首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ecological Indicators》2007,7(2):339-361
Indicators of riparian ecosystem condition for headwater coastal plain streams were identified from data obtained from a reference population of reaches ranging widely in ecological condition. Each indicator was associated with some facet of hydrologic, biogeochemical, and/or habitat functioning and to channel condition, riparian zone condition, or both. Variation in the condition of the indicators among reference reaches provided a framework for developing narratives that could be used to partition and score the condition of the indicators from 0 (severely altered) to 100 (relatively unaltered). The developed narratives were the basis for creating a scoring approach for assessing stream condition at the reach scale (100-m long × 60-m wide segment). This approach was designed to be a rapid, field-based assessment method (<1 h/site) that could be applied by resource professionals with several days of training in the method. Although most alterations to riparian reaches usually affect both channels and riparian zones together, the ability to score channel and riparian zone condition separately is useful for diagnosing problems and suggesting viable restoration options at the reach scale. The assessment method is also useful for comparing the condition of reaches relative to one another, thus offering guidance for prioritizing restoration efforts at a watershed scale.  相似文献   

2.
Soil seed banks of two montane riparian areas: implications for restoration   总被引:8,自引:0,他引:8  
Understanding the role of seed banks can be important for designing restoration projects. Using the seedling emergence method, we investigated the soil seed banks of two montane, deciduous riparian forest ecosystems of southeastern Arizona. We contrasted the seed banks and extant vegetation of Ramsey Canyon, which is the site of riparian restoration activities, with that of Garden Canyon, which has been less affected by human land uses. Fewer plant species were found at Ramsey Canyon than Garden Canyon, for both the seed bank and extant vegetation, and the vegetation at Ramsey Canyon (seed bank and extant) had consistently drier wetland indicator scores. As well, vegetation patterns within sampling zones (channel margins and adjacent riparian forests) differed between canyons. At Garden Canyon channel margins, the seed bank and extant vegetation had relatively high similarity, with herbaceous wetland perennial species dominating. Extant vegetation in the floodplain riparian forest zone at Garden Canyon had a drier wetland indicator score than the seed bank, suggesting that the floodplains are storing seeds dispersed from wetter fluvial surfaces. Vegetation patterns for Ramsey Canyon channel margins were similar to those for Garden Canyon floodplains. Vegetation patterns in the Ramsey Canyon riparian forest zone were indicative of non-flooded conditions with an abundance of upland species in the soil seed bank and extant vegetation. Channel geomorphology measurements indicated that much of the riparian forest zone at Ramsey Canyon is functionally a terrace, a condition that may be a legacy of channel erosion from historic land uses. Steep, erodible channel slopes may contribute to the low seed bank germinant density at Ramsey Canyon channel margins, and narrower flood-prone area may explain the greater terrestrialization of the vegetation in both sampling zones. We recommend testing the use of donor soils from more diverse stream reaches to restore biodiversity levels at Ramsey Canyon, following restoration activities such as channel-widening. Seed banks from Garden Canyon, for example, although predominantly consisting of herbaceous perennials, would supply species with a range of moisture tolerances, life spans, and growth forms. We also recommend that restorationists take care not to harm seed banks exposed during removal of introduced species; at Ramsey Canyon, soil seed banks were equally diverse in areas with high and low cover of the introduced Vinca major (a legacy of Ramsey Canyon land use).  相似文献   

3.
Stream restoration is often employed in efforts to stabilize eroding channel banks. Banks are stabilized through a designed channel approach, which involves grading and armoring of stream banks using heavy machinery, or alternatively through planting of seedlings and saplings to establish forested riparian buffers. We hypothesized that designed channel restoration would have detrimental impacts on riparian soils but that soils would recover over time, and we hypothesized that riparian buffer restoration would not impact riparian soils. We tested these hypotheses by comparing soil attributes (bulk density, soil organic matter, and root biomass) at reaches that had undergone designed channel and riparian buffer restoration in different years (project ages ranged from 2 to 16 years) to paired urban (unrestored) control reaches. Soil properties in sub‐surface soil layers (10–20 and 20–30 cm depth) at both recent (<10 years old) and older (>10 years old) designed channel reaches differed significantly from paired urban control soils; bulk density was higher and root biomass lower in manipulated reaches compared to urban control reaches. At many designed channel reaches, bulk density exceeded values known to restrict root growth. These results indicate that compaction and disturbance of riparian soils may be a significant unintended consequence of designed channel restoration and can persist for at least a decade. In contrast, we found no significant differences in soil properties between riparian buffer restoration reaches and urban control reaches. Thus, the results indicate that riparian buffer restoration is a more ecologically favorable method than designed channel restoration for bank stabilization.  相似文献   

4.
Since the start of European settlement in Ohio the landscape has been greatly modified to accommodate anthropogenic land uses. This, in turn, has altered the hydrologic characteristics of many streams from those that are stable channel systems in dynamic equilibrium to those of modified incised channels that are more characteristic of anthropogenic influences. As stream restoration practices gain importance and prevalence there is a need to prioritize project funds based on the restoration potential of a stream. Regional curves that relate channel-forming geometry to drainage area, and applications of channel-forming discharge concepts, are tools that are used in making restoration and management decisions. Regional curves are usually developed for unmodified natural streams and/or gaged river systems and not for small, ungaged modified channels that are common throughout agricultural areas or mixed use watersheds. This study focuses on the development and potential usefulness of regional curves and channel-forming discharge concepts for Mac-o-chee Creek, a small, ungaged headwater stream system in Ohio. Results show that these approaches and a weight of evidence analysis could be useful in providing information for management and restoration decisions on these small stream systems as well as aiding in the assessment and modeling of trends within these streams with dynamic hydrologic conditions due to changes in land use/land cover.  相似文献   

5.
6.
A combination of air‐photo interpretation, field data, and Geographic Information System (GIS) analysis was used to map riparian areas that are likely to provide wood and shade to small‐ and medium‐sized streams and where, conversely, restoration might be most beneficial. The analysis encompassed all salmonid‐bearing waters of the Nooksack River basin, in northwest Washington State, plus small tributaries that were thought to contribute wood or effective shading. The size and composition of each riparian stand was examined to determine whether trees were large enough to contribute logs that would form pools in the adjacent channel, with pool‐forming size of wood a function of channel width. Riparian stands were classified according to whether they passed this pool‐forming test. Model results were an exact match to actual conditions in 69% of field‐verified stands. A large proportion (74%) of the stands failing the test in reaches of anadromous fish use were in agricultural areas. Passing stands typically had high shade levels, because both stream shade and effective large woody debris size are a function of the size of the trees relative to the size of the stream. The GIS layer of passing and failing riparian stands can be combined with layers depicting property ownership, threatened fish distribution, and other information to objectively prioritize riparian restoration locations and strategies.  相似文献   

7.
Abstract River and stream rehabilitation projects are increasing in number, but the success or failure of these projects has rarely been evaluated, and the extent to which buffers can restore riparian and stream function and species composition is not well understood. In New Zealand the widespread conversion of forest to agricultural land has caused degradation of streams and riparian ecosystems. We assessed nine riparian buffer zone schemes in North Island, New Zealand that had been fenced and planted (age range from 2 to 24 years) and compared them with unbuffered control reaches upstream or nearby. Macroinvertebrate community composition was our prime indicator of water and habitat quality and ecological functioning, but we also assessed a range of physical and water quality variables within the stream and in the riparian zone. Generally, streams within buffer zones showed rapid improvements in visual water clarity and channel stability, but nutrient and fecal contamination responses were variable. Significant changes in macroinvertebrate communities toward “clean water” or native forest communities did not occur at most of the study sites. Improvement in invertebrate communities appeared to be most strongly linked to decreases in water temperature, suggesting that restoration of in‐stream communities would only be achieved after canopy closure, with long buffer lengths, and protection of headwater tributaries. Expectations of riparian restoration efforts should be tempered by (1) time scales and (2) spatial arrangement of planted reaches, either within a catchment or with consideration of their proximity to source areas of recolonists.  相似文献   

8.
1. Conservation planning is often hampered by the lack of causal quantitative links between landscape characteristics, restoration actions and habitat conditions that impact the status of imperilled species. Here we present a first step toward linking actions on the landscape to the population status of endangered stream‐type Chinook salmon (Oncorhynchus tshawytscha). 2. We developed relationships between land use, landscape characteristics and freshwater habitat of spring Chinook salmon in the Wenatchee River basin. Available data allowed us to find relationships that described water temperatures at several life stages (prespawning, egg incubation and summer rearing) and substratum characteristics, including fine sediments, cobble and embeddedness. Predictors included altitude, gradient, mean annual precipitation, total and riparian forest cover, road density, impervious surface and alluvium. We used a model averaging approach to account for parameter and model selection uncertainty. Key predictors were total forest cover and impervious surface area for prespawning and summer rearing temperatures; precipitation and stream gradients were important predictors of the percent of fine sediments in stream substrata. 3. We estimated habitat conditions using these relationships in three alternative landscape scenarios: historical, no restoration and one that included a set of restoration actions from local conservation planning. We found that prespawning and summer temperatures were estimated to be slightly higher historically relative to current conditions in dry sparsely forested areas, but lower in some important Chinook salmon spawning and rearing areas and lower in those locations under the restoration scenario. Fine sediments were lower in the historical scenario and were reduced as a consequence of restoration actions in two areas currently unoccupied by Chinook salmon that contain reaches with some potential for high quality spawning and rearing. Cobble and embeddedness in general were predicted to be higher historically and changed little as a result of restoration actions relative to current conditions. 4. This modelling framework converts suites of restoration actions into changes in habitat condition, thereby enabling restoration planners to evaluate alternative combinations of proposed actions. It also provides inputs to models linking habitat conditions to population status. This approach represents a first step in estimating impacts of restoration strategies, and can provide key information for conservation managers and planners.  相似文献   

9.
Restoring Stream Ecosystems: Lessons from a Midwestern State   总被引:3,自引:0,他引:3  
Reach‐scale stream restorations are becoming a common approach to repair degraded streams, but the effectiveness of these projects is rarely evaluated or reported. We surveyed governmental, private, and nonprofit organizations in the state of Indiana to determine the frequency and nature of reach‐scale stream restorations in this midwestern U.S. state. For 10 attempted restorations in Indiana, questionnaires and on‐site assessments were used to better evaluate current designs for restoring stream ecosystems. At each restoration site, habitat and water quality were evaluated in restored and unrestored reaches. Our surveys identified commonalities across all restorations, including the type of restoration, project goals, structures installed, and level of monitoring conducted. In general, most restorations were described as stream‐relocation projects that combined riparian and in‐stream enhancements. Fewer than half of the restorations conducted pre‐ or post‐restoration monitoring, and most monitoring involved evaluations of riparian vegetation rather than aquatic variables. On‐site assessments revealed that restored reaches had significantly lower stream widths and greater depths than did upstream unrestored reaches, but riparian canopy cover often was lower in restored than in unrestored reaches. This study provides basic information on midwestern restoration strategies, which is needed to identify strengths and weaknesses in current practices and to better inform future stream restorations.  相似文献   

10.
Many New Zealanders are planning and implementing riparian management, and riparian fencing and planting are now standard best practice tools for water quality and habitat restoration. New Zealand has a long history of action, with the first catchment riparian schemes and science dating back to the 1970s. As a result of this, there is now solid scientific evidence that demonstrates the value of a range of management actions including the following: riparian zones and buffers for livestock exclusion (fencing with or without planting), nutrient processing, shading small streams for temperature control, providing leaf and wood input to stream ecosystems, and enhancing fish and invertebrate habitat. In the last decade or so, on‐ground action has accelerated significantly with the introduction of dairy industry and government agreed targets. In 2015, 96% of dairy cows had been excluded from waterways >1 m wide and >30 cm deep on land that cows graze during the milking season providing impetus for on‐ground action to spread into other pastoral industries. Tools for planning, managing and implementing successful riparian restoration have proliferated, informed by on‐ground successes and failures. Despite this, there remain challenges for individuals or communities planning riparian restoration. Careful case‐by‐case assessment is recommended to ensure that plans match design to local landscape constraints and can realistically contribute to improved water quality or habitat outcomes.  相似文献   

11.
《新西兰生态学杂志》2011,33(2):177-189
Urban streams globally are characterised by degraded habitat conditions and low aquatic biodiversity, but are increasingly becoming the focus of restoration activities. We investigated habitat quality, ecological function, and fish and macroinvertebrate community composition of gully streams in Hamilton City, New Zealand, and compared these with a selection of periurban sites surrounded by rural land. A similar complement of fish species was found at urban and periurban sites, including two threatened species, with only one introduced fish widespread (Gambusia affinis). Stream macroinvertebrate community metrics indicated low ecological condition at most urban and periurban sites, but highlighted the presence of one high value urban site with a fauna dominated by sensitive taxa. Light-trapping around seepages in city gullies revealed the presence of several caddisfly species normally associated with native forest, suggesting that seepage habitats can provide important refugia for some aquatic insects in urban environments. Qualitative measures of stream habitat were not significantly different between urban and periurban sites, but urban streams had significantly lower hydraulic function and higher biogeochemical function than periurban streams. These functional differences are thought to reflect, respectively, (1) the combined effects of channel modification and stormwater hydrology, and (2) the influence of riparian vegetation providing shade and enhancing habitat in streams. Significant relationships between some macroinvertebrate community metrics and riparian vegetation buffering and bank protection suggest that riparian enhancement may have beneficial ecological outcomes in some urban streams. Other actions that may contribute to urban stream restoration goals include an integrated catchment approach to resolving fish passage issues, active reintroduction of wood to streams to enhance cover and habitat heterogeneity, and seeding of depauperate streams with native migratory fish to help initiate natural recolonisation.  相似文献   

12.
  • 1 This paper introduces the Lowland Streams Restoration Workshop that was held in Lund, Sweden in August 1991.
  • 2 Attenders at the Workshop participated in working groups which discussed and reported on the state of knowledge of stream restoration and identified critical areas of information need. Currently, most restoration efforts are emission-orientated (i.e. waste-water management), while the imitation of the geomorphology or of the riparian vegetation of a quasi-natural or natural reference channel receives less attention.
  • 3 Successful stream restoration requires a multidisciplinary approach within a holistic system framework. Monitoring the outcome of past, existing and future steam-restoration projects is required for information on the feasibility of alternative techniques and approaches.
  • 4 It was recommended that systems in pristine condition serve as a point of reference and not as a goal for most stream restoration projects. Restoration goals must be carefully defined so that everyone at every level understands the aim of the project. At the very least, all restoration programmes should consider geomorphic, hydrological, biological, aesthetic, and water quality aspects of the system.
  • 5 Restoration programmes should aim to create a system with a stable channel, or a channel in dynamic equilibrium that supports a self-sustaining and functionally diverse community assemblage; it should not concentrate on one species or group, except at the local level. Preserving the terrestrial -aquatic interface by setting aside riparian land corridors is critical to all stages of restoration. Additional information on the temporal and regional variability in important system processes and functions is needed.
  相似文献   

13.
1. Tallgrass prairies and their streams are highly endangered ecosystems, and many remaining streams are threatened by the encroachment of woody riparian vegetation. An increase in riparian vegetation converts the naturally open‐canopy prairie streams to closed‐canopy systems. The effects of a change in canopy cover on stream metabolism are unknown. 2. Our goal was to determine the effects of canopy cover on prairie stream metabolism during a 4‐year period in Kings Creek, KS, U.S.A. Metabolic rates from forested reaches were compared to rates in naturally open‐canopy reaches and restoration reaches, the latter having closed canopies in 2006 and 2007 and open canopies in 2008 and 2009. Whole‐stream metabolism was estimated using the two‐station diurnal method. Chlorophyll a concentrations and mass of filamentous algae were measured after riparian removal to assess potential differences in algal biomass between reaches with open or closed canopies. 3. Metabolic rates were spatially and temporally variable even though the sites were on very similar streams or adjacent to each other within streams. Before riparian vegetation removal, whole‐stream community respiration (CR) and net ecosystem production were greater with greater canopy cover. In the vegetation removal reaches, gross primary production was slightly greater after removal. 4. Chlorophyll a concentrations were marginally significantly greater in open (naturally open and removal reaches) than in closed canopy and differed significantly between seasons. Filamentous algal biomass was greater in open than in closed‐canopy reaches. 5. Overall, the restoration allowed recovery of some features of open‐canopy prairie streams. Woody expansion apparently increases CR and moves prairie stream metabolism towards a more net heterotrophic state. An increase in canopy cover decreases benthic chlorophyll, decreases dominance of filamentous algae and potentially alters resources available to the stream food web. The results of this study provide insights for land managers and conservationists interested in preserving prairie streams in their native open‐canopy state.  相似文献   

14.
Conservation and restoration of riparian vegetation in agricultural landscapes has had mixed success at protecting in‐stream habitat, potentially due to the mismatch between watershed‐scale impacts and reach‐scale restoration. Prioritizing contiguous placement of small‐scale restoration interventions may effectively create larger‐scale restoration projects and improve ecological outcomes. We performed a multi‐site field study to evaluate whether greater linear length of narrow riparian tree corridors resulted in measurable benefits to in‐stream condition. We collected data at 41 sites with varying upstream tree cover nested within 13 groups in rangeland streams in coastal northern California, United States. We evaluated the effect of riparian tree corridor length on benthic macroinvertebrate communities, as well as food resources, water temperature, and substrate size. Sites with longer riparian corridors had higher percentages of invertebrates sensitive to disturbance (including clingers and EPT taxa) as well as lower water temperatures and less fine sediment, two of the most important aquatic stressors. Despite marked improvement, we found no evidence that macroinvertebrate communities fully recovered, suggesting that land use continued to constrain conditions. The restoration of long riparian corridors may be an economically viable and rapidly implementable technique to improve habitat, control sediment, and counter increasing water temperatures expected with climate change within the context of ongoing land use.  相似文献   

15.
The severe loss or degradation of riparian habitats has led to their impoverishment and impaired function, which may have severe consequences on both the riparian habitats themselves and their associated biota, including mammalian carnivores. We selected 70 riparian habitat reaches to evaluate the condition of the riparian habitats in southern Portugal and their use by carnivores. These sites were assessed for riparian condition using the stream visual assessment protocol (SVAP) and surveyed for carnivore presence along the riparian zones and across the surrounding matrix landscape, both in the wet (winter) and the dry (summer) season. Results show that carnivore surveys adjacent to riparian habitats consistently had significantly higher species richness than the matrix habitats, in both sampling seasons. Carnivore relative abundance and relative abundance of stone marten, common genet and Egyptian mongoose also showed higher values in riparian habitats, with significant differences in at least one season. The Eurasian badger, on the other hand, showed higher relative abundance values in the landscape matrix, though differences were not significant. The SVAP index ranked about 83% riparian reaches as poor or fair condition, and species richness was significantly higher in fair condition reaches during the wet season. These results reflect the importance of riparian habitats in Mediterranean ecosystems for mammalian carnivores. However, the generalized poor condition of these habitats suggests that direct measures for riparian restoration could be appropriate. The preservation or improvement of riparian habitats would certainly benefit the mammalian carnivore populations and consequently their conservation.  相似文献   

16.
Riparian treatments, consisting of 3‐ to 4‐m buffer strips, stream bank stabilization, and rock‐lined stream crossings, were installed in two streams with livestock grazing to reduce sediment loading and stream bank erosion. Cedar Run and Slab Cabin Run, the treatment streams, and Spring Creek, an adjacent reference stream without riparian grazing, were monitored prior to (1991–1992) and 3–5 years after (2001–2003) riparian buffer installation to assess channel morphology, stream substrate composition, suspended sediments, and macroinvertebrate communities. Few changes were found in channel widths and depths, but channel‐structuring flow events were rare in the drought period after restoration. Stream bank vegetation increased from 50% or less to 100% in nearly all formerly grazed riparian buffers. The proportion of fine sediments in stream substrates decreased in Cedar Run but not in Slab Cabin Run. After riparian treatments, suspended sediments during base flow and storm flow decreased 47–87% in both streams. Macroinvertebrate diversity did not improve after restoration in either treated stream. Relative to Spring Creek, macroinvertebrate densities increased in both treated streams by the end of the posttreatment sampling period. Despite drought conditions that may have altered physical and biological effects of riparian treatments, goals of the riparian restoration to minimize erosion and sedimentation were met. A relatively narrow grass buffer along 2.4 km of each stream was effective in improving water quality, stream substrates, and some biological metrics.  相似文献   

17.
1. Riparian vegetation in dry regions is influenced by low‐flow and high‐flow components of the surface and groundwater flow regimes. The duration of no‐flow periods in the surface stream controls vegetation structure along the low‐flow channel, while depth, magnitude and rate of groundwater decline influence phreatophytic vegetation in the floodplain. Flood flows influence vegetation along channels and floodplains by increasing water availability and by creating ecosystem disturbance. 2. On reference rivers in Arizona's Sonoran Desert region, the combination of perennial stream flows, shallow groundwater in the riparian (stream) aquifer, and frequent flooding results in high plant species diversity and landscape heterogeneity and an abundance of pioneer wetland plant species in the floodplain. Vegetation changes on hydrologically altered river reaches are varied, given the great extent of flow regime changes ranging from stream and aquifer dewatering on reaches affected by stream diversion and groundwater pumping to altered timing, frequency, and magnitude of flood flows on reaches downstream of flow‐regulating dams. 3. As stream flows become more intermittent, diversity and cover of herbaceous species along the low‐flow channel decline. As groundwater deepens, diversity of riparian plant species (particularly perennial species) and landscape patches are reduced and species composition in the floodplain shifts from wetland pioneer trees (Populus, Salix) to more drought‐tolerant shrub species including Tamarix (introduced) and Bebbia. 4. On impounded rivers, changes in flood timing can simplify landscape patch structure and shift species composition from mixed forests composed of Populus and Salix, which have narrow regeneration windows, to the more reproductively opportunistic Tamarix. If flows are not diverted, suppression of flooding can result in increased density of riparian vegetation, leading in some cases to very high abundance of Tamarix patches. Coarsening of sediments in river reaches below dams, associated with sediment retention in reservoirs, contributes to reduced cover and richness of herbaceous vegetation by reducing water and nutrient‐holding capacity of soils. 5. These changes have implications for river restoration. They suggest that patch diversity, riparian plant species diversity, and abundance of flood‐dependent wetland tree species such as Populus and Salix can be increased by restoring fluvial dynamics on flood‐suppressed rivers and by increasing water availability in rivers subject to water diversion or withdrawal. On impounded rivers, restoration of plant species diversity also may hinge on restoration of sediment transport. 6. Determining the causes of vegetation change is critical for determining riparian restoration strategies. Of the many riparian restoration efforts underway in south‐western United States, some focus on re‐establishing hydrogeomorphic processes by restoring appropriate flows of surface water, groundwater and sediment, while many others focus on manipulating vegetation structure by planting trees (e.g. Populus) or removing trees (e.g. Tamarix). The latter approaches, in and of themselves, may not yield desired restoration outcomes if the tree species are indicators, rather than prime causes, of underlying changes in the physical environment.  相似文献   

18.
1. Land‐use studies are challenging because of the difficulty of finding catchments that can be used as replicates and because land‐use effects may be obscured by sources of variance acting over spatial scales smaller than the catchment. To determine the extent to which land‐use effects on stream ecosystems are scale dependent, we designed a whole‐catchment study of six matched pairs (pasture versus native tussock) of second‐order stream catchments, taking replicate samples from replicate bedforms (pools and riffles) in each stream. 2. Pasture streams had a smaller representation of endemic riparian plant species, particularly tussock grasses, higher bank erosion, a somewhat deeper layer of fine sediment, lower water velocities in riffles, less moss cover and higher macroinvertebrate biodiversity. At the bedform scale, suspendable inorganic sediment (SIS) was higher in pools than riffles and in pasture streams there was a negative relationship between SIS and the percentage of the bed free of overhanging vegetation. Differences between stream reaches (including any interactions between land use and stream pair) were significant for SIS, substrate depth and characteristics of riparian vegetation. There were also significant differences between replicate bedforms in the same stream reaches in percentage exotic species in overhanging vegetation, percentage moss cover, QMCI (Quantitative Macroinvertebrate Community Index – a macroinvertebrate‐based stream health index) and macroinvertebrate density. 3. Significant differences among stream reaches and among replicate bedform units within the same reach, as well as interactions between these spatial units and land‐use effects, are neither trivial nor ‘noise’ but represent real differences among spatial units that typically are unaccounted for in stream studies. Our multi‐scale study design, accompanied by an investigation of the explanatory power of different factors operating at different scales, provides an improved understanding of variability in nature.  相似文献   

19.
This study investigated the consequences of passive ecological restoration on a riparian habitat and on water quality. The restoration plan consists of excluding livestock by constructing fences along an entire stream 1 m from the stream bed, with the assumption that recovering riparian habitat will restore their ecological processes (e.g., filtration, soil stabilization). We measured responses of riparian plant communities and physico-chemical water quality. We presented data from an 8-year before-after control-impact design across a reference stream and a restored stream in a rural landscape in Normandy, France. Restoration appeared to modify plant communities. After 8 years of restoration, the restored stream had a complex riparian bank, similar to that of the reference stream, with an increase in the number of trees, a decrease in bare soil, and an increase in habitat heterogeneity. Despite this modification, water quality did not improve. The same low water quality in the reference stream demonstrated the need for a watershed-scale approach and for actions to improve agricultural practices before implementing restoration practices at a smaller scale. Nonetheless, the lack of improved water quality does not necessarily mean that the restoration failed. Other functions and services can be provided by excluding livestock.  相似文献   

20.
The radiation environment of streams is of major ecological importance because it controls stream thermal regime and light availability for photosynthesis. Therefore, methods are needed for measuring stream shade in practical riparian management. The quantity ‘diffuse non-interceptance’ (difn), defined as the proportion of incident lighting received under a sky of uniform brightness and best estimated from fish-eye images, is useful for general specification of light exposure. For routine measurement of difn along stream reaches we recommend using a matched pair of simple light sensors (e.g. photosynthetically available radiation sensors) under conditions of complete overcast (which has almost uniform brightness). Methods are also needed for predicting future light exposure as riparian plantings grow and increasingly shade the stream. A simple model is outlined for predicting difn at the channel centre as a function of channel dimensions (stream width, w) and riparian plant character (foliage density, canopy height, h). The model reproduces the broad empirical trend of increasing shade with increasing h/w ratio. Future model refinement will aim to quantify the increase in shade moving from channel centre to edge under an overhanging canopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号