首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
A new aminated carrier—magnetic nanogels covered by amino groups, was obtained by Hoffman degradation of polyacrylamide-coated Fe3O4 nanoparticles prepared by photochemical polymerization. α-Chymotrypsin (CT) was covalently bound to the magnetic nanogels by use of 1-ethyl-3-(3-dimethylaminepropyl) carbodiimide and N-hydroxysuccinimide at room temperature. Immobilization time, pH value of the reaction mixture and proportion of CT to the magnetic nanogels were investigated to obtain the optimum condition for CT immobilization. The maximal specific activity of the bound CT was determined to be 0.93 U/(mg min), 59.3% of free counterpart. The maximal binding capacity was measured to be 102 mg enzyme/g nanogel. Furthermore, the bound CT exhibited good thermal stability, storage stability and reusability.  相似文献   

2.
Alpha-chymotrypsin (CT) as model enzyme was conjugated onto the novel carboxyl-functionalized superparamagnetic nanogels, prepared via facile photochemical in situ polymerization, by using 1-ethyl-3-(3-dimethylaminepropyl) carbodiimide (EDC) as coupling reagent. The obtained magnetic immobilized enzyme was characterized by use of photo correlation spectroscopy (PCS), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) measurement, thermogravimetric (TG) analysis and vibrating sample magnetometer (VSM) measurement. PCS result showed that the immobilized enzyme was 68 nm in diameter while the magnetic nanogels with carboxyl groups were only 38 nm; enzyme immobilization led to pronounced change in size. Superparamagnetic properties were retained for Fe3O4 after enzyme immobilization while slightly reducing its value of saturation magnetization. Immobilization and surface coating did not induce phase change of Fe3O4 by XRD analysis. The binding capacity was 30 mg enzyme/g and 37.5 mg enzyme/g nanogel determined by TG analysis and BCA protein assay, respectively. Specific activity of the immobilized CT was calculated to be 0.77 U/(mg min), 82.7% as that of the free form.  相似文献   

3.
Magnetic nanoparticles, covered by a polymeric hydrophilic nanolayer containing reactive amino groups, were obtained via Hoffman degradation of the polyacrylamide-coated Fe3O4 nanoparticles synthesized by photochemical in situ polymerization, and then conjugated the model enzyme––α-chymotrypsin (CT) by use of EDC· HCl and NHS at room temperatures. The mechanism of photochemical in situ polymerization was briefly proposed in this paper. Superparamagnetic properties were retained for Fe3O4 after enzyme immobilization while slightly reducing the value of saturation magnetization. Crystalline structure of Fe3O4 after CT immobilization was consistent with that of the freshly prepared Fe3O4 by X-ray diffraction (XRD) analysis. The binding capacity was 69 and 61 mg enzyme/g nanogel determined by thermogravimetric (TG) analysis and by standard BCA protein assay, respectively. Specific activity of the immobilized CT was 0.93 U/(mg min), only 59.3% as that of free CT. Thermal stability of CT was improved after being bound to the amine-functionalized magnetic nanogel.  相似文献   

4.
A new immobilized system: β-galactosidase-modified polypropylene membrane was created. It was obtained 13 different carriers by chemical modification of polypropylene membranes by two stages. The first stage is treatment with K(2)Cr(2)O(7) to receive carboxylic groups on membrane surface. The second stage is treatment with different modified agents ethylendiamine, hexamethylenediamine, hydrazine dihydrochloride, hydroxylamine, o-phenylenediamine, p-phenylenediamine, N,N'-dibenzyl ethylenediamine diacetate to receive amino groups. The quantity of the amino groups, carboxylic groups and the degree of hydrophilicity of unmodified and modified polypropilene membranes were determined. β-Galactosidase was chemically immobilized on the obtained carries by glutaraldehyde. The highest relative activity of immobilized enzyme was recorded at membrane modified with 10% hexamethylenediamine (Membrane 5) - 92.77%. The properties of immobilized β-galactosidase on different modified membranes - pH optimum, temperature optimum, pH stability and thermal stability were investigated and compared with those of free enzyme. The storage stability of all immobilized systems was studied. It was found that the most stable system is immobilized enzyme on Membrane 5. The system has kept 90% of its initial activity at 300th day (pH=6.8; 4°C). The stability of the free and immobilized β-galactosidase on the modified membrane 5 with 10% HMDA in aqueous solutions of alcohols - mono-, diol and triol was studied. The kinetics of enzymatic reaction of free and immobilized β-galactosidase on the modified membrane 5 at 20°C and 40°C and at the optimal pH for both forms of the enzyme were investigated. It was concluded that the modified agent - hexamethylenediamine, with long aliphatic chain ensures the best immobilized β-galactosidase system.  相似文献   

5.
本研究采用3-丙氨基三乙氧基硅烷(APTES)和戊二醛修饰包裹有SiO2磁性Fe3O4纳米颗粒表面,将其作为固定化载体固定化乙醇脱氢酶,研究固定化条件对固定化效率的影响,并对固定化酶性质进行分析。研究发现,当Fe3O4@SiO2纳米颗粒修饰上氨基和醛基后依然具有良好的水分散性和胶体稳定性,适合作为固定化载体。通过单因素优化,发现当最适给酶量为11. 3U/100 mg,搅拌转速为150 r/min,固定化p H和固定化温度分别控制在6. 5和5℃~15℃,固定化时长为45 min时,具有较好的固定化效果,固定化率可达到60. 2%。在此条件下制备得到的固定化酶与游离酶相比,固定化酶具有良好的耐高温和耐碱性。所得固定化乙醇脱氢酶在连续使用8次后,固定化率仍保留在57%左右,表明该固定化酶具有较好的操作稳定性,可为连续生产NADH提供技术依据。  相似文献   

6.
A Thermoalkalophilic amylase was produced from an environmental bacterial isolate. The enzyme was then immobilized through its amino groups onto the epoxy rings of magnetic poly glycidyl methacrylate [m-poly (GMA)] beads. The free enzyme was active within a large pH range, between 7 and 12 and displayed the optimum activity at 95°C and pH 10. The immobilization appeared to increase the stability of the enzyme as its bound form showed optimum activity at 105°C and pH 11.0. Kinetic studies demonstrated that immobilized enzyme had higher K(m) and lower V(max) values. The activity of the free and bound enzyme was determined, at 37°C and pH 10.0 and pH 11.0, respectively, in the presence of various organic solvents and detergents (5%, v/v). Results obtained indicated that detergents, sodium dodecyl sulfate (SDS) and TritonX-100, caused six fold increase and that various organic solvents also increased the activity of the amylase.  相似文献   

7.
Zinc tetraaminophthalocyanine-Fe3O4 nanoparticle composites were prepared by organic-inorganic complex technology and characterized. It has been proved that the ZnTAPc dispersed randomly onto the surface of Fe3O4 nanoparticles to form molecular dispersion layer and there was a relatively strong bond between central zinc cation and oxygen. The nanoparticle composite took the shape of roundish spheres with the mean diameter of about 15 nm. Active amino groups of magnetic carriers could be used to bind laccase via glutaraldehyde. The optimal pH for the activity of the immobilized laccases and free laccase were the same at pH 3.0 and the optimal temperature for laccase immobilization on ZnTAPc-Fe3O4 nanoparticle composite was 45 degrees. The immobilization yields and K(m) value of the laccase immobilized on ZnTAPc-Fe3O4 nanoparticle composite were 25% and 20.1 microM, respectively. This kind of immobilized laccase has good thermal, storage and operation stability, and could be used as the sensing biocomponent for the fiber optic biosensor based on enzyme catalysis.  相似文献   

8.
游离酶经过固定化后,稳定性和环境耐受性得到提高,在食品、医药、化工、环境和皮革等领域可以很好的提高酶的利用率并降低生产成本,具有极大的应用潜力。新型交联剂在固定化酶工艺的应用极大推进了固定化酶研究的深入。借助新型交联剂聚乙二醇二缩水甘油醚(PEGDGE),利用氨基载体LX-1000HA固定化海洋假丝酵母脂肪酶,结合单因素和正交试验优化得到交联及固定化条件为:交联温度30℃,交联2h,交联剂浓度0.75%,pH7.0,加酶量800U,载体量0.5g,固定化2h,固定化温度45℃。根据上述最佳固定化工艺,制备得到固定化酶LX-1000HA-PEGDGE-CRL在最适条件下测得酶活达到160.81U/g,约为此前制备的固定化酶LX-1000HA-GA-CRL(由LX-1000HA和戊二醛交联脂肪酶得到)和LX-1000EA-PEGDGE-CRL(由短链氨基载体LX-1000EA和PEGDGE交联脂肪酶得到)酶活的2倍,发现固定化酶LX-1000HA-PEGDGE-CRL的最适反应温度相比于游离酶提高15℃;在70℃的环境中3h后酶活仍存留70%;循环使用6次后残留65%左右的酶活;酸碱耐受性和储存稳定性也表现良好,4℃保存30天后剩余约70%的初始酶活。同时,将制备的固定化酶LX-1000HA-PEGDGE-CRL与游离酶、固定化酶LX-1000HA-GA-CRL、固定化酶LX-1000EA-PEGDGE-CRL进行了比较,发现固定化酶LX-1000HA-PEGDGE-CRL在温度耐受性和重复使用性等方面具有更好的使用效果。  相似文献   

9.
Tannase enzyme from Aspergillus oryzae was immobilized on various carriers by different methods. The immobilized enzyme on chitosan with a bifunctional agent (glutaraldehyde) had the highest activity. The catalytic properties and stability of the immobilized tannase were compared with the corresponding free enzyme. The bound enzyme retained 20·3% of the original specific activity exhibited by the free enzyme. The optimum pH of the immobilized enzyme was shifted to a more acidic range compared with the free enzyme. The optimum temperature of the reaction was determined to be 40 °C for the free enzyme and 55 °C for the immobilized form. The stability at low pH, as well as thermal stability, were significantly improved by the immobilization process. The immobilized enzyme exhibited mass transfer limitation as reflected by a higher apparent Km value and a lower energy of activation. The immobilized enzyme retained about 85% of the initial catalytic activity, even after being used 17 times.  相似文献   

10.
纳米磁性壳聚糖微球固定化酵母醇脱氢酶的研究   总被引:1,自引:0,他引:1  
建立了以纳米级磁性壳聚糖微球(magnetic chitosan microspheres , M-CS)为载体固定化酵母醇脱氢酶(yeast alcohol dehydrogenase,YADH)的方法,优化了YADH的固定化条件,考察了固定化酶的性质。结果表明,M-CS 呈规则的圆球形,粒径在30nm 左右,具有较好的磁响应性。酵母醇脱氢酶固定化适宜条件为:50 mg 磁性壳聚糖微球,加入20mL 0.25 mg/mL 酵母醇脱氢酶(蛋白质含量)磷酸盐缓冲液(0.05 mol/L ,pH 7.0) ,在4 ℃固定2h。M-CS 容易吸附酵母醇脱氢酶,但吸附的酶量受载体与酶的比例、溶液的离子浓度、溶液pH的影响明显,而温度对吸附的酶量的影响则相对较弱。相对于游离的酵母醇脱氢酶,固定化酶的最适温度略有升高,可明显改善其热稳定性、酸碱稳定性、操作稳定性和贮存稳定性。  相似文献   

11.
Cotton fibers were first grafted by polyacrylonitril in the presence of KMnO(4) and oxalic acid as a combined redox initiator. Moreover, modification of the grafted cotton fibers was done by changing the nitrile group (-CN) into hydrazidine group through the reaction with hydrazine hydrate, then the fibers were activated by glutaraldehyde to introduce free aldehyde groups which were able to react with amino groups of urease to form Schiff's base, and result in cotton fibers immobilized urease. The efficiency of the immobilization was evaluated by examining the relative enzymatic activity of enzyme before and after the immobilization of urease. The results showed that the optimum temperature of immobilized urease was 35°C, which was higher than that of the free enzyme (30°C), and the immobilized urease exhibited a higher relative activity than that of free urease over 35°C. The optimal pH for immobilized urease was 6.5, which was lower than that of the free urease (pH 7.0), and the immobilization resulted in stabilization of enzyme over a wider pH range. The kinetic constant value (K(m)) of immobilized urease was higher than that of the free urease. However, the thermal and operational stabilities of immobilized urease have been improved greatly.  相似文献   

12.
L-苏氨酸醛缩酶(L-Threonine aldolase,L-TA)可以催化甘氨酸和醛合成β-羟基-α-氨基酸。β-羟基-α-氨基酸具有两个手性中心,是多种手性药物的中间体。但是,游离的L-TA难以重复利用,分离纯化困难,严重阻碍了工业化应用。固定化技术可以有效解决这些问题。利用氨基树脂NAA固定化来源于Bacillus nealsonii的L-苏氨酸醛缩酶,采用戊二醛作为交联剂,经过条件优化确定最佳固定化条件为:加酶量13 U、载体量0.6 g、0.4%(V/V)戊二醛、活化时间2 h、pH 8.5、35℃、固定化5 h。在此条件下,固定化酶酶活回收率为85.7%。在30℃下半衰期可达59天,为游离酶的6.5倍。将其应用于合成L-syn-对甲砜基苯丝氨酸,使用460 h后,残余酶活为79.4%。进一步开发了载体再利用策略,将失活固定化酶表面的氨基用戊二醛活化后,再与新的游离酶进行固定化,实现载体的再利用。利用该方法载体可重复利用两次,制备的固定化酶仍能使用460 h。该方法大大降低了固定化成本,为固定化L-TA的工业化应用打下坚实的基础。  相似文献   

13.
In the present of this study, two novel polymeric matrixes that are poly(N,N-dimethylacrylamide-co-acrylamide) and poly(N-isopropylacrylamide-co-acrylamide)/kappa-Carrageenan was synthesized and applied for immobilization of lipase. For the immobilization of enzyme, two different immobilization procedures have been carried out via covalently binding and entrapment methods. On the free and immobilized enzymes activities, optimum pH, temperature, storage and thermal stability was investigated. The optimum temperature for free, covalently immobilized and entrapped enzymes was found to be 30, 35 and 30 degrees C, respectively. Optimum pH for both free and immobilized enzymes was also observed at pH 8. Maximum reaction rate (Vmax) and Michaelis-Menten constant (Km) were determined for free and immobilized lipases. Furthermore, the reuse numbers of immobilized enzymes also studied. It was observed that after 40th use in 5 days, the retained activities for covalently immobilized and entrapped lipases were found as 39% and 22%, respectively. Storage and thermal stability of enzyme was also increased by as a result of immobilization procedures.  相似文献   

14.
A new method for immobilization of acetylcholinesterase (AChE) to alginate gel beads by activating the carbonyl groups of alginate using carbodiimide coupling agent has been successfully developed. Maximum reaction rate (V max) and Michaelis–Menten constant (K m) were determined for the free and binary immobilized enzyme. The effects of pH, temperature, storage stability, reuse number and thermal stability on the free and immobilized AChE were also investigated. For the free and binary immobilized enzyme on the Ca–alginate gel beads, optimum pH values were found to be 7 and 8, respectively. Optimum temperatures for the free and immobilized enzyme were observed to be 30 and 35 °C, respectively. Upon 60 days of storage the preserved activity of free and immobilized enzyme were found as 4 and 68%, respectively. In addition, reuse number, and thermal stability of the free AChE were increased by as a result of binary immobilization.  相似文献   

15.
Cellulose fibres from bagasse were oxidized by sodium periodate in sulphuric acid media at positions 2 and 3 of the anhydroglucose unit to produce dialdehyde cellulose. The aldehyde groups of the dialdehyde cellulose were able to react with amino groups of a glucoamylase to form covalent bonds and result in a dialdehyde cellulose immobilized enzyme. The optimum pH of this immobilized enzyme and free enzyme were in the range of 3.0–5.0 and 3.5–5.0, respectively. The optimum temperature for both the free and immobilized enzymes was 60–65 °C. The relative remaining activity of the immobilized enzyme was 36% and its stability was very good, since it could be reused for over 30 cycles. Its activity decreased from the first to the seventh reuse cycles, due to the slow detachment of non-covalently bound enzyme. However, activity tended to stabilize after the seventh cycle of reuse, indicating very stable covalent binding between the enzyme and dialdehyde cellulose.  相似文献   

16.
Enzymes play a pivotal role in catalyzing diverse reactions. However, their instability upon repetitive/prolonged use, as well as their inhibition by high substrates and product concentration, remains an area of concern. In this study, porcine pancreatic α-amylase was immobilized on magnetic Fe2O3 nanoparticles (Fe2O3-NPs) in order to hydrolyze starch. The magnetic nanoparticle bound enzymes retained 94% of their initial enzyme activity. X-ray diffraction and atomic force microscopy analyses showed that the prepared matrix had advantageous microenvironment and a large surface area for binding significant amounts of protein. Functional groups present in enzyme and support were monitored by Fourier transform infrared spectroscopy. Immobilized enzyme exhibited lowered pH optimum (pH 6.0) to a greater degree than its soluble counterpart (pH 7.0). Optimum temperature for the immobilized enzyme shifted towards higher temperatures. The immobilized enzyme was significantly more resistant to inactivation caused by various metal ions and chemical denaturants. Immobilized α-amylase hydrolyzed 92% starch in a batch process, after 8 h at 40°C; while the free enzyme could hydrolyze only 73% starch under similar experimental conditions. A reusability experiment demonstrated that the immobilized enzyme retained 83% of its original activity even after its 8th repeated use.  相似文献   

17.
Abstract

Methods of cellulase immobilization on magnetic particles via glutaraldehyde binding were studied. The binding was confirmed by transmission electronic microscopy (TEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and vibrating sample magnetometry (VSM). Samples analyzed by TEM and XRD showed that the magnetic particles with or without bound cellulase were all nanosized particles with a mean diameter of 11.5 nm, and the binding process did not cause significant changes in particle size and structure. Analysis by FTIR showed that the binding of cellulase to the magnetic nanoparticles might be via covalent bonding between residual amine groups on Fe3O4 nanoparticles and amine groups of the cellulase. The VSM analysis showed that magnetic nanoparticles with or without bound cellulase were all superparamagnetic. The immobilized cellulase had a wider pH and temperature range and improved storage stability compared with the free enzyme. Determination of the Michaelis constants revealed that the immobilized cellulase had a greater affinity for the cellulosic substrate than the free enzyme. The immobilized cellulase showed better performance on hydrolysis of steam-exploded corn stalks than of bleached sulfite bagasse pulp.  相似文献   

18.
The production of agar-oligosaccharides from agarose by free and immobilized agarase, obtained from a Pseudomonas aeruginosa AG LSL-11 was investigated and the activity, longevity and the operational stability of immobilized enzyme was compared with that of the free enzyme. The agar hydrolyzed products of free enzyme and immobilized enzyme were neoagarobiose, neoagarotetraose and neoagarohexaose as evidenced by LC-MS analysis. The immobilization of agarase was confirmed by SEM and also by the enzymatic transformation of agarose into agaroligosaccharides. The free agarase showed maximum activity at 40°C, whereas it’s immobilized counterpart showed maximum activity at 45oC, however, the optimum pH for both systems remained unchanged (pH 8.0). The relative activities of free agarase at pH 9.0 and 10.0 were 90 and 74%, respectively, whereas, the corresponding activities of the immobilized system were determined to be 97 and 90%. The stabilities of free agarase at pH 9.0 and 10.0 were 80 and 60% respectively, but for the immobilized system the respective residual activities were estimated to be 97 and 85%. Immobilized agarase appears to be more tolerant to high temperatures in terms of its activity and stability as it is compared to that of the free enzyme which retained 74 and 50.84% of relative activity at 55 and 60°C while, free agarase retained only 40 and 16.79% of its original activity. Furthermore, the immobilized agarase could be reused in batches efficiently for eight cycles, and could be stored for 3 months at 4°C as wet beads and for more than 6 months as dry beads.  相似文献   

19.
Immobilization of cross-linked tannase on pristine multiwalled carbon nanotubes (MWCNT) was successfully performed. Cross-linking of tannase molecules was made through glutaraldehyde. The immobilized tannase exhibited significantly improved pH, thermal, and recycling stability. The optimal pH for both free and immobilized tannase was observed at pH 5.0 with optimal operating temperature at 30°C. Moreover, immobilized enzyme retained greater biocatalytic activities upon 10 repeated uses compared to free enzyme in solution. Immobilization of tannase was accomplished by strong hydrophobic interaction most likely between hydrophobic amino acid moieties of the glutaraldehyde-cross-linked tannase to the MWCNT.  相似文献   

20.
The dynamics of β-xylosidase biosynthesis from Aspergillus niger B 03 was investigated in laboratory bioreactor. Maximum xylosidase activity 5.5 U/ml was achieved after 80 h fermentation at medium pH 4.0. The isolated β-xylosidase was immobilized on polyamide membrane support and the basic characteristics of the immobilized enzyme were determined. Maximum immobilization and activity yield obtained was 30.0 and 6.8%, respectively. A shift in temperature optimum and pH optimum was observed for immobilized β-xylosidase compared to the free enzyme. Immobilized enzyme exhibited maximum activity at 45 °C and pH 4.5 while its free counterpart at 70 °C and pH 3.5, respectively. Thermal stability at 40 and 50 °C and storage stability of immobilized β-xylosidase were investigated at pH 5.0. Kinetic parameters Km, Vmax and Ki were determined for both enzyme forms. Free and immobilized β-xylosidase were tested for xylose production from birchwood xylan. The substrate was preliminarily depolymerized with xylanase to xylooligosaccharides and the amount of xylose obtained after their hydrolysis with free and immobilized β-xylosidase was determined by HPLC analysis. Continuous enzyme hydrolysis of birchwood xylan was performed with xylanase and free or immobilized β-xylosidase. The maximum extent of hydrolysis was 25 and 30% with free and immobilized enzyme, respectively. Immobilized preparation was also examined for reusability in 20 consecutive cycles at 40 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号