首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Innervation of the heart muscle by the cardioacceleratory neurons was morphologically and electrophysiologically examined in the isopod crustacean, Ligia exotica. Intracellular injection of neurobiotin into the first and second cardioacceleratory neurons (CA1 and CA2) revealed their peripheral axonal projections. Inside the heart, the CA1 and CA2 axons ran along the trunk of the cardiac ganglion. Finely arborized branches with many varicosities arose from the axon and projected over the heart muscle. Stimulation of either the CA1 or CA2 axon caused an overall depolarization in the muscle of a quiescent heart. The amplitude of the depolarization increased with increasing stimulus frequency. During stimulation, the membrane resistance of the heart muscle decreased. In a beating heart, the cardioacceleratory nerve stimulation caused multiple effects on the heart muscle activity and the heartbeat. The results suggest that the cardioacceleratory neurons of Ligia exotica regulate the amplitude of the heartbeat (inotropic effect) and the heart tonus (tonotropic effect) via the synaptic contacts on the heart muscle, while the heartbeat frequency (chronotropic effect) is regulated via the synapses on the cardiac ganglion neurons.  相似文献   

2.
We identified two pairs of cardioacceleratory (CA1, CA2) neurons in the central nervous system of the isopod Ligiaexotica and examined their effects on the cardiac ganglion (CG). CA1 neurons had cell bodies in the 2nd thoracic ganglion and had arborizations in the subesophageal ganglion and the 1st and 2nd thoracic ganglia. CA2 neurons had cell bodies in the 3rd thoracic ganglion and had arborizations in the 2nd, 3rd and 4th thoracic ganglia. They sent axons to the heart through the ipsilateral 3rd roots of the ganglia where their cell bodies were located. Repetitive stimulation of the CA1 axon rapidly increased the burst frequency of the CG, and that of CA2 rather slowly. The increased burst rate caused by the CA1 stimulation was significantly higher than that caused by CA2. Overall depolarization of a quiescent CG cell produced by the CA1 stimulation was significantly larger in amplitude than that produced by CA2. Facilitation was obviously seen in the excitatory post-synaptic potentials evoked by the CA1 stimulation. These results show that the synaptic properties of CA1 and CA2 neurons are different, suggesting that they have different functional roles in heart regulation. Accepted: 19 July 1997  相似文献   

3.
The pacemaker neurons of the heart ganglion are innervated from the CNS through two pairs of acceleratory nerves. The effect of acceleratory nerve stimulation was examined with intracellular electrodes from the pacemaker cells. The major effects on the pacemaker potential were an increase in the rate of rise of the spontaneous depolarization and in the duration of the plateau. The aftereffect of stimulation could last for minutes. No clear excitatory postsynaptic potential (EPSP) was observed, however. On high frequency stimulation, a small depolarizing response (the initial response) was sometimes observed, but the major postsynaptic event was the following slow depolarization, or the enhancement of the pacemaker potential (the late response). With hyperpolarization the initial response did not significantly change its amplitude, but the late response disappeared, showing that the latter has the property of the local response. The membrane conductance did not increase with acceleratory stimulation. The injection of depolarizing current increased the rate of rise of the spontaneous depolarization, but only slightly in comparison with acceleratory stimulation, and did not increase the burst duration. It is concluded that the acceleratory effect is not mediated by the EPSP but is due to a direct action of the transmitter on the pacemaker membrane.  相似文献   

4.
The objective of this study was to locate nerves arising from the CNS that have a cardioregulatory function in the tarantula, Eurypelma marxi Simon. Ramifications of the paired abdominal nerve VIIIb merge with the cardiac ganglion within the first heart segment. Electrical stimulation of the branches of nerve VIIIb that connect with the cardiac ganglion produce changes in heartbeat rate and amplitude. Nerve cutting experiments indicate that no other cardioregulatory nerves are present. Both increases and decreases in heart activity can be produced upon electrical stimulation of nerve VIIIb on each side of the heart. Only one action potential associated with the response of each type could be recorded in each member of the nerve pair. Therefore, we conclude that there are two inhibitory and two acceleratory neurons that arise in the central nervous system to modulate heartbeat activity. The inhibitory effect becomes maximal at a stimulation frequency of 20-30 Hz and the accelerator effect at 30-40 Hz. The aftereffect of acceleratory nerve activity exceeds that of inhibitory nerve activity. When the inhibitor and accelerator are activated simultaneously, the inhibitor dominates. The regulatory nerves interact with neurons in the cardiac ganglion. During inhibition, the number of externally recorded spikes in each ganglionic burst is decreased. The rate and magnitude of the heartbeat are decreased concomitantly. Stimulation of the accelerator enhances electrical activity in the cardiac ganglion at the same time that the heartbeat rate and amplitude are increased.  相似文献   

5.
The acceleratory and inhibitory cardio-regulatory nerves of hermit crabs (Aniculus aniculus, Dardanus crassimanus) were studied using histochemical, immunocytochemical and pharmacological tests. Glyoxylic acid-induced fluorescence was observed in two of three axons of the dorsal cardiac nerve. One axon of the nerve showed gamma-aminobutyric acid-like immunoreactivity. Effects of stimulation of cardio-acceleratory axons were blocked by the dopaminergic antagonists, haloperidol and chlorpromazine, but not by cholinergic, adrenergic or serotonergic blockers, suggesting that dopamine is the primary potential candidate for the neurotransmitter of cardio-accelerator neurons. Picrotoxin antagonized inhibition of the cardiac ganglion induced by gammaam-inobutyric acid and by cardio-inhibitory axons. Both small and large ganglionic cells may receive dopaminergic and GABAergic extrinsic neural control.Abbreviations ACh acetylcholine - CA cardio-accelerator - CA1 and CA2 first and second cardio-accelerators - CI cardio-inhibitor - EJP excitatory junction potential - GABA gamma-aminobutyric acid - EPSP excitatory postsynaptic potential - IPSP inhibitory postsynaptic potential - LGC large ganglionic cell - SGC small ganglionic cell - 5-HT serotonin  相似文献   

6.
Summary The heart of the nudibranch mollusc Archidoris montereyensis is regulated by a small number of powerful effector neurons located in the right pleural and visceral ganglia. Two identifiable neurons in the pleural ganglion, a heart excitor (plHE) and a heart inhibitor (PlHI), are especially important regulators of cardiac function in that low levels of spontaneous activity in either cell significantly alters the amplitude and rate of heart contractions. These neurons have extensive dendritic arbors within the right pleural ganglion and branching axonal processes within the visceral ganglion. The visceral ganglion also contains a heart excitor neuron (VHE) and at least two heart inhibitor neurons (VHI cells), but their influence on cardiac activity is weaker than that of the pleural ganglion cells. All of these heart effector cells appear to be motor neurons with axons that terminate predominately in the atrio-ventricular valve region of the heart via the pericardial nerve. The simplicity and strength of these neuronal connections to the heart of Archidoris make this a favorable preparation for studies of cardiac regulation.Abbreviations Pl HE pleural ganglion heart excitor neuron - Pl HI pleural heart inhibitor neuron - V HE visceral ganglion heart excitor neuron - V HI cells, visceral heart inhibitor neurons - V K visceral kidney excitor neuron - V G visceral gill excitor neuron  相似文献   

7.
A brief high-frequency stimulation of the anal nerve of the isolated nerve ring of snail Helix induced a pronounced increase in the amplitude of EPSPs, evoked in identified neurons of left parietal and visceral ganglions by low frequency (once in 5 min) stimulation of the same nerve. The amplitude of EPSP returned to the control level 30-120 min after tetanization. We called this effect long-term potentiation. A brief application of serotonin (10 microM) in the majority of neurons also induced lasting either 15-30 min or more than 2 hours facilitation of EPSP, evoked by anal nerve stimulation. Intracellular cAMP injections, being without effect on EPSP amplitude in many neurons, in certain neurons caused an increase in EPSP amplitude, lasting up to 30 min. It is suggested that the 3 factors shown to increase synaptic efficiency in molluscan neurons may have common mechanisms of action.  相似文献   

8.
We investigated the excitatory and inhibitory input to cardioaccelerator (CA) and cardioinhibitor (CI) neurons located in the thoracic ganglia of the isopod crustacean Bathynomus doederleini by extracellular and intracellular recording. Electrical stimuli applied to the anterior and posterior connectives of single-ganglion preparations, containing either the 2nd or 3rd thoracic ganglion alone, and each of three paired ganglionic nerve roots produced excitatory postsynaptic potentials (EPSPs) in the cell body of a CA neuron. Artificial movements of appendages, such as the thoracic limbs and the swimmerets, also evoked EPSPs in the CA neuron. Electrical stimuli applied to the peripheral nerves running to appendages induced inhibitory postsynaptic potentials (IPSPs) in a CI neuron. Since artificial movements of the appendages caused decrease of CI impulse rate, these IPSPs in the CI neuron may be caused by mechanoproprioceptors in the appendages. Since tachycardia was accompanied by excitation of CA neurons and inhibition of CI neurons, activation of the mechanoproprioceptors may be responsible for tachycardia. EPSPs in CA neurons produced by stimulation of peripheral nerves were augumented by eserinization and blocked by curarization. The activation of CA neurons by ganglionic roots may be mediated by cholinergic processes ascending from mechanoproprioceptors.  相似文献   

9.
In isolated strips of canine mesenteric vein prostacyclin (PGI2) causes a dose-dependent depression of the amplitude of the spontaneous rhythmic contractions without influencing their frequency. This suggests that prostacyclin affects the events leading from the depolarization of the smoole muscle cells to their contractions, rather than the induction of the myogenic activity itself. Furthermore, prostacyclin reduces the noradrenaline-induced contraction of the canine saphenous vein without affecting the electrically induced responses, suggesting a possible dual effect of the drug: at the smooth muscle it causes depression of the responsiveness to noradrenaline whereas at the adrenergic nerve endings it enhances the evoked release of the adrenergic transmitter.  相似文献   

10.
Summary Involvement of neuropeptides in the regulation of cardiac activity in a prosobranch mollusc, Rapana thomasiana, was studied physiologically as well as immunohistochemically. A catch-relaxing peptide (CARP) showed strong inhibitory effects on the heart with a lower threshold than acetylcholine. The action of CARP was in contrast to that of another neuropeptide, FMRFamide, which has previously been shown to enhance the heart beat. Benzoquinonium blocked the effects of acetylcholine and stimulation of right cardiac nerves 1 and 3b, but not those of CARP, suggesting that the effects of nerve stimulation are mainly due to the release of acetylcholine. Immunohistochemical examinations demonstrated that FMRFamide-like and CARP-like immunoreactive neurons are distributed in the visceral ganglia. Although a neuron appeared to show weak immunoreactivity to both antisera, evidence for the coexistence of peptides in a single neuron was not exhibited. Positive immunoreactivity to FMRFamide and CARP antisera also appeared in right cardiac nerves 1 and 3. In the heart, FMRFamide- and CARP-like immunoreactive fibers were restricted to the atrium and the aortic end of the ventricle, consistent with the morphological observation of innervation. The present results suggest that FMRFamide- and CARP-like peptides are involved in regulating the heart beat.  相似文献   

11.
Modulation of the Aplysia gill withdrawal reflex by dopamine   总被引:2,自引:0,他引:2  
The ability of dopamine to modulate gill contractions was tested in Aplysia. When dopamine was perfused through the gill vasculature, gill contractions caused by siphon stimulation (gill withdrawal reflex) and by depolarization of the gill motor neuron L7 were increased in amplitude, as compared with those evoked during seawater perfusion. Habituation of gill movements, brought about by repetitive stimulation of the siphon or of L7, was prevented by dopamine. Despite the absence of reflex habituation, the number of action potentials in central gill motor neurons, evoked by siphon stimulation, showed normal decrement. Dopamine's effects were blocked when the ctenidial nerve was cut or when L7 hyperpolarized. These data suggest that dopamine acts peripherally to increase the efficacy of L7's synaptic transmission onto gill muscle or elements of the gill neural plexus.  相似文献   

12.
In isolated strips of canine mesenteric vein prostacyclin (PGI2) causes a dose-dependent depression of the amplitude of the spontaneous rhythmic contractions without influencing their frequency. This suggests that prostacyclin affects the events leading from the depolarization of the smooth muscle cells to their contractions, rather than the induction of the myogenic activity itself. Furthermore, prostacyclin reduces the noradrenaline-induced contraction of the canine saphenous vein without affecting the electrically induced responses, suggesting a possible dual effect of the drug: at the smooth muscle it causes depression of the responsiveness to noradrenaline whereas at the adrenergic nerve endings it enhances the evoked release of the adrenergic transmitter.  相似文献   

13.
As lobsters grow from early juveniles to adults their body size increases more than 20-fold, raising the question of how function is maintained during these ongoing changes in size. To address this question we studied the pyloric 1 (p1) muscle of the stomach of the lobster, Homarus americanus. The p1 muscle receives multiterminal innervation from one motor neuron, the lateral pyloric neuron of the stomatogastric ganglion. Staining with antibodies raised against synaptotagmin showed that as the muscle fibers increased in length, the spacing between the terminal innervation increased proportionally, so the number of synaptic contact regions/muscle fiber did not change. Muscle fibers were electrically coupled in both juveniles and adults. The amplitude of single intracellularly recorded excitatory junctional potentials evoked by motor nerve stimulation was the same in both juveniles and adults. Nonetheless, the peak depolarizations reached in response to ongoing pyloric rhythm activity or in response to high-frequency trains of stimuli similar to those produced during the pyloric rhythm were approximately twofold larger in juveniles than in adults. This suggests that homeostatic regulation of synaptic connections may operate at the level of the amplitude of the single synaptic potential rather than on the summed depolarization evoked during strong rhythmic activity.  相似文献   

14.
The frontal ganglion of the silkworm (Bombyx mori) gives rise to a visceral nerve, branches of which include a pair of anterior cardiac nerves and a pair of the posterior cardiac nerves. Forward-fill of the visceral nerve with dextran labeled with tetramethyl rhodamine shows the anterior cardiac nerves innervate the anterior region of the dorsal vessel. Back-fill of the anterior cardiac nerves with Co2+ and Ni2+ ions and the fluorescent dye reveals that the cell bodies of two motor neurons are located in the frontal ganglion. Injection of 5, 6-carboxyfluorescein into the cell body of an identified motor neuron shows that the neuron gives rise to an axon running to the visceral nerve. Unitary excitatory junctional potentials (EJPs) were recorded from a myocardial cell at the anterior end of the heart. They responded in a one-to-one manner to electrical stimuli applied to the visceral nerve, or to impulses generated by a depolarizing current injected into the cell body. EJPs induced by stimuli at higher than 0.5 Hz showed facilitation while those induced at higher than 2 Hz showed summation. Individual EJPs without summation, or a train of EJPs with summation, caused acceleration in the phase of posterograde heartbeat and heart reversal from anterograde heartbeat to posterograde heartbeat. It is likely that the innervation of the anterior region of the dorsal vessel by the motor neurons, through the anterior cardiac nerves is responsible for the control of heartbeat in Lepidoptera, at least in part.  相似文献   

15.
Summary The electrical activity of the heart nerve and of single neurons in the suboesophageal ganglia were recorded during tactile stimulation of the heart. 15 neurons were identified which responded to heart stimulation by inhibiting or accelerating activity. Cells influenced by heart afferents are scattered in the visceral and in the right and left parietal ganglia.In most of the cases both decrease and increase of cell activity are caused by synaptic potentials, in some cases, however, the neuron is assumed to have a sensory character.The activity of three neurons influenced by heart stimulation was conducted into the heart nerve. These cells are central neurons of a heart-CNS-heart reflex.Some of the neurons located in the right parietal and visceral ganglia have no connection with the mechanoreceptors of the heart. Since their spikes propagate into the heart nerve, they probably take part in the extracardial regulation of heart activity.One of the neurons located in the visceral ganglion (cell V12) sends its axon into the heart nerve. The response of this neuron to heart stimulation was an increase in activity and an inhibition of the heart rate. This is an inhibitory neuron of the extracardial heart regulatory system.  相似文献   

16.
Control of the alary muscles of locust dorsal diaphragm   总被引:1,自引:0,他引:1  
ABSTRACT. The heartbeat in whole, intact, adult Locusta migratoria R.F. was characterized by a regular rate but apparently irregular amplitude. Cutting segmental nerves often eliminated apparent amplitude fluctuations, and electrically shocking a segmental nerve in the whole animal evoked apparent amplitude changes corresponding to the shocks. Saline-perfused tissue preparations showed that the apparent amplitude fluctuations could be duplicated by segmental nerve stimulation, and that the fluctuations were due largely to contractions of the alary muscles of the dorsal diaphragm which shifted the position of the heart chamber without a change in volume. The alary muscles are each multi-terminally innervated by one motor axon. Neurally-evoked postsynaptic potentials facilitated and summated, and the diaphragm muscles began visibly contracting at stimulation rates as low as 2 Hz. Stimulation at higher frequencies caused greater depolarization of the muscle fibres with no indication of electrically-excited responses. The alary muscles were insensitive to perfusion with acetylcholine, l -glutamate, l -aspartate, dopamine, octopamine, noradrenaline, proctolin, 5-hydroxytryptamine, or gamma aminobutyric-acid in saline at concentrations up to 10-3M. Larval or adult brain extracts of Locusta at 10 μg/μl and diluted 1:5 in saline caused uniform contractions of the alary muscle preparation, while perfusion of skeletal muscle extracts produced no response.  相似文献   

17.
The effects of serotonin on the electrical properties of swim-gating neurons (cell 204) were examined in leech (Hirudo medicinalis) nerve cords. Exposure to serotonin decreased the threshold current required to elicit swim episodes by prolonged depolarization of an individual cell 204 in isolated nerve cords. This effect was correlated with a more rapid depolarization and an increased impulse frequency of cell 204 in the first second of stimulation. In normal leech saline, brief depolarizing current pulses (1 s) injected into cell 204 failed to elicit swim episodes. Following exposure to serotonin, however, identical pulses consistently evoked swim episodes. Thus, serotonin appears to transform cell 204 from a gating to a trigger cell.Serotonin had little effect on the steady-state currentvoltage relation of cell 204. However, serotonin altered the membrane potential trajectories in response to injected current pulses and increased the amplitude of rebound responses occurring at the offset of current pulses. These changes suggest that serotonin modulates one or more voltage dependent conductances in cell 204, resulting in a more rapid depolarization and greater firing rate in response to injected currents. Thus, modulation of intrinsic ionic conductances in cell 204 may account in part for the increased probability of swimming behavior induced by serotonin in intact leeches.Abbreviations AHP afterhyperpolarizing potential - DCC discontinuous current clamp - DP dorsal posterior nerve - G2 segmental ganglion 2 - PIR postinhibitory rebound - RMP resting membrane potential  相似文献   

18.
The mechanisms of cardiac activity inhibition caused by stimulation of the stellate ganglion were studied in acute experiments on 28 dogs and 37 cats and chronic experiments on 12 cats. It was shown that inhibition of cardiac activity is caused by stimulation of the parasympathetic fibers of the vagus, anastomozing with stellate ganglion branches and ingoing as part of these fibers to the heart. The hypothesis of change over of the sympathetic nerve fibers to the intracardial cholinergic neurons and the hypothesis of the cholinergic component in the mechanism of catecholamine release by the sympathetic nerve terminals was not confirmed. Therefore, the known Dale's principle as to that one neuron exerts its efferent effect with the aid of one transmitter is quite just. alpha-Adrenoreceptors does not produce any noticeable effect on cardiac activity.  相似文献   

19.
1. Leydig neurons fire spontaneously at low rates (less than 4 Hz), but their activity increases with mechanical stimulation or electrical stimulation of mechanosensory neurons. These conditions also cause acceleration of bursting in heart motor neurons. 2. The firing rate of Leydig cells was found to regulate heart rate in chains of isolated ganglia. When Leydig neurons were made to fire action potentials at relatively high frequencies (ca. 5-10 Hz), however, heart motor neurons ceased bursting and were either silenced or fired erratically. 3. Firing of Leydig neurons at high rates caused bilateral heart interneurons of ganglia 3 or 4 to fire tonically rather than in their normal alternating bursts Tonic firing of these heart interneurons accounts for the prolonged barrages of ipsps recorded in heart motor neurons and the disruption of their normal cyclic activity. 4. Preventing spontaneous activity of Leydig neurons with injected currents in isolated ganglia caused deceleration of the heartbeat rhythm but did not halt oscillation. 5. Electrical stimulation of peripheral nerve roots with Leydig neuron activity suppressed in isolated ganglia caused acceleration of heart rate.  相似文献   

20.
Kong DH  Wang G  Wang HM  Ke DP  Hu JL  Zhu Y  Huang ZX 《生理学报》2003,55(4):388-394
应用细胞内记录技术,对铃蟾肽(bombesin,BOM)在豚鼠离体肠系膜下神经节(inferior mesenteric ganglion,IMG)非胆碱能兴奋性突触传递中的作用进行了研究。重复电刺激突触前结肠神经,有74.3%(52/70)IMG细胞可诱发迟慢兴奋性突触后电位(ls-EPSP)。在可引出ls-EPSP的细胞中,22%(4/18)细胞同时对BOM和SP敏感。用BOM持续灌流IMG,可明显抑制对BOM敏感细胞的ls-EPSP,对BOM不敏感细胞的ls-EPSP则无影响,且BOM受体与SP受体间无交叉脱敏。BOM受体阻断剂tyr^4[D-phe^12]bombesin能明显可逆性地抑制BOM敏感细胞的ls-EPSP和去极化,但对BOM不敏感细胞则无影响。研究结果提示,BOM可能是介导豚鼠IMG细胞ls-EPSP的一种递质。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号