首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Identification of genes that are upregulated during mammary epithelial cell morphogenesis may reveal novel regulators of tumorigenesis. We have demonstrated that gene expression programs in mammary epithelial cells grown in monolayer cultures differ significantly from those in three-dimensional (3D) cultures. We identify a protein tyrosine phosphate, PTPRO, that was upregulated in mature MCF-10A mammary epithelial 3D structures but had low to undetectable levels in monolayer cultures. Downregulation of PTPRO by RNA interference inhibited proliferation arrest during morphogenesis. Low levels of PTPRO expression correlated with reduced survival for breast cancer patients, suggesting a tumor suppressor function. Furthermore, we showed that the receptor tyrosine kinase ErbB2/HER2 is a direct substrate of PTPRO and that loss of PTPRO increased ErbB2-induced cell proliferation and transformation, together with tyrosine phosphorylation of ErbB2. Moreover, in patients with ErbB2-positive breast tumors, low PTPRO expression correlated with poor clinical prognosis compared to ErbB2-positive patients with high levels of PTPRO. Thus, PTPRO is a novel regulator of ErbB2 signaling, a potential tumor suppressor, and a novel prognostic marker for patients with ErbB2-positive breast cancers. We have identified the protein tyrosine phosphatase PTPRO as a regulator of three-dimensional epithelial morphogenesis of mammary epithelial cells and as a regulator of ErbB2-mediated transformation. In addition, we demonstrated that ErbB2 is a direct substrate of PTPRO and that decreased expression of PTPRO predicts poor prognosis for ErbB2-positive breast cancer patients. Thus, our results identify PTPRO as a novel regulator of mammary epithelial transformation, a potential tumor suppressor, and a predictive biomarker for breast cancer.  相似文献   

2.
The tumor suppressor kinase LKB1 is mutated in a broad range of cancers however, the role of LKB1 mammary gland tumorigenesis is not fully understood. Evaluation of human breast cancer tissue microarrays, indicate that 31% of HER2 positive samples lacked LKB1 expression. To expand on these observations, we crossed STK11fl/fl mice with mice genetically engineered to express activated Neu/HER2-MMTV-Cre (NIC) under the endogenous Erbb2 promoter, to generate STK11−/−/NIC mice. In these mice, the loss of lkb1 expression reduced the latency of ErbB2-mediated tumorigenesis compared to the latency of tumorigenesis in NIC mice alone. Analysis of STK11−/−/NIC mammary tumors revealed hyperactivation of mammalian target of rapamycin (mTOR) through both mTORC1 and mTORC2 pathways as determined by the phosphorylation status of ribosomal protein S6 and AKT. Furthermore, STK11−/−/NIC mammary tumors had elevated ATP levels along with changes in metabolic enzymes and metabolites. The treatment of primary mammary tumor cells with specific mTOR inhibitors AZD8055 and Torin1, that target both mTOR complexes, attenuated mTOR activity and decreased expression of glycolytic enzymes. Our findings underscore the existence of a molecular interplay between LKB1-AMPK-mTORC1 and ErbB2-AKT-mTORC2 pathways with mTOR at its epicenter, suggestive that loss of LKB1 expression may serve as a marker for hyperactivated mTOR in HER2 positive breast cancer and warranting further investigation into therapeutics that target LKB1-AMPK-mTOR and glycolytic pathways.  相似文献   

3.
4.
The anti-tumor function of Stat1 as a regulator of innate immunity and tumor immune surveillance has been long studied and is well understood; however, less clear is its tumor-site specific role. Although Stat1 phosphorylated at tyrosine (Y) 701 and serine (S) 727 is essential for interferon (IFN) signalling, its function in signalling induced in breast cancer cells is not understood. Herein, we show that Stat1 Y701 phosphorylation is increased in human breast tumor cells with elevated levels of ErbB2/HER-2 and in cells transfected with ErbB2/Neu. However, pharmacological inhibition of ErbB2/HER-2 results in the inhibition of Stat1 Y701 phosphorylation indicating an atypical role of phosphorylated Stat1 in the inhibition of ErbB2/HER-2 signalling. Consistent with this notion, we found that Stat1 suppresses tumor development by an activated form of ErbB2/Neu in mouse embryonic fibroblasts in xenograft tumor assays; however, this anti-tumor function of Stat1 does not rely on Y701 and S727 phosphorylation. Experiments with transgenic mice demonstrated that Stat1 acts to suppress Neu-mediated breast tumorigenesis through immune regulatory and tumor-site specific mechanisms. Our data reveal a previous uncharacterized anti-tumor activity of Stat1 in ErbB2/Neu-mediated cell transformation and breast oncogenesis with possible implications in the diagnosis and treatment of ErbB2-positive breast cancers.  相似文献   

5.
Co-amplification and co-overexpression of ErbB2 and Grb7 are frequently found in various cancers, including breast cancer. Biochemical and functional correlations of the two molecules have identified Grb7 to be a pivotal mediator downstream of ErbB2-mediated oncogenesis. However, it remains largely unknown how Grb7 is involve in the ErbB2-mediated tumorigenesis. In this study, we show that Grb7-mediated cell proliferation and growth are essential for the tumorigenesis that occurs in ErbB2-Grb7-overexpressing breast cancer cells. Intrinsically, EGF-induced de novo Grb7 tyrosine phosphorylation/activation recruits and activates Ras-GTPases and subsequently promotes the phosphorylation of ERK1/2, thereby stimulating tumor growth. Furthermore, we also found the anti-tumor effect could be synergized by co-treatment with Herceptin plus Grb7 knockdown in Sk-Br3 breast cancer cells. Our findings illustrate an underlying mechanism by which Grb7 promotes tumorigenesis through the formation of a novel EGFR-Grb7-Ras signaling complex, thereby highlighting the potential strategy of targeting Grb7 as an anti-breast cancer therapy.  相似文献   

6.
Simultaneous deregulation of both Wnt and ErbB growth factors has previously been shown to result in the cooperative induction of mammary gland tumors. Using the murine mammary tumor virus (MMTV)-Wnt-1 transgenic model of mammary carcinoma, we have identified an unvarying association between beta-catenin and epidermal growth factor receptor/c-Neu (ErbB1/ErbB2) heterodimers in mammary gland tumors, indicating a requirement for ErbB signaling in Wnt-mediated tumorigenesis. Expansion of these observations to a second transgenic model, MMTV-c-Neu, demonstrated similar tumor-specific interactions, including an ErbB1 ligand-inducible phosphorylation of both beta-catenin and c-Neu. Direct relevance of these findings to human breast cancer was established upon examination of a set of human infiltrating ductal breast adenocarcinoma and lymph node metastasis tissues taken at surgery. These data revealed increased levels of beta-catenin in tumors and metastases versus normal breast as well as an association between beta-catenin and c-Neu that measurably occurs only in neoplasia, most strongly in metastatic lesions. These studies have identified a seemingly indispensable interaction between beta-catenin and epidermal growth factor receptor/c-Neu heterodimers in Wnt-1-mediated breast tumorigenesis that may indicate a fundamental signaling event in human metastatic progression.  相似文献   

7.
The leucine-rich proteoglycan decorin interacts with the epidermal growth factor receptor and triggers a signaling pathway that leads to growth suppression. We find that decorin causes a functional inactivation of the oncogenic ErbB2 protein in breast carcinoma cells. Upon de novo expression of decorin, the ErbB2 protein is reduced by approximately 40%, whereas its degree of tyrosyl phosphorylation is almost completely abrogated. Both co-culture experiments or experiments with recombinant decorin demonstrate an initial induction of ErbB2 tyrosine kinase, followed by a profound and long-lasting down-regulation of its activity. This leads to growth inhibition and cytodifferentiation of mammary tumor cells and a concurrent suppression of their tumorigenic potential in vivo. These decorin-mediated effects appear to involve the activation of ErbB4, which in turn would block the phosphorylation of heterodimers containing either ErbB2 or ErbB3. These results provide an explanation for the heightened decorin levels around invasive carcinomas and suggest that decorin may function as a natural antagonist of neoplastic cells enriched in ErbB2.  相似文献   

8.

Background

ErbB2 Receptor Tyrosine Kinase 2 (ErbB2, HER2/Neu) is amplified in breast cancer and associated with poor prognosis. Growing evidence suggests interplay between ErbB2 and insulin-like growth factor (IGF) signaling. For example, ErbB2 inhibitors can block IGF-induced signaling while, conversely, IGF1R inhibitors can inhibit ErbB2 action. ErbB receptors can bind and phosphorylate insulin receptor substrates (IRS) and this may be critical for ErbB-mediated anti-estrogen resistance in breast cancer. Herein, we examined crosstalk between ErbB2 and IRSs using cancer cell lines and transgenic mouse models.

Methods

MMTV-ErbB2 and MMTV-IRS2 transgenic mice were crossed to create hemizygous MMTV-ErbB2/MMTV-IRS2 bigenic mice. Signaling crosstalk between ErbB2 and IRSs was examined in vitro by knockdown or overexpression followed by western blot analysis for downstream signaling intermediates and growth assays.

Results

A cross between MMTV-ErbB2 and MMTV-IRS2 mice demonstrated no enhancement of ErbB2 mediated mammary tumorigenesis or metastasis by elevated IRS2. Substantiating this, overexpression or knockdown of IRS1 or IRS2 in MMTV-ErbB2 mammary cancer cell lines had little effect upon ErbB2 signaling. Similar results were obtained in human mammary epithelial cells (MCF10A) and breast cancer cell lines.

Conclusion

Despite previous evidence suggesting that ErbB receptors can bind and activate IRSs, our findings indicate that ErbB2 does not cooperate with the IRS pathway in these models to promote mammary tumorigenesis.
  相似文献   

9.
ErbB2/Neu destabilizes the cyclin-dependent kinase (Cdk) inhibitor p27 and increases expression of cyclin D1. Therefore, we studied the roles of p27 and cyclin D1 in ErbB2-mediated mammary epithelial cell transformation. Overexpression of ErbB2 or cyclin D1 in p27(+/-) primary murine mammary epithelial cells resulted in increased proliferation, cyclin D1 nuclear localization, and colony formation in soft agar compared to those in p27(+/+) cells. In contrast, ErbB2- or cyclin D1-overexpressing p27(-/-) cells displayed reduced proliferation, anchorage-independent growth, Cdk4 activity, cyclin D1 expression, and cyclin D1 nuclear localization compared to wild-type cells. A cyclin D1 mutation in its nuclear export sequence (T286A) partially rescued nuclear localization of cyclin D1 in p27(-/-) cells but did not increase proliferation or Cdk4 kinase activity. Overexpression of E2F1, however, increased proliferation to the same degree in p27(+/+), p27(+/-), and p27(-/-) cells. Mammary glands from MMTV (mouse mammary tumor virus)-neu/p27(+/-) mice exhibited alveolar hyperplasia, enhanced proliferation, decreased apoptosis, and accelerated tumor formation compared to MMTV-neu/p27(+/+) glands. However, MMTV-neu/p27(-/-) glands showed decreased proliferation, cyclin D1 expression, and Cdk4 activity, as well as markedly prolonged tumor latency, compared to MMTV-neu/p27(+/+) glands. These results suggest that p27(+/-) mammary epithelium may be more susceptible to oncogene-induced tumorigenesis, whereas p27-null glands, due to severely impaired cyclin D1/Cdk4 function, are more resistant to transformation.  相似文献   

10.
Although expression of the ErbB4 receptor tyrosine kinase in breast cancer is generally regarded as a marker for favorable patient prognosis, controversial exceptions have been reported. Alternative splicing of ErbB4 pre-mRNAs results in the expression of distinct receptor isoforms with differential susceptibility to enzymatic cleavage and different downstream signaling protein recruitment potential that could affect tumor progression in different ways. ErbB4 protein expression from nontransfected cells is generally low compared with ErbB1 in most cell lines, and much of our knowledge of the role of ErbB4 in breast cancer is derived from the ectopic overexpression of the receptor in non-breast-derived cell lines. One of the primary functions of ErbB4 in vivo is in the maturation of mammary glands during pregnancy and lactation induction. Pregnancy and extended lactation durations have been correlated with reduced risk of breast cancer, and the role of ErbB4 in tumor suppression may therefore be linked with its role in lactation. Most reports are consistent with a role for ErbB4 in reversing growth stimuli triggered by other ErbB family members during puberty. In this report, we provide a systems-level examination of several reports highlighting the seemingly opposing roles of ErbB4 in breast cancer and potential explanations for the discrepancies and draw the conclusion that future studies examining the function of ErbB4 in breast cancer should also take into account the pregnancy history, lactation status, and hormone supplementation or ablation history of the patient from whom the tumor or tumor cells are derived.  相似文献   

11.
Tumor cells exhibit an altered metabolism characterized by elevated aerobic glycolysis and lactate secretion which is supported by an increase in glucose transport and consumption. We hypothesized that reducing or eliminating the expression of the most prominently expressed glucose transporter(s) would decrease the amount of glucose available to breast cancer cells thereby decreasing their metabolic capacity and proliferative potential.Of the 12 GLUT family glucose transporters expressed in mice, GLUT1 was the most abundantly expressed at the RNA level in the mouse mammary tumors from MMTV-c-ErbB2 mice and cell lines examined. Reducing GLUT1 expression in mouse mammary tumor cell lines using shRNA or Cre/Lox technology reduced glucose transport, glucose consumption, lactate secretion and lipid synthesis in vitro without altering the concentration of ATP, as well as reduced growth on plastic and in soft agar. The growth of tumor cells with reduced GLUT1 expression was impaired when transplanted into the mammary fat pad of athymic nude mice in vivo. Overexpression of GLUT1 in a cell line with low levels of endogenous GLUT1 increased glucose transport in vitro and enhanced growth in nude mice in vivo as compared to the control cells with very low levels of GLUT1.These studies demonstrate that GLUT1 is the major glucose transporter in mouse mammary carcinoma models overexpressing ErbB2 or PyVMT and that modulation of the level of GLUT1 has an effect upon the growth of mouse mammary tumor cell lines in vivo.  相似文献   

12.
13.
Beta 4 integrin amplifies ErbB2 signaling to promote mammary tumorigenesis   总被引:15,自引:0,他引:15  
  相似文献   

14.
Amplification and overexpression of ErbB2 (HER2/Neu) is one of the most common alterations associated with breast cancer. Activation of ErbB2 via homodimerization in a non-transformed human mammary epithelial cell line, MCF-10A, in basement membrane cultures leads to formation of proliferative structures that share properties with non-invasive early stage lesions. Recently, we have shown that activation of ErbB2 homodimers combined with expression of transforming growth factor (TGF)-beta induces invasive and migratory activity in MCF-10A cells. In this system, migration requires inputs from numerous cellular pathways. We discuss this data and a model for migration induced by ErbB2 and TGF-beta. Concurrent studies by other groups have also shown that ErbB2 and TGF-beta can cooperate to increase metastatic and invasive behavior in murine mammary tumors. Here we discuss these studies and the potential implications of this research on breast cancer therapeutics.  相似文献   

15.
Amplification and overexpression of ErbB2 (HER2/Neu) is one of the most common alterations associated with breast cancer. Activation of ErbB2 via homodimerization in a non-transformed human mammary epithelial cell line, MCF-10A, in basement membrane cultures leads to formation of proliferative structures that share properties with non-invasive early stage lesions. Recently, we have shown that activation of ErbB2 homodimers combined with expression of transforming growth factor (TGF)-beta induces invasive and migratory activity in MCF-10A cells. In this system, migration requires inputs from numerous cellular pathways. We discuss this data and a model for migration induced by ErbB2 and TGF-beta. Concurrent studies by other groups have also shown that ErbB2 and TGF-beta can cooperate to increase metastatic and invasive behavior in murine mammary tumors. Here we discuss these studies and the potential implications of this research on breast cancer therapeutics.  相似文献   

16.
ErbB2/Neu oncogene is overexpressed in 25% of invasive/metastatic breast cancers. We have found that deletion of heat shock factor Hsf1 in mice overexpressing ErbB2/Neu significantly reduces mammary tumorigenesis and metastasis. Hsf1+/−ErbB2/Neu+ tumors exhibit reduced cellular proliferative and invasive properties associated with reduced activated ERK1/2 and reduced epithelial-mesenchymal transition (EMT). Hsf1+/+Neu+ mammary epithelial cells exposed to TGFβ show high levels of ERK1/2 activity and EMT; this is associated with reduced expression of E-cadherin and increased expression of Slug and vimentin, a mesenchymal marker. In contrast, Hsf1−/−Neu+ or Hsf1+/+Neu+ cells do not exhibit activated ERK1/2 and show reduced EMT in the presence of TGFβ. The ineffective activation of the RAS/RAF/MEK/ERK1/2 signaling pathway in cells with reduced levels of HSF1 is due to the low levels of HSP90 in complex with RAF1 that are required for RAF1 stability and maturation. These results indicate a powerful inhibitory effect conferred by HSF1 downstream target genes in the inhibition of ErbB2-induced breast cancers in the absence of the Hsf1 gene.  相似文献   

17.
The ErbB family of receptor kinases is composed of four members: epidermal growth factor receptor (EGFR/ErbB1), ErbB2/neu, ErbB3, and ErbB4. Amplification of the ErbB2/neu is found in about 30% of breast cancer patients and is associated with a poor prognosis. Heregulin (HRG) activates the ErbB2 via induction of heterodimerization with ErbB3 and ErbB4 receptors. With suppression subtractive hybridization, we demonstrated that the expression of cytochrome c oxidase subunit II (COXII) is HRG-responsive. Two nontransformed human mammary epithelial cell lines, the HB2 and the HB2(ErbB2) (the HB2 engineered to overexpress ErbB2), displayed an opposite response to HRG-mediated regulation. HRG upregulated mRNA expression of COXII in the HB2 cells, but suppressed COXII expression in the HB2(ErbB2) cells. A human breast cancer cell line (T47D), which expresses ErbB2 at a level similar to that of the HB2 cells, also responded to HRG by increasing COXII mRNA levels. Therefore, HRG regulation of COXII expression depends on the levels of ErbB2 expression. Furthermore, the expression of COXII was inversely correlated to the levels of ErbB2, i.e., the cells overexpressing ErbB2 exhibited lower COXII levels. HRG-evoked signal transduction differed between the cells with normal ErbB expression and the cells overexpressing ErbB2. The activation of both ERK and PI3-K was essential for HRG regulation of COXII, i.e., blockage of either pathway eliminated HRG-mediated alteration. This is the first report demonstrating that the expression of mitochondria-encoded COXII is HRG-responsive. The levels of ErbB2 expression are decisive for the diverse biological activities of HRG.  相似文献   

18.
While most breast cancers are thought to arise from the luminal layer of the breast tissue, it remains unclear which specific cells in the luminal layer are the cells of origin of breast cancer. We have previously reported that WAP-positive luminal epithelial cells are at increased susceptibility to tumor initiation by ErbB2 compared to the bulk population, while the mammary cells with canonical Wnt signaling activity fail to evolve into tumors upon ErbB2 activation. Here, we used retrovirus to introduce ErbB2 into the Krt6a-positive mammary progenitor subset of the luminal epithelium and, for comparison, into the mammary luminal epithelium indiscriminately. Tumors developed from both groups of cells with a similar latency. These data indicate that the Krt6a-positive subset of mammary epithelial cells can be induced to form cancer by ErbB2 but it is not more susceptible to tumorigenesis initiated by ErbB2 than the bulk population of the luminal epithelium.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号