modified Ussing chamber. Area-related short-circuit current (Isc) and conductance (Gtot) of this preparation were measured. Epithelial cells were impaled with microelectrodes through the basolateral membrane and cellular potentials (Vi under open- and Vsc under short-circuit conditions) as well as the voltage divider ratios (Fi, Fo) were determined.With NaCl salines on both sides an outside positive PDte (22±2 mV) and an Isc (-64±13 A·cm-2) with a polarity corresponding to an uptake of negative charges (inward negative) were obtained. Trough-like potential profiles were recorded across the preparation under open- as well as short-circuit conditions (Vo=-101±5 mV, external bath as reference; Vi=-78±2 mV, internal bath as reference; Vsc=-80±2 mV, extracellular space as reference). The voltage divider ratios of the external (apical membrane plus cuticle) and internal (basolateral membrane) barrier were Fo=0.92±0.01 and Fi=0.08±0.01, respectively. To investigate a Cl--related contribution to the above parameters, Na+-free solutions in the external bath (basolateral NaCl-saline) were used. Inward negative Isc under these conditions almost completely depended on external Cl-. Elimination of Cl- in the external bath reversed Isc, and Gtot decreased substantially. Concomitantly, Vsc depolarised and Fo increased. Cl--dependent current and conductance showed saturation kinetics with increasing external [Cl-]. Addition of 20 mmol·1-1 thiocyanate to the external bath had similar, although less pronounced, effects as Cl- substitution. Equally, external SITS (1 mmol·1-1) inhibited the current and, concomitantly, Gtot decreased substantially. Addition of 1 mmol·1-1 acetazolamide to, and omission of NaHCO3 from, the basolateral bath resulted in a decrease of Isc while Gtot remained unchanged. The Cl--channel blocker DPC inhibited Isc almost completely when added to the basolateral saline, whereas Gtot decreased moderately; however, Vsc depolarised without significant change of Fi. Ouabain had no influence on Isc and Gtot. Increasing the basolateral [K+] resulted in a decrease in Isc, while Gtot was not affected. At the same time Vsc largely depolarised and Fi decreased. Addition of the K+-channel blocker Ba++ (5 mmol·1-1) to the basolateral solution resulted in a two-step alteration of the transepithelial (Isc, Gtot) and cellular (Vsc, Fi) parameters. The results are discussed with regard to (i) the mechanisms responsible for active transbranchial Cl- uptake, and (ii) the technical improvement of being able to perform transport studies with crab gill preparations in an Ussing chamber.Abbreviations DMSO dimethylsulfoxide - DPC diphenylamine-2-carboxylate - F o, i voltage divider ratio for external (o) and internal (i) barrier, respectively - G Cl conductance related to the external [Cl-] - G tot total tissue conductance - I Cl short-circuit current related to the external [Cl-] - I sc short-circuit current - PD te transepithelial potential difference - R ME resistance of the microelectrode - SITS 4-acetamido-4-isothiocyanato-stilbene-2,2-disulfonic acid - V o, i open-circuit voltage across the external (o) and internal (i) barrier, respectively - V sc intracellular potential under short-circuit conditions  相似文献   

11.
The relaxation kinetics of frog skin open circuit voltage, Voc, and short circuit current Isc, was studied by analyzing the effects of subjecting the tissue to sudden increments of hydrostatic pressure. Both Voc and Isc are perturbed by the pressure jump. Changes in Voc can be resolved into three components: a rapid decrease (phase I), a second, additional decrease with time constant 2.2 s (phase II), and finally a very slow increase found only in some preparations. The amplitudes of phases I and II are linear in the range of pressures studied (<350 atm) and have respective pressure coefficients of −1.2 · 10−4atm−1 and −3.7 · 10−4atm−1.Under short circuit conditions phases I and II persist. The pressure coefficients of the amplitudes of phase I and II, −4.3 · 10−4atm−1 and −5.0 · 10−4atm−1, respectively, are larger than those of Voc, but the time constant of phase II, 2.2 s, is the same. The sum of the amplitudes of phases I and II is directly proportional to Isc when it is inhibited with ouabain. It is argued that in both electrical states pressure perturbs the same transport mechanism giving rise to phases I and II of Voc and Isc.The magnitude of the pressure coefficients of these processes implies that they arise from chemical reactions, rather than from simple, physical solution properties. Comparison of the pressure jump kinetics with the previous spectral analysis of the electrical fluctuations of frog skin suggests a common origin for both sets of phenomena.  相似文献   

12.
The action of aldosterone on active Na+ transport was assessed under aerobic and anaerobic conditions in the isolated urinary bladder of the toad, BUfo marinus. Aldesterone augmented the short-circuit current (Isc) under rigorous anaerobiosis. Four lines of evidence indicate that the increase in anaerobic Isc does not represent an equivalent increase in active Na+ transport: 1. Net Na+ transport, determined by isotopic fluxes, was the same in the aldosterone-treated and control quarter-bladders, and significantly greater than the simultaneously measured Isc. 2. Amiloride, an inhibitor of the apiral entry of Na+, did not reduce the steroid-dependent increase in the anaerobic Isc. 3. Substitution of choline for Na+ in the mucosal medium reduced the magnitude of the anaerobic Isc values did not eliminate the effect of aldosterone. 4. Addition of ouabain, a potent inhibitor of the Na+ pump, partially inhibited the effect of aldosterone on the anerobic Isc but a significant hormonal increment remained. The source of the anaerobic Isc was not identified; an effort was made, however, to determine the dependence of this current on glycolysis. During anaerobics, aldosterone increased the integral Isc by 42% but did not alter lactate production. These results suggest that the steroid-dependent increase in the anaerobic Isc may involve effects on permeability properties of the epithelium rather than on active tranport systems.  相似文献   

13.
Forskolin concentration-dependently increased the short-circuit current (Isc) across the isolated mucosa of rat colon, which was carried mainly by Cl secretion from the mucosal membrane. The sulfonylureas such as glibenclamide, tolbutamide, glipizide and the ATP-sensitive K+ channel opener cromakalim inhibited the forskolin (1 μM)-induced increase of short-circuit current (ΔIsc) when these drugs were applied to the basolateral side. The rank order of potency for inhibition of ΔIsc was: glibenclamide > cromakalim > tolbutamide > glipizide. Glibenclamide (100 μM) and cromakalim (100 μM) caused transient or small reduction of the A23187-induced ΔIsc when applied to the basolateral side. Glibenclamide, tolbutamide and cromakalim decreased the forskolin-induced ΔIsc when applied to the mucosal side; however, the responses produced by basolateral application were greater and faster than those elicited by mucosal application. None of these four agents affected the basal transepithelial current. The results indicate that the cAMP-dependent Cl secretion in the rat colon could be modulated by ATP-sensitive K+ channel regulators. © 1996 Wiley-Liss, Inc.  相似文献   

14.
We used Ussing chamber measurements and whole-cell recordings to characterize a chloride conductance in rat lingual epithelium. Niflumic acid (NFA) and flufenamic acid (FFA), nonsteroidal anti-inflammatory aromatic compounds known to inhibit Cl conductances in other tissues, reduced transepithelial short-circuit current (I sc ) in the intact dorsal anterior rat tongue epithelium when added from the serosal side, and reduced whole-cell currents in rat fungiform taste cells. In both Ussing chamber and patch-clamp experiments, the effect of NFA was mimicked by replacement of bath Cl with methanesulfonate or gluconate. In low Cl bath solution, the effect of NFA on whole-cell current was reduced. Replacement of bath Ca2+ with Ba2+ reduced the whole-cell Cl current. We conclude that a Ca2+-activated Cl conductance is likely present in the basolateral membrane of the rat lingual epithelium, and is present in the taste receptor cells from fungiform papillae. Further experiments will be required to identify the role of this conductance in taste transduction. Received: 8 September 1997/Revised: 27 March 1998  相似文献   

15.
Adenosine 3′,5′-cyclic monophosphate (cAMP) is known to stimulate exogenous IsK channel current in the Xenopus oocyte expression system. The present study was performed to determine whether elevation of cytosolic cAMP in a native mammalian epithelium known to secrete K+ through endogenously expressed IsK channels would stimulate K+ secretion through these channels. The equivalent short circuit current (I sc ) across vestibular dark cell epithelium in gerbil was measured in a micro-Ussing chamber and the apical membrane current (I IsK ) and conductance (g IsK ) of IsK channels was recorded with both the on-cell macro-patch and nystatin-perforated whole-cell patch-clamp techniques. It has previously been shown that I sc can be accounted for by transepithelial K+ secretion and that the apical IsK channels constitute a significant pathway for K+ secretion. The identification of the voltage-dependent whole-cell currents in vestibular dark cells was strengthened by the finding that a potent blocker of IsK channels, chromanol 293B, strongly reduced I IsK from 646 ± 200 to 154 ± 22 pA (71%) and g IsK from 7.5 ± 2.6 to 2.8 ± 0.4 nS (53%). Cytoplasmic cAMP was elevated by applying dibutyryl cyclic AMP (dbcAMP), or the phosphodiesterase inhibitors 3-isobutyl-1-methylxanthine (IBMX) and Ro-20-1724. dbcAMP (1 mm) increased I sc and I IsK from 410 ± 38 to 534 ± 40 μA/cm2 and from 4.3 ± 0.8 to 11.4 ± 2.2 pA, respectively. IBMX (1 mm) caused transient increases of I sc from 415 ± 30 to 469 ± 38 μA/cm2 and Ro-20-1724 (0.1 mm) from 565 ± 43 to 773 ± 58 μA/cm2. IBMX increased I IsK from 5.5 ± 1.5 to 16.9 ± 5.8 pA in on-cell experiments and from 191 ± 31 to 426 ± 53 pA in whole-cell experiments. The leak conductance due to all non-IsK channel sources did not change during dbcAMP and IBMX while 293B in the presence of dbcAMP reduced I IsK by 84% and g IsK by 62%, similar to unstimulated conditions. These results demonstrate that the cAMP pathway is constitutively active in vestibular dark cells and that the cAMP pathway stimulates transepithelial K+ secretion by increasing IsK channel current rather than by altering another transport pathway. Received: 9 June 1995/Revised: 17 October 1996  相似文献   

16.
In the present study we investigated the effect of extracellular gadolinium on amiloride-sensitive Na+ current across Xenopus alveolar epithelium by Ussing chamber experiments and studied its direct effect on epithelial Na+ channels with the patch-clamp method. As observed in various epithelia, the short-circuit current (I sc) and the amiloride-sensitive Na+ current (I ami) across Xenopus alveolar epithelium was downregulated by high apical Na+ concentrations. Apical application of gadolinium (Gd3+) increased I sc in a dose-dependent manner (EC 50 = 23.5 µM). The effect of Gd3+ was sensitive to amiloride, which indicated the amiloride-sensitive transcellular Na+ transport to be upregulated. Benz-imidazolyl-guanidin (BIG) and p-hydroxy-mercuribenzonic-acid (PHMB) probably release apical Na+ channels from Na+-dependent autoregulating mechanisms. BIG did not stimulate transepithelial Na+ currents across Xenopus lung epithelium but, interestingly, it prevented the stimulating effect of Gd3+ on transepithelial Na+ transport. PHMB increased I sc and this stimulation was similar to the effect of Gd3+. Co-application of PHMB and Gd3+ had no additive effects on I sc. In cell-attached patches on Xenopus oocytes extracellular Gd3+ increased the open probability (NP o) of Xenopus epithelial sodium channels (ENaC) from 0.72 to 1.79 and decreased the single-channel conductance from 5.5 to 4.6 pS. Our data indicate that Xenopus alveolar epithelium exhibits Na+-dependent non-hormonal control of transepithelial Na+ transport and that the earth metal gadolinium interferes with these mechanisms. The patch-clamp experiments indicate that Gd3+ directly modulates the activity of ENaCs.  相似文献   

17.
TMT (trimethyltin chloride), an organotin, is ubiquitous in the environment. The consumption of contaminated food may cause exposure of the human diet to this toxic compound. The present study was to investigate the effects of TMT on the regulation of ion transport across the rat distal colon. The rat colonic mucosa was mounted in Ussing chambers. The effects of TMT were assessed using the Isc (short‐circuit current). Both apical and basolateral TMT induced, dose‐dependently, an increase in Isc, which was due to a stimulation of Cl? secretion as measured using ion substitution experiments and pharmacological manoeuvres. The secretion was also inhibited by several K+ channel blockers administrated at the basolateral side. When the apical side was permeabilized by nystatin, the TMT‐induced K+ conductance was effectively blocked by tetrapentylammonium, a Ca2+‐sensitive K+ channel blocker. The response of TMT was sensitive to the basolateral Ca2+ and the intracellular Ca2+ store, which could be disclosed by applying the inhibitors of ryanodine receptors and inositol 1,4,5‐trisphosphate receptors. In conclusion, TMT led to Cl? secretion, which was essentially regulated by basolateral Ca2+‐sensitive K+ channels. These results suggest the importance of K+ channels in the toxicity hazard of TMT.  相似文献   

18.
Summary The renal cell line LLC-PK1 cultured on a membrane filter forms a functional epithelial tissue. This homogeneous cell population exhibits rheogenic Na-dependentd-glucose coupled transport. The short-circuit current (I sc) was acccounted for by net apical-to-basolaterald-glucose coupled Na flux, which was 0.53±0.09(8) eq cm–2hr–1, andI sc, 0.50±0.50(8) eq cm–2hr–1. A linear plot of concurrent net Na vs. netd-glucose apical-to-basolateral fluxes gave a regression coefficient of 2.08. As support for a 21 transepithelial stoichiometry, sodium was added in the presence ofd-glucose and the response ofI sc analyzed by a Hill plot. A slope of 2.08±0.06(5) was obtained confirming a requirement of 2 Na for 1d-glucose coupled transport. A Hill plot ofI sc increase to addedd-glucose in the presence of Na gave a slope of 1.02±0.02(5). A direct determination of the initial rates of Na andd-glucose translocation across the apical membrane using phlorizin, a nontransported glycoside competitive inhibitor to identify the specific coupled uptake, gave a stoichiometry of 2.2 A coupling ratio of 2 for Na,d-glucose uptake, doubles the potential energy available for Na-gradient coupledd-glucose transport. In contrast to coupled uptake, the stoichiometry for Na-dependentphlorizin binding was 1.1±0.1(8) from Hill plot analyses of Na-dependent-phlorizin binding as a function of [Na]. Although occurring at the same site the process of Na-dependent binding of phlorizin differs from the binding and translocation ofd-glucose. Our results support a two-step, two-sodium model for Na-dependentd-glucose cotransport; the initial binding to the cotransporter requires a single Na andd-glucose, a second Na then binds to the ternary complex resulting in translocation.  相似文献   

19.
In the present work the coupling under short-circuited conditions between the net Na+-influx across isolated frog skin and the transepithelial transport of water was examined i.e., the short-circuit current (I sc ) and the transepithelial water movement (TEWM) were measured simultaneously. It has been shown repeatedly that the I sc across isolated frog skin is equal to the net transepithelial Na+ transport. Furthermore the coupling between transepithelial uptake of NaCl under open-circuit conditions and TEWM was also measured. The addition of antidiuretic hormone (AVT) to skins incubated under short-circuited conditions resulted in an increase in the I sc and TEWM. Under control conditions I sc was 9.14 ± 2.43 and in the presence of AVT 45.9 ± 7.3 neq cm−2 min−1 (n= 9) and TEWM changed from 12.45 ± 4.46 to 132.8 ± 15.8 nL cm−2 min−1. The addition of the Na+ channel blocking agent amiloride resulted in a reduction both in I sc and TEWM, and a linear correlation between I sc and TEWM was found. The correlation corresponds to that 160 ± 15 (n= 7) molecules of water follow each Na+ across the skin. In another series of experiments it was found that there was a linear correlation between I sc and the increase in apical osmolarity needed to stop the TEWM. The data presented indicate that the observed coupling between the net transepithelial Na+ transport and TEWM is caused by local osmosis. Received: 16 October 1996/Revised: 6 March 1997  相似文献   

20.
Summary By in vitro experiments on rabbit bladder, we reassessed the traditional view that mammalian urinary bladder lacks ion transport mechanisms. Since the ratio of actual-to-nominal membrane area in folded epithelia is variable and hard to estimate, we normalized membrane properties to apical membrane capacitance rather than to nominal area (probably 1 F 1 cm2 actual area). A new mounting technique that virtually eliminates edge damage yielded resistances up to 78,000 F for rabbit bladder, and resistances for amphibian skin and bladder much higher than those usually reported. This technique made it possible to observe a transport-related conductance pathway, and a close correlation between transepithelial conductance (G) and short-circuit current (I sc) in these tight epithelia.G andI sc were increased by mucosal (Na+) [I sc0 when (Na+)0], aldosterone, serosal (HCO 3 ) and high mucosal (H+); were decreased by amiloride, mucosal (Ca++), ouabain, metabolic inhibitors and serosal (H+); and were unaffected by (Cl) and little affected by antidiuretic hormone (ADH). Physiological variation in the rabbits' dietary Na+ intake caused variations in bladderG andI sc similar to those caused by the expectedin vivo changes in aldosterone levels. The relation betweenG andI sc was the same whether defined by diet changes, natural variation among individual rabbits, or most of the above agents. A method was developed for separately resolving conductances of junctions, basolateral cell membrane, and apical cell membrane from thisG–I sc relation. Net Na+ flux equalledI sc. Net Cl flux was zero on short circuit and equalled only 25% of net Na+ flux in open circuit. Bladder membrane fragments contained a Na+–K+-activated, ouabain-inhibited ATPase. The physiological significance of Na+ absorption against steep gradients in rabbit bladder may be to maintain kidney-generated ion gradients during bladder storage of urine, especially when the animal is Na+-depleted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号