首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABA addition to B5 or M9 medium at the concentrations from 0.1 to 5.0 mg/l suppressed growth of Onosma paniculatum cells. The addition of these ABA concentrations to M9 medium also significantly decreased the formation of shikonin and its derivatives in the cultured cells during the entire course of culturing. The enzyme activity assay showed that, on the 4th day after inoculation, 0.1 mg/l ABA significantly decreased the activities of phenylalanine ammonia-lyase, the first enzyme, and p-hydroxybenzoic acid-geranyltransferase, a key enzyme involved in shikonin biosynthesis. However, no significant change in these two enzyme activities was found during the following days for testing (8, 12, and 16 days). Interestingly, RT-PCR analysis of the PAL1 and LePGT1 gene expression showed no significant changes on the 4th day after inoculation. Furthermore, we found that the inhibitory effect of ABA on the secondary metabolism could be alleviated significantly by the addition of 2-aminoethyl diphenyl borate (an inhibitor of inositol triphosphate-receptor) or nicotinamide (an inhibitor of ADP-ribose cyclase), which functions by decreasing the intracellular calcium concentration. Published in Russian in Fiziologiya Rastenii, 2007, Vol. 54, No. 4, pp. 597–603. The text was submitted by the authors in English.  相似文献   

2.
Summary A fungal elicitor extracted fromAspergillus oryzae (Ahlb.) Cobn mycelia promoted the production of shikonin derivatives inOnosma paniculatum Bur et Franch cell suspension cultures. Elicitor treatment also increased Ca2+ concentration in RM9 medium, which could be measured earlier than the elicited increase of shikonin formation. Several reagents known to induce Ca2+-influx and increase the intracellular-free Ca2+ level, such as the addition of Ca (NO3)2·4H2O, the Ca2+ ionophore A23187, and abscisic acid (ABA), appreciably suppressed the elicitor-promoted shikonin formation inOnosma cells. In contrast, the decrease of intracellular-free Ca2+ level by the specific Ca2+-chelator ethylene glycol bis (β-aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA) or the Ca2+—channel blocker, verapamil, enhanced the biosynthesis of shikonin even in the absence of elicitor. Treatment of cells with trifluoperazine (TFP) also stimulated shikonin formation inOnosma cell cultures. A rapid and transient drop of free Ca2+ level in one protoplast was directly determined after the addition of elicitor toOnosma cell cultures. The inhibitory effect on shikonin formation by ABA was largely on account of its ability to restore the intracellular Ca2+ level lowered by the elicitor. These results suggest that Ca2+ play a significant role in an early stage of the elicitation process ofOnosma cells. The rapid drop of cytoplasmic Ca2+ carries the elicitor signal and in turn regulates the biosynthesis of shikonin derivatives.  相似文献   

3.
4.
Summary Methyl jasmonate (MeJA) interacted significantly with both indole-3-acetic acid (IAA) and 6-benzylaminopurine (BA) to influence cell growth of cultured Onosma paniculatum cells. Cell growth decreased with increasing concentrations of MeJA from 0.004–4.45 μM with or without IAA and BA. The same concentrations of MeJA (0–4.45 μM) increased the cell growth with IAA and BA, when administered to the cultured cells in M9 medium. This was found to enhance the production of shikonin. The optimum time for MeJA addition for enhanced shikonin formation was 4 d after cell inoculation in M9 medium. Furthermore, shikonin formation was affected significantly by both MeJA/IAA and MeJA/BA combinations. Shikonin content was enhanced by increasing MeJA concentrations with IAA concentrations in the range of 0–28 μM and with BA concentrations in the range of 0–44.38 μM in MeJA/BA experiments, respectively. The optimal combination of MeJA and IAA was 4.45 μM and 0.28 μM, while MeJA and BA concentrations of 4.45 μM and 2.22 μM were optimal for shikonin formation. The result also showed that MeJA increased phenylalanine ammonia-lyase (PAL) and p-hydroxybenzoic acid-geranyltransferase (PHB-geranyltransferase) activites during the course of shikonin formation, but decreased the activity of PHB-O-glucosyltransferase within 9 d after inoculation. These results suggest that enhanced shikonin formation in cultured Onosma paniculatum cells induced by MeJA involves regulation of the key enzyme activities.  相似文献   

5.
W. Jessup  M. W. Fowler 《Planta》1977,137(1):71-76
In sycamore cells grown on nitrate as opposed to glutamate there is a higher pentose phosphate pathway carbon flux relative to glycolysis in the early stages of cell growth when nitrate assimilation is most active. The high pentose phosphate pathway activity compared with glycolysis in nitrate grown cells is accompanied by enhanced levels of hexokinase, pyruvate kinase, glucose-6-phosphate de-hydrogenase, 6-phosphogluconate dehydrogenase and transketolase. There is no significant increase in activity of the solely glycolytic enzyme, phosphofructokinase. It is suggested that the increased pentose phosphate pathway activity in nitrate grown cells is correlated with a demand by nitrite assimilation for NADPH.II=Jessup and Fowler, 1976 b  相似文献   

6.
Light effects on cell development and secondary metabolism in Monascus   总被引:4,自引:0,他引:4  
In nature, light is one of most crucial environmental signals for developmental and physiological processes in various organisms, including filamentous fungi. We have found that both red light and blue light affect development in Monascus, influencing the processes of mycelium and spore formation, and the production of secondary metabolites such as -aminobutyric acid, red pigments, monacolin K and citrinin. Additionally, we observed that the wavelength of light affects these developmental and physiological processes in different ways. These findings suggest that Monascus possesses a system for differential light response and regulation.  相似文献   

7.
In a mixed culture of Lactobacillus hilgardii and Pediococcus pentosaceus on commerical grape juice, growth of the latter was inhibited until 24 h; after 24 h no viable cells were detected. During the early stages of growth, sugars and malic acid were consumed and production of M- and L-lactic acids was greater in the mixed culture than in either of the pure cultures.The authors are with the Centro de Referencia para Lactobacilos (CERELA). Chacabuco 145, 4000 Tucumán. Argentina. M.C. Manca De Nadra is also with the Facultad de Bioquimica, Quimica y Famacia, Universidad Nacional de Tucumán, Argentina.  相似文献   

8.
Here the current status of knowledge on some well-characterized transporters located in the vacuolar membrane is reviewed. As different cellular compartments and even different cells may be involved in certain steps of a biosynthetic pathway, the regulation of the flux is not only dependent on structural genes encoding enzymes catabolizing certain steps but also transport has a major regulatory function. The aim of the present review is to give an overview of the present knowledge of transport of secondary metabolites in plants, and to use this information in the context of our knowledge about Catharanthus roseus alkaloid biosynthesis. This should lead to further insight in the possible role of various transporters in the regulation of the biosynthesis of these alkaloids.  相似文献   

9.
Numerous microbial habitats are strongly influenced by elevated levels of heavy metals. This type of habitat has developed either due to ore mining and metal processing or by pedogenesis above metal-rich base rocks. Most actinobacteria are soil-borne microbes with a remarkable capability for the synthesis of a broad variety of biologically active secondary metabolites. One major obstacle in identifying secondary metabolites, however, is the known phenomenon of sleeping gene clusters which are present, but silent under standard screening conditions. Here, we proceed to show that sleeping gene clusters can be awakened by the induction in heavy metal stress. Both, a chemical and a biological screening with extracts of supernatant and biomass of 10 strains derived from metal contaminated and non-contaminated environments was carried out to assay the influence of heavy metals on secondary metabolite patterns of metal tolerant actinobacteria. Metabolite patterns of cultures grown in complex and minimal media were compared to nickel (or cadmium) spiked parallels. Extracts of some strains grown in the presence of a metal salt displayed intense antibiosis against Escherichia coli, Mycobacterium smegmatis, Staphylococcus aureus and Candida albicans. Contrarily to the widely held opinion of metals as hindrance in secondary metabolism, metals thus can induce or enhance synthesis of possibly potent and medically relevant metabolites in metal tolerant strains. Hence, re-screening of existing strain libraries as well as identification of new strains from contaminated areas are valid strategies for the detection of new antibiotics in the future.  相似文献   

10.
Histone deacetylases (HDACs) play an important role in regulation of gene expression through histone modifications. Here we show that the Aspergillus fumigatus HDAC HdaA is involved in regulation of secondary metabolite production and is required for normal germination and vegetative growth. Deletion of the hdaA gene increased the production of several secondary metabolites but decreased production of gliotoxin whereas over-expression hdaA increased production of gliotoxin. RT-PCR analysis of 14 nonribosomal peptide synthases indicated HdaA regulation of up to nine of them. A mammalian cell toxicity assay indicated increased activity in the over-expression strain. Neither mutant affected virulence of the fungus as measured by macrophage engulfment of conidia or virulence in a neutropenic mouse model.  相似文献   

11.
Jack M. Widholm 《Planta》1977,134(2):103-108
Auxin autotrophy was studied in cultured carrot (Daucus carota L.), tobacco (Nicotiana tabacum L.), and potato (Solanum tuberosum L.) cell lines. Of 10 carrot lines resistant to 5-methyltryptophan (5MT), which accumulate free tryptophan (trp) because of an altered control enzyme, 5 were auxinautotrophic while the normal parent line was not. Carrot lines selected from the same parent line as resistant to other amino-acid analogs were not auxinautotrophic, like the parent. The only 5MT-resistant potato line studied was also auxin-autotrophic while the normal line was only partially auxin-autotrophic. The tobacco lines which accumulated free trp were not auxin-autotrophic, and no auxin-autotrophic tobacco lines were selected by screening for growth in medium lacking 2,4-dichlorophenoxyacetic acid (2,4-D). Several auxin-autotrophic carrot and potato lines were selected from the normal lines and none of these lines were resistant to 5MT. Length of time in culture and difficulty in selecting auxin-autotrophic lines were correlated on the 3 normal carrot lines studied. The addition of trp or indole to the culture medium would partially alleviate the auxin requirement of the normal lines studied. 2,4-D (0.4 mg/l) stimulated the growth of all auxin-autotrophic carrot lines.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - PEP DL-p-fluorophenylalanine - IAA indole-3-acetic acid - 5MT DL-5-methyltryptophan - trp L-tryptophan  相似文献   

12.
Inorganic phosphate inhibited the biosynthesis of the macrolide antibiotic turimycin in different strains of Streptomyces hygroscopicus. In the wild type strain a depression was observed with increasing phosphate concentrations. A total inhibition was found at 0.1 M phosphate. In a high producing mutant a minimum of turimycin production occured when the phosphate concentration was between 5 mM and 10 mM. Above this concentration the antibiotic synthesis increased again but the production period shifted to a later period of cultivation. Addition of inorganic phosphate resulted in an initial increase of intracellular cyclic AMP content. But a second elevation characterizing the normal level of cyclic AMP throughout the growth phase was prevented by phosphate. Exogenous cyclic AMP as well as positive effectors of the adenylyl cyclase system were able to overcome the phosphate suppression. Cyclic AMP abolished the reduction of protein synthesis following phosphate addition and caused the reappearance of a protein band which may be responsible for the turimycin biosynthesis.  相似文献   

13.
The interaction between Botrytis cinerea Pers. and grapevine (Vitis vinifera L.) was studied in a model system of reduced complexity. Cultured plant cells and fragments of fungal cell wall were used to simulate some of the processes taking place upon infection of grapevine with B. cinerea. A soluble glucan elicitor was prepared from the fungal cell wall by acid hydrolysis. Like the insoluble wall preparation, the soluble fragment derived from the cell wall acted upon plant cells in eliciting stilbene formation. In grapevine cells, the interaction with the fungus led to a dramatic shut-off general protein synthesis and to the selective formation of a small set of proteins involved in induced resistance. The proteins synthesized de novo with highest rates were stilbene synthase (StiSy) and l-phenylalanine ammonia-lyase (PAL). Stilbene synthase was purified to apparent homogeneity and its molecular properties were characterized. The enzyme is a homodimer with subunit Mr 43 000 and pl = 5.4. Although there were indications of the presence of isoenzymes, these were not distinguished by charge differences. In size, the grapevine StiSy shows microheterogeneity and differs from the appreciably larger enzyme prepared from peanut. Prior to induction by fungal attack, virtually no stilbenes are formed in the plant cell. Upon induction of the pathway leading to the stilbene resveratrol, StiSy activity determines the ratelimiting step in the metabolic sequence. The highly induced grapevine cells produce and secrete resveratrol and derivatives which are known to be fungistatic.Abbreviations PAL l-phenylalanine ammonia-lyase - SDS-PAGE sodium dodecyl sulfate-polyacrylamine gel electrophoresis - StiSy stilbene synthase (resveratrol forming) The authors thank Dr. Blaich, Bundesforschungsanstalt Geilweilerhof, Siebeldingen, F.R.G., for provision of callus culture. This paper is based on research supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.  相似文献   

14.
15.
Cell suspensions ofMorinda citrifolia are able to produce large amounts of anthraquinones (AQ) when they are cultivated on a B5-medium containing 1 mg 1-1 naphtyl acetic acid (NAA); this production is inhibited by addition of 2,4-dichloro-phenoxyacetic acid (2,4-d). Also during cultivation on 1 mg 1-1 2,4-d AQ-production is absent.It appeared that in the presence of NAA a kind of AQ-production program is switched on: cell division rate is low as well as metabolic activity, while endogenous sugar levels are high. The same properties develop in the presence of auxins like indolyl-acetic acid and p-chloro-phenylacetic acid. With 2,4-d and related auxins (like p-chloro-phenoxyacetic acid) AQ production is absent and emphasis is laid on a developmental program characterized by high cell division rates, high metabolic activity and low endogenous sugar contents. Independent of the type of auxin applied, the cells grow as a suspension consisting of finely dispersed cells. The AQ-producing differentiation program cannot be maintained during a consecutive series of subculturings: with increasing AQ-contents the viability of the cells and the cell division rate decrease.The possible mechanisms of regulation of AQ-production by auxins are discussed as well as the advantages of the use of theMorinda model system in the study of the relation between growth, primary and secondary metabolism.Abbreviations AQ anthraquinones - 2,4-d 2,4-dichloro-phenoxylacetic acid - DW dry weight - EFW extractive free weight - FW fresh weight - IAA indolyl acetic acid - NAA naphtyl acetic acid - pCP p-chloro-phenylacetic acid - pCPO p-chloro-phenoxy-acetic acid  相似文献   

16.
Photoheterotrophic and heterotrophic suspension cultures of tobacco (Nicotiana tabacum L.) were grown with 1 mM glutathione (reduced; GSH) as sole source of sulfur. Addition of sulfate to both cultures did not alter the rate of exponential growth, but affected the removal of GSH and sulfate in different ways. In photoheterotrophic suspensions, addition of sulfate caused a decline in the net uptake of GSH, whereas sulfate was taken up by the green cells immediately. In heterotrophic suspensions, however, addition of sulfate did not affect the net uptake of GSH and sulfate was only taken up by the cells after the GSH supply in the medium had been exhausted. Apparently, GSH uptake in photoheterotrophic cells is inhibited by sulfate, whereas sulfate uptake is inhibited by GSH in heterotrophic cells. The differences in the effect of GSH on sulfate uptake in photoheterotrophic and heterotrophic tobacco suspensions cannot be attributed to differences in the kinetic properties of sulfate carriers. In short-time transport experiments, both cultures took up sulfate almost entirely by an active-transport system as shown by experiments with metabolic inhibitors; sulfate transport of both cultures obeyed monophasic Michaelis-Menten kinetics with similar app. Km (photoheterotrophic cells: 16.0±2.0 M; heterotrophic cells: 11.8±1.8 M) and Vmax (photoheterotrophic cells: 323±50 nmol·min-1·g-1 dry weight; heterotrophic cells: 233±3 nmol·min-1·g-1 dry weight). Temperature- and pH-dependence of sulfate transport showed almost identical patterns. However, the cultures exhibited remarkable differences in the inhibition of sulfur influx by GSH in short-time transport experiments. Whereas 1 mM GSH inhibited sulfate transport into heterotrophic tobacco cells completely, sulfate transport into photoheterotrophic cells proceeded at more than two-thirds of its maximum velocity at this GSH concentration. The mode of action of GSH on sulfate transport in chloroplast-free tobacco cell does not appear to be direct: a 14-h exposure to 1 mM GSH was found to be necessary to completely block sulfate transport; a 4-h time of exposure did not affect this process. Consequently, glutathione does not seem to be a product of sulfur metabolism acting on sulfate-carrier entities by negative feedback control. When transferred to the whole plant, the observed differences in sulfate and glutathione influx into green and chloroplast-free cells may be interpreted as a regulatory device to prevent the uptake of excess sulfate by plants.Abbreviations DCCD N,N-dicyclohexylcarbodiimide - DNP dinitrophenol - DW dry weight - FW fresh weight - GSH reduced glutathione  相似文献   

17.
Summary We compared Brassica campestris mitochondrial and chloroplast DNAs from whole plants and from a 2-year-old cell culture. No differences were observed in the chloroplast DNAs (cpDNAs), whereas the culture mitochondrial DNA (mtDNA) was extensively altered. Hybridization analysis revealed that the alterations are due entirely to rearrangement. At least two inversions and one large duplication are found in the culture mtDNA. The duplication element is shown to have the usual properties of a plant mtDNA high frequency recombination repeat. The culture mtDNA exists as a complex heterogeneous population of rearranged and unrearranged molecules. Some of the culture-associated rearranged molecules are present in low levels in native plant tissue and appear to have sorted out and amplified in the culture. Other mtDNA rearrangements may have occurred de novo. In addition to alterations of the main mitochondrial genome, an 11.3 kb linear mtDNA plasmid present in whole plants is absent from the culture. Contrary to findings in cultured cells of other plants, small circular mtDNA molecules were not detected in the B. campestris cell culture.  相似文献   

18.
Waterlogging mostly increased fresh weight and water content in shoots and roots of Vigna sinensis and Zea mays while salinity seemed to have a decreasing effect. There was a marked induction of proline in shoots and roots of both plants by salinity with lower values in logged plants. In addition, anthocyanin content was increased in Vigna sinensis by both treatments and in Zea mays only by salinity. Meanwhile the treatments significantly accumulated phenolic compounds in plant shoots. Also there were increased activities of phenylalanine ammonia lyase (PAL) and tyrosine ammonia lyase (TAL) in shoots and roots of both plants. Foliar application of kinetin equilibrated, if any, the effects of both treatments on contents of proline, anthocyanin and phenolic compounds as well as activities of PAL and TAL in shoots and roots of treated plants. These findings reveal that kinetin alleviates the stress symptoms and regulates the changes in phenolic metabolism of waterlogged or salinity treated Vigna sinensis and Zea mays.  相似文献   

19.
Mitochondria are known to be dynamic structures with the energetically and enzymatically mediated processes of fusion and fission responsible for maintaining a constant flux. Mitochondria also play a role of reactive oxygen species production as a byproduct of energy metabolism. In the current study, interrelationships between mitochondrial fusion, energy metabolism and oxidative stress on development were explored using a fzo-1 mutant defective in the fusion process and a mev-1 mutant overproducing superoxide from mitochondrial electron transport complex II of Caenorhabditis elegans. While growth and development of both single mutants was slightly delayed relative to the wild type, the fzo-1;mev-1 double mutant experienced considerable delay. Oxygen sensitivity during larval development, superoxide production and carbonyl protein accumulation of the fzo-1 mutant were similar to wild type. fzo-1 animals had significantly lower metabolism than did N2 and mev-1. These data indicate that mitochondrial fusion can profoundly affect energy metabolism and development.  相似文献   

20.
The effect of auxin, GA and BAP on potato shoot growth and tuberization was investigated under in vitro condition. The shoot length of potato explants increased with the increasing of concentrations (0.5 – 10 mg dm−3) of IAA treatment especially with the addition of GA3 (0.5 mg dm−3), but was inhibited by BAP (5 mg dm−3). The root number and root fresh weight of potato explants increased with the increasing of IAA levels either in the presence of GA3 (treatment IAA+GA) or not (IAA alone). However, no root was observed in the treatment IAA+BAP, instead there were brown swollen calli formed around the basal cut surface of the explants. The addition of GA3 remarkably increased the fresh weight and diameter of calli. Microtubers were formed in the treatments of IAA+BAP and IAA + GA + BAP but not observed in the treatments of IAA alone or IAA + GA. IAA of higher concentrations (2.5 – 10 mg dm−3) was helpful to form sessile tubers. With the increasing of IAA levels, the fresh weight and diameter of microtubers increased progressively. At 10 mg/L IAA, the fresh weight and diameter of microtubers in the treatment of IAA + GA + BAP were 409.6 % and 184.4 % of that in the treatment of IAA + BAP respectively, indicating the interaction effect of GA and IAA in potato microtuberization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号