首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electron-transfer reaction between spinach wild-type plastocyanin (Pc(WT)) two site-directed mutants, Pc(Thr79His) and Pc(Lys81His), and spinach Photosystem 1 particles, has been studied as a function of protein concentration, ionic strength and pH by using laser-flash absorption spectroscopy. The kinetic data are interpreted using the simplest possible three-step model, involving a rate-limiting conformational change preceding intracomplex electron transfer. The three proteins show similar concentration, pH and ionic strength dependencies. The effects of ionic strength and pH on the reaction indicate a strong influence of complementary charges on complex formation and stabilization. Studies with apoprotein support the opinion that the hydrophobic patch is critical for an productive interaction with the reaction center of Photosystem 1. Together with earlier site-directed mutagenesis studies, the absence of a detectable Photosystem 1 reaction in the presence of reduced azurin, stellacyanin, cytochrome c and cytochrome c551, demonstrates the existence of a high level of specificity in the protein-protein interface in the formation of an efficient electron-transfer complex.  相似文献   

2.
The electron-transfer reactions of site-specific mutants of the blue copper protein azurin from Pseudomonas aeruginosa with its presumed physiological redox partners cytochrome c551 and nitrite reductase were investigated by temperature-jump and stopped-flow experiments. In the hydrophobic patch of azurin Met44 was replaced by Lys, and in the His35 patch His35 was replaced by Phe, Leu and Gln. Both patches were previously thought to be involved in electron transfer. 1H-NMR spectroscopy revealed only minor changes in the three-dimensional structure of the mutants compared to wild-type azurin. Observed changes in midpoint potentials could be attributed to electrostatic effects. The slow relaxation phase observed in temperature-jump experiments carried out on equilibrium mixtures of wild-type azurin and cytochrome c551 was definitively shown to be due to a conformational relaxation involving His35. Analysis of the kinetic data demonstrated the involvement of the hydrophobic but not the His35 patch of azurin in the electron transfer reactions with both cytochrome c551 and nitrite reductase.  相似文献   

3.
Saccharomyces cerevisiae flavocytochrome b 2 couples the oxidation of L-lactate to the reduction of cytochrome c. The second-order rate constant for cytochrome c reduction by flavocytochrome b 2 depends on the rate of complex formation and is sensitive to ionic strength. Mutations in the heme domain of flavocytochrome b 2 (Glu63→Lys, Asp72→Lys and the double mutation Glu63→Lys:Asp72→Lys) have significant effects on the reaction with cytochrome c, implicating these residues in complex formation. This kinetic information has been used to guide molecular modelling studies, which are consistent with there being no one single best-configuration. Rather, there is a set of possible complexes in which the docking-face of cytochrome c can approach flavocytochrome b 2 in a variety of orientations. Four cytochromes c can be accommodated on the flavocytochrome b 2 tetramer, with each cytochrome c forming interactions with only one flavocytochrome b 2 subunit. All the models involve residues 72 and 63 on flavocytochrome b 2 but in addition predict that Glu237 may also be important for complex formation. These acidic residues interact with the basic residues 13, 27 and 79 on cytochrome c. Through this triangle of interactions runs a possible σ-tunnelling pathway for electron transfer. This pathway starts with the imidazole ring of His66 (a ligand to the heme-iron of flavocytochrome b 2) and ends with the ring of Pro68, which is in van der Waals contact with the cytochrome c heme. In total, the edge-to-edge "through space" distance from the imidazole ring of His66 to the C3C pyrrole ring of cytochrome c is 13.1?Å.  相似文献   

4.
The kinetics of electron transfer between the isolated enzymes of cytochrome c1 and cytochrome c have been investigated using the stopped-flow technique. The reaction between ferrocytochrome c1 and ferricytochrome c is fast; the second-order rate constant (k1) is 3.0 · 107 M?1 · s?1 at low ionic strength (I = 223 mM, 10°C). The value of this rate constant decreases to 1.8 · 105 M?1 · s?1 upon increasing the ionic strength to 1.13 M. The ionic strength dependence of the electron transfer between cytochrome c1 and cytochrome c implies the involvement of electrostatic interactions in the reaction between both cytochromes. In addition to a general influence of ionic strength, specific anion effects are found for phosphate, chloride and morpholinosulphonate. These anions appear to inhibit the reaction between cytochrome c1 and cytochrome c by binding of these anions to the cytochrome c molecule. Such a phenomenon is not observed for cacodylate. At an ionic strength of 1.02 M, the second-order rate constants for the reaction between ferrocytochrome c1 and ferricytochrome c and the reverse reaction are k1 = 2.4 · 105 M?1 · s?1 and k?1 = 3.3 · 105 M?1 · s?1, respectively (450 mM potassium phosphate, pH 7.0, 1% Tween 20, 10°C). The ‘equilibrium’ constant calculated from the rate constants (0.73) is equal to the constant determined from equilibrium studies. Moreover, it is shown that at this ionic strength, the concentrations of intermediary complexes are very low and that the value of the equilibrium constant is independent of ionic strength. These data can be fitted into the following simple reaction scheme: cytochrome c2+1 + cytochrome c3+ai cytochrome c3+1 + cytochrome c2+.  相似文献   

5.
Analysis of electron-transfer (ET) kinetics data obtained from experiments on Ru-modified proteins (azurin, cytochrome c, myoglobin) and the bacterial photosynthetic reaction center reveals that distant donor-acceptor electronic couplings depend upon the secondary structure of the intervening polypeptide matrix. The β-sheet azurin structure efficiently and isotropically mediates coupling with an exponential distance-decay constant of 1.1?Å–1. The experimentally derived distance-decay constant of 1.4?Å–1 for long-range ET in myoglobin and the reaction center suggests that hydrogen-bond couplings are weaker through α helices than across β sheets. The donor-acceptor interactions of systems with comparable tunneling energies fall into two coupling zones: the β zone (bounded by distance-decay constants of 0.9?and 1.15 Å–1) includes all the β-sheet (azurin) couplings and all but one coupling in cytochrome c; the α zone (boundaries: 1.25 and 1.6?Å–1) includes less strongly coupled donor-acceptor pairs in myoglobin and the reaction center as well as a relatively weakly coupled pair in cytochrome c.  相似文献   

6.
(1) Using the pulse-radiolysis and stopped-flow techniques, the reactions of iron-free (porphyrin) cytochrome c and native cytochrome c with cytochrome aa3 were investigated. The porphyrin cytochrome c anion radical (generated by reduction of porphyrin cytochrome c by the hydrated electron) can transfer its electron to cytochrome aa3. The bimolecular rate constant for this reaction is 2·107 M?1·s?1 (5 mM potassium phosphate, 0.5% Tween 20, pH 7.0, 20°C). (2) The ionic strength dependence of the cytochrome c-cytochromeaa3 interaction was measured in the ionic strength range between 40 and 120 mM. At ionic strengths below 30 mM, a cytochrome c-cytochrome aa3 complex is formed in which cytochrome c is no longer reducible by the hydrated electron. A method is described by which the contributions of electrostatic forces to the reaction rate can be determined. (3) Using the stopped-flow technique, the effect of the dielectric constant (?) of the reaction medium on the reaction of cytochrome c with cytochrome aa3 was investigated. With increasing ? the second-order rate constant decreased.  相似文献   

7.
One of the functions of cytochrome c in living cells is the initiation of apoptosis by catalyzing lipid peroxidation in the inner mitochondrial membrane, which involves cytochrome c bound with acidic lipids, especially cardiolipin. In this paper the results of studies of cytochrome c-cardiolipin complex structure carried out by different authors mainly on unilamellar cardiolipin-containing phospholipid liposomes are critically analyzed. The principal conclusion from the published papers is that cytochrome c-cardiolipin complex is formed by attachment of a cytochrome c molecule to the membrane surface via electrostatic interactions and the subsequent penetration of one of the fatty-acid cardiolipin chains into the protein globule, this being associated with hydrophobic interactions that break the >Fe…S(Met80) coordinate bond and giving rise to appearance of cytochrome c peroxidase activity. Nevertheless, according to data obtained in our laboratory, cytochrome c and cardiolipin form spherical nanoparticles in which protein is surrounded by a monolayer of cardiolipin molecules. Under the action of cooperative forces, the protein in the globule expands greatly in volume, its conformation is modified, and the protein becomes a peroxidase. In extended membranes, such as giant monolayer liposomes, and very likely in biological membranes, the formation of nanospheres of cytochrome c-cardiolipin complex causes fusion of membrane sections and dramatic chaotization of the whole membrane structure. The subsequent disintegration of the outer mitochondrial membrane is accompanied by cytochrome c release from the mitochondria and triggering of a cascade of programmed cell death reactions.  相似文献   

8.
P.Muir Wood  D.S. Bendall 《BBA》1975,387(1):115-128
The rates of electron transfer to P700 from plastocyanin and cytochrome f have been compared with those from three other c-type cytochromes and azurin, a copper protein resembling plastocyanin. Three different disruptive techniques were used to expose P700; digitonin, Triton X-100 and sonication. The following rate constants were measured at 25 °C, pH 7.0, with digitonin-treated chloroplasts: plastocyanin, 8 · 107 M?1 · s?1; red-algal cytochrome c-553, 1.9 · 107 M?1 · s?1; Pseudomonas cytochrome c-551, 8 · 106 M?1 · s?1; azurin, ? 3 · 105 M?1 · s?1; cytochrome f, ? 2 · 104 M?1 · s?1; mammalian cytochrome c, ? 2 · 104 M?1 · s?1. For electron transfer from plastocyanin, the effects of ionic strength, pH and temperature were also studied, and saturation effects found in earlier work were avoided by a full consideration of the various secondary reactions and inclusion of superoxide dismutase. The relative rates are discussed in relation to photosynthetic electron transport.  相似文献   

9.
Cyclic voltammetry has been used to study the effects of interactions between horse cytochrome c and solid-supported planar lipid membranes, comprised of either egg phosphatidylcholine (PC) or PC plus 20 mol.% cardiolipin (CL), on the redox potential and the electrochemical electron transfer rate between the protein and a semiconductor electrode. Experiments were performed over a wide range of cytochrome c concentrations (0–440 M) at low (20 mM) and medium (160 mM) ionic strengths. Three types of electrochemical behavior were observed, which varied as a function of the experimental conditions. At very low cytochrome c concentration (0.1 M), and under conditions where electrostatic forces dominated the protein–lipid membrane interaction (i.e., low ionic strength with membranes containing CL), a redox potential (265 mV) and an electrochemical electron transfer rate constant (0.09s –1)were obtained which compare well with those measured in other laboratories using a variety of different chemical modifications of the working electrode. Two other electrochemical signals (not reported with chemically modified electrodes) were also observed to occur at higher cytochrome c concentrations with this membrane system, as well as with two other systems (membranes containing CL under medium ionic strength conditions, and PC only at low ionic strength). These involved positive shifts of the cytochrome c redox potential (by 40 and 60 mV) and large decreases in the electron transfer rate (to 0.03 and 0.003 s–1). The observations can be rationalized in terms of a structural model of the cytochrome c–membrane interaction, in which association involves both electrostatic and hydrophobic forces and results in varying degrees of insertion of the protein into the hydrophobic interior of the membrane.  相似文献   

10.
Phosphoenolpyruvate (PEP) carboxykinases catalyse the reversible formation of oxaloacetate (OAA) and ATP (or GTP) from PEP, ADP (or GDP) and CO2. They are activated by Mn2+, a metal ion that coordinates to the protein through the ?-amino group of a lysine residue, the N?-2-imidazole of a histidine residue, and the carboxylate from an aspartic acid residue. Neutrality in the ?-amino group of Lys213 of Saccharomyces cerevisiae PEP carboxykinase is expected to be favoured by the vicinity of ionised Lys212. Glu272 and Glu284, located close to Lys212, should, in turn, electrostatically stabilise its positive charge and hence assist in keeping the ?-amino group of Lys213 in a neutral state. The mutations Glu272Gln, Glu284Gln, and Lys212Met increased the activation constant for Mn2+ in the main reaction of the enzyme up to seven-fold. The control mutation Lys213Gln increased this constant by ten-fold, as opposed to control mutation Lys212Arg, which did not affect the Mn2+ affinity of the enzyme. These observations indicate a role for Glu272, Glu284, and Lys212 in assisting Lys213 to properly bind Mn2+. In an unexpected result, the mutations Glu284Gln, Lys212Met and Lys213Gln changed the nucleotide-independent OAA decarboxylase activity of S. cerevisiae PEP carboxykinase into an ADP-requiring activity, implying an effect on the OAA binding characteristics of PEP carboxykinase.  相似文献   

11.
The rate of reduction of cytochrome c by 2-amino-4-hydroxy-6,7-dimethyl-5,6,7,8-tetrahydropteridine was examined as a function of binding to liposomes prepared from mixed soybean phospholipids, asolectin, and from various purified phospholipids. Binding of cytochrome c to asolectin liposomes caused an increase in the rate of reduction by the pteridine derivative from 2900 to 16 000 M?1 · s?1 at pH 7. At low ionic strength (0.003 M) the binding stoichiometry between cytochrome c and asolectin vesicles is 15 ± 2 phosphospolipid/cytochrome c (mole ratio), determined by monitoring the change in reduction rate of cytochrome c by pteridine as cytochrome c is bound to the vesicles. A stoichiometry of 14 phospholipid/cytochrome c was obtained from gel filtration studies. Equilibrium association constants for the binding of cytochrome c to sites on the asolectin vesicles varied from 2.2 · 106 to 1.8 · 103 M?1 between 0.02 and 0.10 M ionic strength, respectively. In general, liposomes prepared from purified phospholipids resulted in less binding of cytochrome c per mole of phospholipid and lower reduction rates than those prepared from asolectin.  相似文献   

12.
Ionic strength dependencies of electron transfer between Cytochrome b 5 and variants of yeast Cytochrome c were analyzed by curve fitting to the simple model of the electrostatic interaction between the two proteins assuming the process to be non-diffusion-controlled. Mutagenesis of Lys79, but not Lys72, leads to an increase of effective radius of the interacting charged species, suggesting that the mutation effects of the two residues on the electrostatic field distribution near the contact site are different, even within the crude electrostatic model used. Extrapolation of the ionic strength dependencies to infinite ionic strength resulted in similar values, around (2–3)×10-6 for all Cyt c variants considered thus showing the lysine residue mutations to primarily affect protein association rather than the electron transfer directly. Based on the ionic strength dependencies of binding constants of the two proteins into an electrostatically stabilized complex, the monomolecular electron transfer rate constant was estimated to be 1.1×104–1.6×105 s-1. The electrostatic part of the binding energy of the complex at I=0.19 was estimated to be-2.4 kcal/mol, strongly at variance with the values-13.0 and-6.4 kcal/mol reported for the two types of complexes identified using Brownian dynamics techniques. Possible reasons for this discrepancy are discussed.  相似文献   

13.
The synthesis of an imidoester spin label, whose advantages relative to other spin labels include its water solubility, lysine specificity, and retention of positive charge at the reaction site is described. Cytochrome c is spin labeled and shown to exhibit spectral changes upon interacting with lipid vesicles and lipid-rich cytochrome oxidase preparations. Spin labeled cytochrome c in buffer or in the presence of mitochondria at high ionic strength had a correlation time of τ = 0.91 ± 10?9 s; at low ionic strength the mitochondrial signal was more immobilized, τ = 2.27 ± 0.13 × 10?9 s; and further immobilization was observed when cytochrome c was bound to the high-affinity site of purified oxidase containing 37% phospholipid (τ = 2.71 ± 0.22 × 10?9). Cytochrome c-oxidase electron transfer rates were unaltered by spin labeling. The results suggest that this imidoester spin label will be useful for studies of protein-protein and protein-lipid interactions.  相似文献   

14.
《Biophysical journal》1998,75(3):1483-1490
The effect of ionic strength on the macroscopic and microscopic redox potentials and the heme environment of cytochrome c3 from Desulfovibrio vulgaris Miyazaki F have been investigated by NMR and electrochemical methods. The redox potentials of this tetraheme protein are found to be ionic strength-dependent. Especially, the microscopic redox potentials of hemes 2 and 3 at the fourth reduction step increase significantly with increasing ionic strength, which is in contradiction to the theoretical expectation. The coordinated imidazole proton signals are unaffected by ionic strength. However, the methyl and propionate proton signals of hemes 1 and 4 showed significant ionic strength dependencies that are distinct from those for hemes 2 and 3. This heme classification is the same as that found in the ionic strength dependencies of the microscopic redox potentials at the fourth reduction step. Furthermore, the effect of ionic strength on the electrostatic potentials at the heme irons has been examined on the theoretical basis. The electrostatic potential at heme 4 changes up to 1 M ionic strength, which was not expected from the observations reported on cytochromes so far. These results are discussed in connection with the reported anomalous ionic strength dependency of the reduction rate of cytochrome c3.  相似文献   

15.
The redox potentials for cytochrome c-552 at different ionic strengths, pH 7, have been determined, together with the thermodynamic parameters of the redox reaction. The effects of the electrostatic media on the redox potential of cytochrome c-552 do not depend on the nature of the ions employed. At 25 °C and pH 7 the observed potentials depend on the ionic strength, I, according to the equation: Eobso = 0.280 + .525 (I12(I + I12)). The significance of the ionic strength dependence of the redox potentials and their derived thermodynamic parameters are discussed and compared to those of mammalian cytochrome c. It is concluded that the redox potentials for ionic strength approaching zero are not affected by the overall net charge of the proteins; at finite ionic strengths, the protein charges play a very important role in determining the observed redox potentials.  相似文献   

16.
Abstract

Structural comparisons of proteins in solution are often required to examine structure-functional relationships, study structural effects of mutations or distinguish between various forms of the same molecule under different conditions. A nuclear magnetic resonance (NMR) based probabilistic strategy is presented and used to study the structural differences between the two redox states of cytochrome C in solution. A probabilistic approach is employed to calculate the main chain conformations of horse ferro- and ferricytochrome C in solution, based on the published sequential d connectivity data. Conformational differences between the two oxidation states of horse cytochrome C in solution are found to be statistically significant. The largest changes in conformation are at residues Lys27, Thr28, Leu32, Gln42, Thr47, Tyr48, Thr49, Glu69, Lys72, Met80, Phe82, Ile85 and Lys86, all of which are close to the heme (within 14 Å of the heme iron in the high resolution Xray structure of tuna cytochrome c). We suggest that these conformational changes may modulate local dipole moments and hence influence the interactions of cytochrome C with its physiological redox partners during the electron transfer process. The oxidation state dependent conformational differences are found to be much greater in solution than in the crystalline state, and the solution and crystal structures differ significantly in regions close to the heme. These results suggest that the highly charged nature of cytochrome C makes this protein particularly sensitive to the ionic strength of its environment and leads to differences between crystal and solution structures in the same oxidation state. In such cases, crystal structures must be used with caution for modeling molecular interactions in vivo. More generally, this analysis indicates that the determination of accurate local conformations based on nmr data can provide useful information about structure-functional aspects of proteins in solution.  相似文献   

17.
Analysis of electron-transfer (ET) kinetics data obtained from experiments on Ru-modified proteins (cytochrome c, azurin, myoglobin) reveals that distant donor-acceptor electronic couplings depend upon the secondary structure of the intervening polypeptide matrix. Rates of Fe2+→Ru3+ ET reactions in cytochrome c decay exponentially with tunneling-pathway length (decay constant 0.73?Å–1); these rates also decay exponentially with Ru-Fe distance (decay constant 1.1?Å–1). In azurin, a β-sheet protein, Cu+→Ru3+ rates exhibit an exponential Cu-Ru distance dependence with a decay constant of 1.1?Å–1. Comparison of distant couplings in azurin and myoglobin suggests that hydrogen bonds are better mediators across β sheets than through α helices.  相似文献   

18.
Kinetics of electron transfer from soluble cytochrome c2 to the tetraheme cytochrome c have been measured in isolated reaction centers and in membrane fragments of the photosynthetic purple bacterium Rhodopseudomonas viridis by time-resolved flash absorption spectroscopy. Absorbance changes kinetics in the region of cytochrome -bands (540–560 nm) were measured at 21 °C under redox conditions where the two high-potential hemes (c-559 and c-556) of the tetraheme cytochrome were chemically reduced. After flash excitation, the heme c-559 donates an electron to the special pair of bacteriochlorophylls and is then re-reduced by heme c-556. The data show that oxidized heme c-556 is subsequently re-reduced by electron transfer from reduced cytochrome c2 present in the solution. The rate of this reaction has a non-linear dependence on the concentration of cytochrome c2, suggesting a (minimal) two-step mechanism involving the f ormation of a complex between cytochrome c2 and the reaction center, followed by intracomplex electron transfer. To explain the monophasic character of the reaction kinetics, we propose a collisional mechanism where the lifetime of the temporary complex is short compared to electron transfer. The limit of the halftime of the bimolecular process when extrapolated to high concentrations of cytochrome c2 is 60 ± 20 s. There is a large ionic strength effect on the kinetics of electron transfer from cytochrome c2 to heme c-556. The pseudofirst-order rate constant decreases from 1.1 × 107 M-1 s-1 to 1.3 × 106 M-1 s-1 when the ionic strength is increased from 1 to 1000 mM. The maximum rate (1.1 × 107 M-1 s-1) was obtained at about 1 mM ionic strength. This dependence of the rate on ionic strength s uggests that attractive electrostatic interactions contribute to the binding of cytochrome c2 with the tetraheme cytochrome. On the basis of our data and of previous molecular modelling, it is proposed that cytochrome c2 docks close to the low-potential heme c-554 and reduces heme c-556 via c-554.  相似文献   

19.
H. Roberts  B. Hess 《BBA》1977,462(1):215-234
The steady-state kinetics of purified yeast cytochrome c oxidase were investigated at low ionic strength where the electrostatic interaction with cytochrome c is maximized. In 10 mM cacodylate/Tris (pH 6.5) the oxidation kinetics of yeast iso-1-cytochrome c were sigmoidal with a Hill coefficient of 2.35, suggesting cooperative binding. The half-saturation point was 1.14 μM. Horse cytochrome c exhibited Michaelis-Menten kinetics with a higher affinity (Km = 0.35 μM) and a 100% higher maximal velocity.In 67 mM phosphate the Hill coefficient for yeast cytochrome c decreased to 1.42, and the species differences in Hill coefficients were lessened. Under the latter conditions, a yeast enzyme preparation partially depleted of phospholipids was activated on addition of diphosphatidylglycerol liposomes. When the enzyme was incorporated into sonicated yeast promitochondrial particles the apparent Km for horse cytochrome c was considerably lower than the value for the isolated enzyme.ATP was found to inhibit both the isolated oxidase and the membrane-bound enzyme. With the isolated enzyme in 10 mM cacodylate/Tris, 3 mM ATP increased the half-saturation point with yeast cytochrome c 3-fold, without altering the maximal velocity or the Hill coefficient. 67 mM phosphate abolished the inhibition of the isolated oxidase by ATP.The increase in affinity for cytochrome c produced by binding the oxidase to the membrane was not observed in the presence of 3 mM ATP, with the result that the membrane-bound enzyme was more sensitive to inhibition by ATP. ADP was a less effective inhibitor than ATP, and did not prevent the inhibition by ATP.It is proposed that non-specific electrostatic binding of cytochrome c to phospholipid membranes, followed by rapid lateral diffusion, is responsible for the dependence of the affinity on the amount and nature of the phospholipids and on the ionic strength.ATP may interfere with the membrane-facilitated binding of cytochrome c by a specific electrostatic interaction with the membrane or by binding to cytochrome c.  相似文献   

20.
(1) In the pH range between 5.0 and 8.0, the rate constants for the reaction of ferrocytochrome c with both the high- and low-affinity sites on cytochrome aa3 increase by a factor of approx. 2 per pH unit. (2) The pre-steady-state reaction between ferrocytochrome c and cytochrome aa3 did not cause a change in the pH of an unbuffered medium. Furthermore, it was found that this reaction and the steady-state reaction are equally fast in H2O and 2H2O. From these results it was concluded that no protons are directly involved in a rate-determining reaction step. (3) Arrhenius plots show that the reaction between ferrocytochrome c and cytochrome aa3 requires a higher enthalpy of activation at temperatures below 20°C (15–16 kcal/mol) as compared to that at higher temperature (9 kcal/mol). We found no effect of ionic strength on the activation enthalpy of the pre-steady-state reaction, nor on that of the steady-state reaction. This suggests that ionic strength does not change the character of these reactions, but merely affects the electrostatic interaction between both cytochromes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号