首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
The evolution of virulence was studied in a virus subjected to alternating episodes of vertical and horizontal transmission. Bacteriophage f1 was used as the parasite because it establishes a debilitating but non-fatal infection that can be transmitted vertically (from a host to its progeny) as well as horizontally (infection of new hosts). Horizontal transmission was required of all phage at specific intervals, but was prevented otherwise. Each episode of horizontal transmission was followed by an interval of obligate vertical transmission, followed by an interval of obligate horizontal transmission etc. The duration of vertical transmission was eight times longer per episode in one treatment than in the other, thus varying the relative intensity of selection against virulence while maintaining selection for some level of virus production. Viral lines with the higher enforced rate of infectious transmission evolved higher virulence and higher rates of virus production. These results support the trade-off model for the evolution of virulence.  相似文献   

3.
The planthopper-borne rough dwarf virus disease manifests itself on maize plants in two different groups of symptoms presumably caused by two distinct strains of the virus. The severe, dwarfing strain is transmitted to maize plants only by Laodelphax striatellus and Javesella pellucida. The milder, non-dwarfing strain is transmissible by two additional delphacid species, namely Delphacodes propinqua and Sogatella vibix, which are unable to provoke the dwarfing-strain syndrome on maize test plants. However, when the dwarfing strain was injected into the haemocoel of these two non-vectors, the virus, upon replication and circulation in this unnatural medium, was modified into a novel strain inducing hermaphroditism in the vector-inoculated maize test plant.Modification of the dwarfing strain into the non-dwarfing one also occurs in the body of the natural vector (L. striatellus) when the insect acquires the former strain in an imperfect manner. This happens when the vector feeds on infected maize which is an unsuitable host species for this planthopper, or when the virus is acquired by trans-ovum transmission. All above-mentioned modifications are irreversible.
Zusammenfassung Die durch Langkopfzirpen übertragene Rauhverzwergungsvirose zeigt sich auf Maispflanzen in zwei verschiedenen Symptomgruppen, die vermutlich durch zwei getrennte Virusstämme verursacht werden. Der schwere, Verzwergung erregende Stamm wird auf die Maispflanzen nur durch Laodelphax striatellus und Javesella pellucida übertragen. Der mildere, nicht Verzwergung erregende Stamm ist auch durch zwei andere Langkopfzirpenarten (Del phacodes propinqua und Sogatella vibix) übertragbar, die aber unfähig sind, das Verzwergungssyndrom an Maistestpflanzen hervorzurufen. Jedoch, wenn der Verzwergungsstamm in das Haemocoel dieser zwei Nichtüberträger injiziert wurde, modifizierte das Virus infolge der Vermehrung und Zirkulation in diesem unnatürlichen Medium der Zirpenkörper in einen neuen Stamm. Dieser neue, vorher nicht vorhandene Stamm führte Hermaphroditismus in die vektor-geimpfte Maistestpflanze ein.Modifikation des Verzwergungsstammes in einen nicht Verzwergung erregenden Stamm kommt auch im Körper des natürlichen Vektors (L. striatellus) vor, wenn dieser Überträger den erstgenannten Stamm auf unvollkommene Weise aufnimmt. Dies geschieht, wenn der Vektor auf infiziertem Mais saugt, der eine ungeeignete Wirtsart für diese Zirpe ist, oder wenn das Virus durch eine transovum-Übertragung von der Mutterzirpe auf ihre Nachkommen aufgenommen wurde. All diese genannten Modifikationen sind nicht umkehrbar.
  相似文献   

4.
A mathematical model examined a potential therapy for controlling viral infections using genetically modified viruses. The control of the infection is an indirect effect of the selective elimination by an engineered virus of infected cells that are the source of the pathogens. Therefore, this engineered virus could greatly compensate for a dysfunctional immune system compromised by AIDS. In vitro studies using engineered viruses have been shown to decrease the HIV-1 load about 1000-fold. However, the efficacy of this potential treatment for reducing the viral load in AIDS patients is unknown. The present model studied the interactions among the HIV-1 virus, its main host cell (activated CD4+ T cells), and a therapeutic engineered virus in an in vivo context; and it examined the conditions for controlling the pathogen. This model predicted a significant drop in the HIV-1 load, but the treatment does not eradicate HIV. A basic estimation using a currently engineered virus indicated an HIV-1 load reduction of 92% and a recovery of host cells to 17% of their normal level. Greater success (98% HIV reduction, 44% host cells recovery) is expected as more competent engineered viruses are designed. These results suggest that therapy using viruses could be an alternative to extend the survival of AIDS patients.  相似文献   

5.
Infectious hematopoietic necrosis virus (IHNV) is a rhabdovirus which causes devastating epizootics of trout and salmon fry in hatcheries around the world. In laboratory and field studies, epizootic survivors are negative for infectious virus by plaque assay at about 50 days postexposure. Survivors are considered virus free with no sequelae and, thus, are subsequently released into the wild. When adults return to spawn, infectious virus can again be isolated. Two hypotheses have been proposed to account for the source of virus in these adults. One hypothesis contends that virus in the epizootic survivors is cleared and that the adults are reinfected with IHNV from a secondary source during their migration upstream. The second hypothesis contends that IHNV persists in a subclinical or latent form and the virus is reactivated during the stress of spawning. Numerous studies have been carried out to test these hypotheses and, after 20 years, questions still remain regarding the maintenance of IHNV in salmonid fish populations. In the study reported here, IHNV-specific lesions in the hematopoietic tissues of rainbow trout survivors, reared in specific-pathogen-free water, were detected 1 year after the epizootic. The fish did not produce infectious virus. The presence of viral protein detected by immunohistochemistry, in viral RNA by PCR amplification, and in IHNV-truncated particles by immunogold electron microscopy confirmed the presence of IHNV in the survivors and provided the first evidence for subclinical persistence of virus in the tissues of IHNV survivors.  相似文献   

6.
Based on epidemiological data, it is believed that human-to-human transmission plays an important role in Nipah virus outbreaks. No experimental data are currently available on the potential routes of human-to-human transmission of Nipah virus. In a first dose-finding experiment in Syrian hamsters, it was shown that Nipah virus was predominantly shed via the respiratory tract within nasal and oropharyngeal secretions. Although Nipah viral RNA was detected in urogenital and rectal swabs, no infectious virus was recovered from these samples, suggesting no viable virus was shed via these routes. In addition, hamsters inoculated with high doses shed significantly higher amounts of viable Nipah virus particles in comparison with hamsters infected with lower inoculum doses. Using the highest inoculum dose, three potential routes of Nipah virus transmission were investigated in the hamster model: transmission via fomites, transmission via direct contact and transmission via aerosols. It was demonstrated that Nipah virus is transmitted efficiently via direct contact and inefficiently via fomites, but not via aerosols. These findings are in line with epidemiological data which suggest that direct contact with nasal and oropharyngeal secretions of Nipah virus infected individuals resulted in greater risk of Nipah virus infection. The data provide new and much-needed insights into the modes and efficiency of Nipah virus transmission and have important public health implications with regards to the risk assessment and management of future Nipah virus outbreaks.  相似文献   

7.
An 11-mo-old captive-bred male neutered bobcat (Felis rufus) presented with lethargy, anorexia, leukopenia, neutropenia, lymphopenia, and nonregenerative anemia. The animal was diagnosed as feline leukemia virus (FeLV) positive by immunofluorescent antibody and enzyme-linked immunosorbant assay (ELISA) testing. It died despite supportive care. Pathologic examination revealed multifocal non-suppurative encephalitis, diffuse interstitial pneumonia, multifocal hepatocellular necrosis, non-suppurative peritonitis, and lymphoid depletion. FeLV was isolated from peripheral blood mononuclear cells, bone marrow, spleen, and lymph node. FeLV-specific gag sequences were amplified by DNA polymerase chain reaction (PCR) and aligned with known domestic cat FeLV's. The source of the virus was speculated to be a domestic cat that was a surrogate nurse. Case reports of FeLV in nondomestic felids are few, and FeLV does not appear to be enzootic in wild felids, except European wildcats (Felis silvestris) in France and Scotland. Introduction of FeLV into free-living and captive nondomestic felid populations could have serious consequences for their health and survival. Measures to prevent the introduction of this virus to nondomestic felids are warranted.  相似文献   

8.
9.
A manually transmissible virus, for which the name olive latent ringspot virus (OLRV) is proposed, was isolated from a symptomless olive tree. The virus was mechanically transmitted to test plants. Purified preparations of OLRV contained three classes of isometric particle, c. 28 nm in diameter, with sedimentation coefficients of 525 (T), 975 (M) and 1325 (B) and containing 0, 30 and 43% nucleic acid respectively. At equilibrium in CsCl gradients, the buoyant densities of T and M components were 1–29 and 1–43 g/cm3 respectively, whereas B component separated into two sub-components with buoyant densities of 1–51 g/cm3 (BJ and 1–52 g/cm3 (B2). Particle preparations contained two species of single-stranded RNA with mol. wt 1–40 times 106 and 2–65 times 106, both necessary for infectivity. The coat protein of OLRV, dissociated under strong denaturing conditions, separated into four components in polyacrylamide gel electrophoresis. Over 75% of the protein was found in a band with mol. wt 57 600, but all four components were recognised as oligomers of a monomeric form with mol. wt 14 300. OLRV was serologically unrelated to 26 different isometric plant viruses including 17 recognised nepoviruses. Its properties strongly indicate that it is a hitherto undescribed member of the nepovirus group.  相似文献   

10.
The Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1), which is critical for EBV-induced B-cell transformation, is also abundantly expressed during the lytic cycle of viral replication. However, the biological significance of this strong LMP1 induction remains unknown. We engineered a bacterial artificial chromosome clone containing the entire genome of Akata strain EBV to specifically disrupt the LMP1 gene. Akata cell clones harboring the episomes of LMP1-deleted EBV were established, and the effect of LMP1 loss on virus production was investigated. We found that the degree of viral DNA amplification and the expression levels of viral late gene products were unaffected by LMP1 loss, demonstrating that the LMP1-deleted EBV entered the lytic replication cycle as efficiently as the wild-type counterpart. This was confirmed by our electron microscopic observation that nucleocapsid formation inside nuclei occurred even in the absence of LMP1. By contrast, loss of LMP1 severely impaired virus release into culture supernatants, resulting in poor infection efficiency. The expression of truncated LMP1 in Akata cells harboring LMP1-deleted EBV rescued the virus release into the culture supernatant and the infectivity, and full-length LMP1 partially rescued the infectivity. These results indicate that inducible expression of LMP1 during the viral lytic cycle plays a critical role in virus production.  相似文献   

11.
Several subisolates were separated from a single Plum pox virus (PPV) isolate, PPV-PS. In spite of an extremely high sequence conservation (more than 99.9% similarity), different subisolates differed largely in pathogenicity in herbaceous hosts and infectivity in woody plants. The severity of symptomatology did not seem to correlate with virus accumulation. Sequence analysis and site-directed mutagenesis demonstrated that single amino acid changes in the helper component (HC) protein caused a drastic effect on virus symptoms in herbaceous hosts and notably modified virus infectivity in peach seedlings. These results indicate that HC variation might play an important role in virulence evolution of natural plant virus infections. Moreover, the analysis of Potato virus X (PVX)-HC chimeras showed that the identified HC amino acid changes had parallel effects on the severity of symptoms caused by PPV and on HC-induced enhancement of PVX pathogenicity, indicating that HC functions in potyvirus symptomatology and in synergism with other viruses have overlapping determinants.  相似文献   

12.
An NFS/N mouse inoculated at birth with an ecotropic murine leukemia virus (MuLV) obtained from wild mice (Cas-Br-M MuLV) developed a lymphoma after 18 weeks. An extract prepared from the lymphomatous spleen was inoculated into newborn NFS/N mice, and these mice developed erythroleukemia within 9 weeks. Spleens from the erythroleukemic mice contained ecotropic and mink cell focus-inducing (MCF) MuLVs; however, when these viruses were biologically cloned and reinoculated into newborn NFS/N mice, no erythroleukemia was induced. In contrast, cell-free extracts prepared from the erythroleukemic spleens induced erythroleukemia within 5 weeks. Analysis of cell-free extracts prepared from the erythroleukemic spleens showed that they contained a viral species that induced splenomegaly and spleen focus formation in adult mice, with susceptibility controlled by alleles at the Fv-2 locus. The spleen focus-forming virus coded for a 50,000-dalton protein precipitated by antibodies specific to MCF virus gp70. RNA blot hybridization studies showed the genomic viral RNA to be 7.5 kilobases and to hybridize strongly to a xenotropic or MCF envelope-specific probe but not to hybridize with an ecotropic virus envelope-specific probe. The virus described here appears to be the fourth independent isolate of a MuLV with spleen focus-forming activity.  相似文献   

13.
We have constructed a recombinant simian virus 40 (SV40) DNA containing a copy of the Harvey murine sarcoma virus long terminal repeat (LTR). This recombinant viral DNA was converted into an infectious SV40 virus particle and subsequently infected into NIH 3T3 cells (either uninfected or previously infected with Moloney leukemia virus). We found that this hybrid virus, SVLTR1, transforms cells with 10 to 20 times the efficiency of SV40 wild type. Southern blot analysis of these transformed cell genomic DNAs revealed that simple integration of the viral DNA within the retrovirus LTR cannot account for the enhanced transformation of the recombinant virus. A restriction fragment derived from the SVLTR-1 virus which contains an intact LTR was readily identified in a majority of the transformed cell DNAs. These results suggest that the LTR fragment which contains the attachment sites and flanking sequences for the proviral DNA duplex may be insufficient by itself to facilitate correct retrovirus integration and that some other functional element of the LTR is responsible for the increased transformation potential of this virus. We have found that a complete copy of the Harvey murine sarcoma virus LTR linked to well-defined structural genes lacking their own promoters (SV40 early region, thymidine kinase, and G418 resistance) can be effectively used to promote marker gene expression. To determine which element of the LTR served to enhance the biological activity of the recombinant virus described above, we deleted DNA sequences essential for promoter activity within the LTR. SV40 virus stocks reconstructed with this mutated copy of the Harvey murine sarcoma virus LTR still transform mouse cells at an enhanced frequency. We speculate that when the LTR is placed more than 1.5 kilobases from the SV40 early promoter, the cis-acting enhancer element within the LTR can increase the ability of the SV40 promoter to effectively operate when integrated in a murine chromosome. These data are discussed in terms of the apparent cell specificity of viral enhancer elements.  相似文献   

14.
Cucumber mosaic virus, a model for RNA virus evolution   总被引:5,自引:0,他引:5  
Taxonomic relationships: Cucumber mosaic virus (CMV) is the type member of the Cucumovirus genus, in the family Bromoviridae . Additional members of the genus are Peanut stunt virus (PSV) and Tomato aspermy virus (TAV). The RNAs 3 of all members of the genus can be exchanged and still yield a viable virus, while the RNAs 1 and 2 can only be exchanged within a species.
Physical properties: The virus particles are about 29 nm in diameter, and are composed of 180 subunits (T = 3 icosahedral symmetry). The particles sediment with an s value of approximately 98. The virions contain 18% RNA, and are highly labile, relying on RNA–protein interactions for their integrity. The three genomic RNAs, designated RNA 1 (3.3 kb in length), RNA 2 (3.0 kb) and RNA 3 (2.2 kb) are packaged in individual particles; a subgenomic RNA, RNA 4 (1.0 kb), is packaged with the genomic RNA 3, making all the particles roughly equivalent in composition. In some strains an additional subgenomic RNA, RNA 4A is also encapsidated at low levels. The genomic RNAs are single stranded, plus sense RNAs with 5' cap structures, and 3' conserved regions that can be folded into tRNA-like structures.
Satellite RNAs: CMV can harbour molecular parasites known as satellite RNAs (satRNAs) that can dramatically alter the symptom phenotype induced by the virus. The CMV satRNAs do not encode any proteins but rely on the RNA for their biological activity.
Hosts: CMV infects over 1000 species of hosts, including members of 85 plant families, making it the broadest host range virus known. The virus is transmitted from host to host by aphid vectors, in a nonpersistent manner.
Useful web sites: http://mmtsb.scripps.edu/viper/1f15.html (structure); http://www.ncbi.nlm.nih.gov/ICTVdb/ICTVdB/10040001.htm (general information)  相似文献   

15.
16.
Transmission of Cucumber necrosis virus (CNV) by zoospores of its fungal vector, Olpidium bornovanus, involves specific adsorption of virus particles onto the zoospore plasmalemma prior to infestation of cucumber roots by virus-bound zoospores. Previous work has shown that specific components of both CNV and zoospores are required for successful CNV/zoospore recognition. Here, we show that limited trypsin digestion of CNV following in vitro CNV/zoospore binding assays, results in the production of specific proteolytic digestion products under conditions where native CNV is resistant. The proteolytic digestion pattern of zoospore-bound CNV was found to be similar to that of swollen CNV particles produced in vitro, suggesting that zoospore-bound CNV is in an altered conformational state, perhaps similar to that of swollen CNV. We show that an engineered CNV mutant (Pro73Gly) in which a conserved proline residue (Pro73) in the beta-annulus of the CP arm is changed to glycine is resistant to proteolysis following in vitro zoospore binding assays. Moreover, Pro73Gly particles are transmitted only poorly by O.bornovanus. Together, the results of these studies suggest that CNV undergoes conformational change upon zoospore binding and that the conformational change is important for CNV transmissibility.  相似文献   

17.
The cylindrical inclusion (CI) protein of potyviruses is involved in virus replication and cell-to-cell movement. These two processes should rely on multiple plant-virus interactions; however, little is known about the host factors that are involved in, or that may interfere with, CI functions. By using a yeast two-hybrid system, the CI protein from Plum pox virus (PPV) was found to interact with the photosystem I PSI-K protein, the product of the gene psaK, of Nicotiana benthamiana. Coexpression of PPV CI was shown to cause a decrease in the accumulation level of PSI-K transiently expressed in N. benthamiana leaves. To test the biological relevance of this interaction, we have analyzed the infection of PPV in N. benthamiana plants in which psaK gene expression has been silenced by RNA interference, as well as in Arabidopsis thaliana psaK knockout plants. Our results show that downregulation of the psaK gene leads to higher PPV accumulation, suggesting a role for the CI-PSI-K interaction in PPV infection.  相似文献   

18.
Studies on the molecular mechanism of genetic recombination in RNA viruses have progressed at the time when experimental systems of efficient recombination crossovers were established. The system of brome mosaic virus (BMV) represents one of the most useful and most advanced tools for investigation of the molecular aspects of the mechanism of RNA-RNA recombination events. By using engineered BMV RNA components, the occurrence of both homologous and nonhomologous crosses were demonstrated among the segments of the BMV RNA genome. Studies show that the two types of crossovers require different RNA signal sequences and that both types depend upon the participation of BMV replicase proteins. Mutations in the two BMV-encoded replicase polypeptides (proteins 1a and 2a) reveal that their different regions participate in homologous and in nonhomologous crossovers. Based on all these data, it is most likely that homologous and nonhomologous recombinant crosses do occur via two different types of template switching events (copy-choice mechanism) where viral replicase complex changes RNA templates during viral RNA replication at distinct signal sequences. In this review we discuss various aspects of the mechanism of RNA recombination in BMV and we emphasize future projections of this research.  相似文献   

19.
Whole genome amplification and sequencing of single microbial cells has significantly influenced genomics and microbial ecology by facilitating direct recovery of reference genome data. However, viral genomics continues to suffer due to difficulties related to the isolation and characterization of uncultivated viruses. We report here on a new approach called 'Single Virus Genomics', which enabled the isolation and complete genome sequencing of the first single virus particle. A mixed assemblage comprised of two known viruses; E. coli bacteriophages lambda and T4, were sorted using flow cytometric methods and subsequently immobilized in an agarose matrix. Genome amplification was then achieved in situ via multiple displacement amplification (MDA). The complete lambda phage genome was recovered with an average depth of coverage of approximately 437X. The isolation and genome sequencing of uncultivated viruses using Single Virus Genomics approaches will enable researchers to address questions about viral diversity, evolution, adaptation and ecology that were previously unattainable.  相似文献   

20.
C Simn-Mateo  G Andrs    E Viuela 《The EMBO journal》1993,12(7):2977-2987
This report shows that African swine fever virus (ASFV)--a large DNA-containing virus--synthesizes a polyprotein to produce several of its structural proteins. By immunoprecipitation analysis, we have found that ASFV polyprotein is a 220 kDa myristoylated polypeptide (pp220) which, after proteolytic processing, gives rise to four major structural proteins: p150, p37, p34 and p14. Processing of the ASFV polyprotein takes place at the consensus sequence Gly-Gly-X and occurs through an ordered cascade of proteolytic cleavages. So far, polyprotein processing as a mechanism of gene expression had been found only in positive-strand RNA viruses and retroviruses. According to the results presented here, ASFV is the first example of a DNA virus that synthesizes a polyprotein as a strategy of gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号