首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 314 毫秒
1.
The purpose of this study was to confirm the effect of head cooling on human sleep stages and body temperature. Nine healthy male volunteers with a mean age of 25 +/- 3.77 years served as subjects. The experiments were carried out under three different sets of conditions: 26 degrees C, relative humidity (RH) 50% (26/50); 32 degrees C, RH 80% (32/80); and 32 degrees C RH 80% with the use of a cooling pillow (32/80 HC). The subjects slept from 2300 hours to 0700 hours with a cotton blanket, wearing short-sleeved pyjamas and shorts on a bed, which was covered with a sheet. Electroencephalograms, electro-ouclogram, and mental electromyelograms were recorded through the night. Rectal temperature (Tre) and skin temperature (Tsk) were measured continuously. Whole-body sweat and the tympanic temperature (Tty) were measured before and after sleep. Wakefulness significantly increased at 32/80 than at 26/50; however, no significant difference was observed between 32/80 HC and 26/50. Tre and mean Tsk were higher both at 32/80 and 32/80 HC than at 26/50. The whole-body sweat loss was significantly greater and Tty in the morning was higher at 32/80 than 32/80 HC and 26/50. These results suggest that head cooling during sleep may help to decrease the whole-body sweat rate during sleep under humid heat conditions.  相似文献   

2.
Thermoregulation, metabolism, and stages of sleep in cold-exposed men   总被引:2,自引:0,他引:2  
Four naked men, selected for their ability to sleep in the cold, were exposed to an ambient temperature (Ta) of 21 degrees C for five consecutive nights. Electrophysiological stages of sleep, O2 consumption (VO2), and skin (Tsk), rectal (Tre), and tympanic (Tty) temperatures were recorded. Compared with five nights at a thermoneutral Ta of 29 degrees C, cold induced increased wakefulness and decreased stage 2 sleep, without significantly affecting other stages. Tre and Tty declined during each condition. The decrease in Tre was greater at 21 degrees C than at 29 degrees C, whereas Tty did not differ significantly between conditions. Increases in Tty following REM sleep onset at 21 degrees C were negatively correlated with absolute Tty. VO2 and forehead Tsk also increased during REM sleep at both TaS, whereas Tsk of the limb extremities declined at 21 degrees C. Unsuppressed REM sleep in association with peripheral vasoconstriction and increased Tty and VO2 in cold-exposed humans, do not signify an inhibition of thermoregulation during this sleep stage as has been observed in other mammals.  相似文献   

3.
Endogenous hormones subtly alter women's response to heat stress   总被引:1,自引:0,他引:1  
The thermoregulatory responses of menstruant women to exercise in dry heat (dry-bulb temperature/wet-bulb temperature = 48/25 degrees C) were evaluated at three times during the menstrual cycle: menstrual flow (MF), 3-5 days during midcycle including ovulation (OV), and in the middle of the luteal phase (LU). Serum concentrations of estradiol-17 beta (E2), progesterone (Pg), luteinizing hormone (LH), and follicle-stimulating hormone (FSH) were measured by radioimmunoassay, and these values were used to determine the dates of OV (peak LH and FSH) and LU (peak postovulatory Pg). After heat acclimation, subjects received heat stress tests (HST) consisting of a 2-h cycle-ergometer exercise at 30% of maximal O2 consumption in the heat. Rectal (Tre) and mean skin (Tsk) temperatures, heart rate (HR), and sweat rate on the chest and thigh were recorded continuously. Total sweat loss (Msw), as indicated by weight loss, was recorded every 20 min, and equivalent water replacement was given. Steady-state exercise metabolic rate (M) was measured at 45 and 110 min. Seven of eight subjects had ovulatory cycles during experimental months. At rest, Tre was lowest at OV and significantly higher at LU. During steady-state exercise both Tre and Tsk were lowest at OV and significantly higher at LU. There were no differences between phases in Msw, sweat rate on the chest and thigh or M. Despite higher Tre and Tsk at LU, all subjects were able to complete the 2-h of exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Six resting men were exposed to three temperatures (15.5, 21, 26.5 degrees C) for 120 min at three altitudes (sea level, 2,500 m, 5,000 m). A 60-min sea-level control at the scheduled temperature preceded the nine altitude episodes. Comparison of the base-line results at any one temperature showed no differences between rectal temperatures (Tre) or mean weighted skin temperatures (Tsk). After 120 min, Tre and Tsk not only depended on ambient temperature but also altitude. The initial rate of fall in Tre increased with altitude and equilibrium occurred earlier. At 15.5 degrees C, Tre was 0.3 degrees C lower at 5,000 m and 0.2 degrees C lower at 2,500 m than at sea level. Tsk was almost 2 degrees C higher at 15.5 degrees C at 5,000 m and 1 degrees C higher at 2,500 m than at sea level. Similar, smaller differences were observed at 21 degrees C. Mean weighted body temperature showed no change with altitude, but, since the gradient between core and shell was reduced, a shift of blood toward the periphery is implied.  相似文献   

5.
The effect of low-intensity exercise in the heat on thermoregulation and certain biochemical changes in temperate and tropical subjects under poorly and well-hydrated states was examined. Two VO2max matched groups of subjects consisting of 8 Japanese (JS) and 8 Malaysians (MS) participated in this study under two conditions: poorly-hydrated (no water was given) and well-hydrated (3 mL x Kg(-1) body weight of water was provided at onset of exercise, and the 15th, 35th and 55th min of exercise). The experimental room in both countries was adjusted to a constant level (Ta: 31.6+/-0.03 degrees C, rh: 72.3+/-0.13%). Subjects spent an initial 10 min rest, 60 min of cycling at 40% VO2max and then 40 min recovery in the experimental room. Rectal temperatures (Tre) skin temperatures (Tsk), heart rate (HR), heat-activated sweat glands density (HASG), local sweat rate (M sw-back) and percent dehydration were recorded during the test. Blood samples were analysed for plasma glucose and lactate levels.The extent of dehydration was significantly higher in the combined groups of JS (1.43+/-0.08%) compared to MS (1.15+/-0.05%). During exercise M sw-back was significantly higher in JS compared to MS in the well-hydrated condition. The HASG was significantly more in JS compared to MS at rest and recovery. Tre was higher in MS during the test. Tsk was significantly higher starting at the 5th min of exercise until the end of the recovery period in MS compared to JS.In conclusion, tropical natives have lower M sw-back associated with higher Tsk and Tre during the rest, exercise and recovery periods. However, temperate natives have higher M sw-back and lower Tsk and Tre during experiments in a hot environment. This phenomenon occurs in both poorly-hydrated and well-hydrated states with low intensity exercise. The differences in M sw-back, Tsk and Tre are probably due to a setting of the core temperature at a higher level and enhancement of dry heat loss, which occurred during passive heat exposure.  相似文献   

6.
Control of heat-induced cutaneous vasodilatation in relation to age   总被引:1,自引:0,他引:1  
Well matched unacclimatised older (age 55-68, 4 women, 2 men) and younger (age 19-30, 4 women, 2 men) subjects performed 75 min cycle exercise (approximately 40% VO2max) in a hot environment (37 degrees C, 60% rh). Rectal temperature (Tre), mean skin temperature (Tsk), arm blood flow (ABF, strain gauge plethysmography), and cardiac output (Q, CO2 rebreathing) were measured to examine age-related differences in heat-induced vasodilatation. Tre and Tsk rose to the same extent in each group during the exposure. There was no significant intergroup difference in sweat rate (older: 332 +/- 43 ml.m-2.h-1, younger: 435 +/- 49 ml.m-2.h-1; mean +/- SEM). However, the older subjects responded to exercise in the heat with a lower ABF response which could be attributed to a lower Q for the same exercise intensity. The slope of the ABF-Tre relationship was attenuated in the older subjects (9.3 +/- 1.3 vs 17.9 +/- 3.3 ml.100 ml-1.min-1.degrees C-1, p less than 0.05), but the Tre threshold for vasodilatation was about 37.0 degrees C for both groups. These results suggest an altered control of skin vasodilatation during exercise in the heat in older individuals. This attenuated ABF response appears to be unrelated to VO2max, and may reflect an age-related change in thermoregulatory cardiovascular function.  相似文献   

7.
We investigated the seasonal variation of sweating response during exercise. Four adult healthy men repeated a moderate bicycle exercise (60 watts) in a climatic chamber of an ambient temperature of 30 degrees C (relative humidity, 45%) in winter, spring, summer, and fall. In summer, sweat rate immediately increased as soon as the exercise started, whereas in winter in a few minutes. The mean sweat rate during exercise was significantly different between winter and summer. The transient reduction of the Tsk was observed at the beginning of the exercise in winter. The Tsk decreased in proportion to increasing of sweat rate in each season. Significantly negative correlations were found between sweat rate and the rate of change of Tsk during exercise in each season. The slope and intercept of regression line were significantly different between winter and summer. The index of sweating was made available for the relative value, changing rate against annual mean value of total sweat loss (delta SR, %). The relative value rather than the absolute value (i.e., expressed as g.m-2.h-1) corrected well with skin temperature. It is suggested that the present results may reflect adapted changes in the thermoregulatory mechanisms to seasonal acclimatization. Moreover, the fall in skin temperature during exercise may be not due to increased evaporative cooling, but may be the result of vasoconstriction probably caused by non-thermal factors.  相似文献   

8.
The dynamics of sweating was investigated at rest in 8 men and 8 women. Electrical skin resistance (ESR), rectal temperature (Tre) and mean skin temperature (Tsk) were measured in subjects exposed to 40 degrees C environmental temperature, 30% relative air humidity, and 1 m X s-1 air flow. Sweat rate was computed from continuous measurement of the whole body weight loss. It was found that increases in Tre, Tsk and mean body temperature (Tb) were higher in women than in men by 0.16, 0.38 and 0.21 degrees C, but only the difference in delta Tb was significant (p less than 0.05). The dynamics of sweating in men and women respectively, was as follows: delay (td) 7.8 and 18.1 min (p less than 0.01), time constant (tau) 7.5 and 8.8 min (N.S.), inertia time (ti) 15.3 and 26.9 min (p less than 0.002), and total body weight loss 153 and 111 g X m-2 X h-1 (p less than 0.001). Dynamic parameters of ESR did not differ significantly between men and women. Inertia times of ESR and sweat rate correlated in men (r = 0.93, p less than 0.001), and in women (r = 0.76, p less than 0.02). In men, delta Tre correlated with inertia time of sweat rate (r = 0.81, p less than 0.01) as well as with the inertia time of ESR (r = 0.83, p less than 0.001). No relation was found between delta Tre and the dynamics of sweating in women. It is concluded that the dynamics of sweating plays a decisive role in limiting delta Tre in men under dry heat exposure. The later onset of sweating in women does not influence the rectal temperature increase significantly. In women, delta Tre is probably limited by a complex interaction of sweating, skin blood flow increase, and metabolic rate decrease.  相似文献   

9.
This study sought to investigate the effects of humid heat exposure in later sleep segments on sleep stages and body temperature in humans. The subjects were eight healthy males, from whom informed consent had been obtained. The experiments were carried out under three different sets of conditions: a control climate [air temperature (Ta)=26°C, relative humidity (RH)=50%] (C); a humid heat climate (Ta=32°C, RH=80%) (H); and a humid heat exposure in later sleep segments (C for the first 3 h 45 min, followed by a 30-min transition to H, which was then maintained for the last 3 h 45 min) (C–H). Electroencephalogram, EOG, and mental electromyogram, rectal temperature (Tre), and skin temperature (Tsk) were continuously measured. The total amount of wakefulness was significantly increased in H compared to C–H or C. Compared to C, wakefulness in C–H and H was significantly increased during later sleep segments. Tre and mean Tsk were significantly higher in H than in C–H or C. In C–H, Tsk and Tre increased to levels equal to those observed in H after Ta and RH increase. Whole body sweat loss was significantly lower in C–H and C than in H. These results suggest that humid heat exposure in the later sleep segment reduces thermal load as compared to full-night humid heat exposure. In daily life, the use of air conditioning in the initial sleep hours can protect sleep and thermoregulation.  相似文献   

10.
Thermoregulation during exercise in relation to sex and age   总被引:1,自引:0,他引:1  
The thermoregulatory responses to 1 h exercise of 14 male (age range 18--65 year) and 7 female (age range 18--46 year) athletes and 4 (3 male and 1 female) non-athletic subjects have been investigated in a moderate environment (Tdb = 21 degrees C, Twb = 15 degrees C and rh less than 50%) and analysed in relation to age, sex, and maximum aerobic power output (VO2max). The maximal sweat loss (Msw max) under the given conditions was closely related (r = + 0.90) to VO2max and for a given relative work load (%VO2max), rectal (Tre) and mean skin (Tsk) temperatures was the same in all subjects. Sweat loss (Msw) was linearly related to total heat production (H) and to peripheral tissue heat conductance (K) and if expressed in relative terms (%Mswmax) was linearly related to Tre. For a given Tre relative sweat rate was identical in the groups studied. From these results it would seem that during exercise Tre rises to meet the requirements of heat dissipation by establishing a thermal gradient from core to skin and stimulating sweating in proportion to maximal capacity of the system. Thus provided the thermal responses to work were standardised using the appropriate physiological variables, there was no evidence to be found for differences in thermoregulatory function which could be ascribed to sex or age.  相似文献   

11.
This study examined the effects of heat acclimation and subject gender on treadmill exercise in comfortable (20 degrees C, 40% rh), hot-dry (49 degrees C, 20% rh), and hot-wet (35 degrees C, 79% rh) environments while subjects were hypo- or euhydrated. Six male and six female subjects, matched for maximal aerobic power and percent body fat, completed two exercise tests in each environment both before and after a 10-day heat acclimation program. One exercise test was completed during euhydration and one during hypohydration (-5.0% from baseline body weight). In general, no significant (P greater than 0.05) differences were noted between men and women at the completion of exercise for rectal temperature (Tre), mean skin temperature (Tsk), or heat rate (HR) during any of the experimental conditions. Hypohydration generally increased Tre and HR values and decreased sweat rate values while not altering Tsk values. In the hypohydration experiments, heat acclimation significantly reduced Tre (0.19 degrees C) and HR (13 beats X min-1) values in the comfortable environment, but only HR values were reduced in hot-dry (21 beats X min-1) and hot-wet (21 beats X min-1) environments. The present findings indicated that men and women respond in a physiologically similar manner to hypohydration during exercise. They also indicated that for hypohydrated subjects heat acclimation decreased thermoregulatory and cardiovascular strain in a comfortable environment, but only cardiovascular strain decreased in hot environments.  相似文献   

12.
This study examined both the thermal and metabolic responses of individuals in cool (30 degrees C, n = 9) and cold (18 degrees C, n = 7; 20 degrees C, n = 2) water. Male volunteers were immersed up to the neck for 1 h during both seated rest (R) and leg exercise (LE). In 30 degrees C water, metabolic rate (M) remained unchanged over time during both R (115 W, 60 min) and LE (528 W, 60 min). Mean skin temperature (Tsk) declined (P less than 0.05) over 1 h during R, while Tsk was unchanged during LE. Rectal (Tre) and esophageal (Tes) temperatures decreased (P less than 0.05) during R (delta Tre, -0.5 degrees C; delta Tes, -0.3 degrees C) and increased (P less than 0.05) during LE (delta Tre, 0.4 degrees C; Tsk, 0.4 degrees C). M, Tsk, Tre, and Tes were higher (P less than 0.05) during LE compared with R. In cool water, all regional heat flows (leg, chest, and arm) were generally greater (P less than 0.05) during LE than R. In cold water, M increased (P less than 0.05) over 1 h during R but remained unchanged during LE. Tre decreased (P less than 0.05) during R (delta Tre, -0.8 degrees C) but was unchanged during LE. Tes declined (P less than 0.05) during R (delta Tes, -0.4 degrees C) but increased (P less than 0.05) during LE (delta Tes, 0.2 degrees C). M, Tre, and Tes were higher (P less than 0.05), whereas Tsk was not different during LE compared with R at 60 min.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Three adult male patas monkeys (11-15 kg) were heat acclimated by continuous exposure to an ambient temperature of 33 +/- 1 degree C at 13% relative humidity for 9 mo. During the last month, they were also exposed to 45 degrees C at 10% relative humidity for 4 h/day and 5 days/wk. Before and after 3 wk of acclimation, the animals were given a heat-tolerance test in which rectal (Tre) and mean skin (Tsk) temperatures, heart rate, and sweat rate (msw) were monitored during a 90-min exposure to 45 degrees C heat with 24% relative humidity under lenperone (1.0-1.4 mg/kg im) tranquilization. Maximal in vivo msw was also determined in response to subcutaneous injections (1 and 10% solutions) of methacholine (MCh). Before and after 9 wk and 9 mo of acclimation, sweat glands were dissected from biopsy specimens of the lateral calf, cannulated, and stimulated in vitro with MCh. Morphological measurements of isolated tubules were compared with maximal secretory rates produced by MCh stimulation. Three weeks of acclimation 1) reduced Tre and Tsk and increased msw during the heat tolerance test and 2) significantly increased maximal msw in response to MCh stimulation. Acclimation also increased (P less than 0.05) sweat gland size, as measured by tubular length and tubular volume. Maximal in vitro msw produced by MCh stimulation and msw per unit length of secretory coil also increased significantly. We conclude that heat acclimation increases the size of eccrine sweat glands and that these larger glands produce more sweat. They are also more efficient because they produce more sweat per unit length of secretory coil.  相似文献   

14.
Nine young (20-25 years) and ten older (60-71 years) men, matched for body fatness and surface area:mass ratio, underwent cold tests in summer and winter. The cold tests consisted of a 60-min exposure, wearing only swimming trunks, to an air temperature of 17 degrees C (both seasons) and 12 degrees C (winter only). Rectal (Tre) and mean skin (Tsk) temperatures, metabolic heat production (M), systolic (BPs) and diastolic (BPd) blood pressures and heart rate (fc) were measured. During the equilibrium period (28 degrees C air temperature) there were no age-related differences in Tre, Tsk, BPs, BPd, or fc regardless of season, although M of the older men was significantly lower (P < 0.003). The decrease in Tre and Tsk (due to the marked decrease in six of the older men) and the increase in BPs and BPd were significantly greater (P < 0.004) for the older men during all the cold exposures. The rate of increase in M was significantly greater (P < 0.01) for the older group when exposed to 12 degrees C in winter and 17 degrees C in summer (due to the marked increase in four of the older men). This trend was not apparent during the 17 degrees C exposure in winter. There was no age-related difference in fc during the exposures. Significant decreases in Tre and Tsk and increases in M, BPs and BPd during the 12 degrees C exposure were observed for the older group (P < 0.003) compared to their responses during the 17 degrees C exposure in winter. In contrast, Tre, M, BPs in the young group were not affected as much by the colder environment. It was concluded that older men have more variable responses and some appear more or less responsive to mild and moderate cold air than young men.  相似文献   

15.
In 10 women, external cold and heat exposures were performed both in the middle of luteal phase (L) and in the early follicular phase (F) of the menstrual cycle. Serum progesterone concentrations in L and F averaged 46.0 and 0.9 nmol X l-1, respectively. The experiments took place between 3:00 and 4:30 A.M., when the L-F core temperature difference is maximal. At neutral ambient temperature, esophageal (Tes), tympanic (Tty), rectal (Tre), and mean skin (Tsk) temperatures averaged 0.59 degrees C higher in L than in F. The thresholds for shivering, chest sweating, and cutaneous vasodilation (heat clearance technique) at the thumb and forearm were increased in L by an average of 0.47 degrees C, related to mean body temperature [Tb(es) = 0.87Tes + 0.13 Tsk] and to Tes, Tty, Tre, or Tsk. The above-threshold chest sweat rate and cutaneous heat clearances at the thumb and forearm were also enhanced in L, when related to Tb(es) or time. The metabolic rate, arm blood flow, and heart rate at thermoneutral conditions were increased in L by 5.0%, 1.1 ml X 100 ml-1 X min-1, and 4.6 beats X min-1, respectively. The concomitant increase in threshold temperatures for all autonomic thermoregulatory responses in L supports the concept of a resetting of the set point underlying the basal body temperature elevation in L. The effects of the increased threshold temperatures are counteracted by enhanced heat loss responses.  相似文献   

16.
We investigated whether menstrual cycle phase would affect temperature regulation during an endurance exercise bout performed at room temperature (Ta) of 22 degrees C and 60% relative humidity. Nine eumenorrheic women [age 27.2 +/- 3.7 yr, peak O2 uptake (VO2) 2.52 +/- 0.35 l/min] performed 60 min of cycle exercise at 65% of peak VO2. Subjects were tested in both midfollicular (F) and midluteal (L) phases, although one woman did not show a rise in serum progesterone (P4) that is typically evident 1 wk after ovulation. VO2, rectal (Tre) and skin (Tsk) temperatures, heart rates (HR), and ratings of perceived exertion (RPE) were measured throughout exercise. Sweat loss (SL) was estimated from pre- and postexercise body weight differences. VO2, SL, and Tsk were not affected by menstrual cycle phase. Preexercise Tre was 0.3 degrees C higher during L than during F conditions, and this difference increased to 0.6 degrees C by the end of exercise (P less than 0.01). Compared with F, HRs during L were approximately 10 beats/min greater (P less than 0.001) at all times, whereas RPE responses were significantly greater (P less than 0.01) by 50 min of cycling. No differences in any measured values were found in the subject whose P4 was low in both test conditions. Results indicate that thermoregulation (specifically, regulation of Tre), as well as cardiovascular strain and perception of exercise, was adversely affected during the L phase.  相似文献   

17.
Seven lean and five obese boys, aged 9-12 yr, exercised in four environments: 21.1, 26.7, 29.4, and 32.2 degrees C Teff. Subjects walked on a treadmill at 4.8 km/h, 5% grade for three 20-min exercise bouts separated by 5-min rest periods. Rectal temperature (Tre), skin temperature (Tsk), heart rate (HR), sweat rate, and oxygen uptake (VO2) were measured periodically throughout the session. Lean boys had lower Tre and HR than obese boys in each of the environments. Increases in Tre were significantly greater for the obese at 26.7 and 29.4 degrees C Teff. No significant differences in Tsk and sweat rate (g-m-2-h-1) were observed between lean and obese boys. Obese boys had significantly lower oxygen consumptions per kg but worked at a significantly higher percentage of VO2max than lean boys when performing submaximal work. Responses of the obese boys to exercise in the heat were similar to those of heavy prepubertal girls studied previously, except that the boys were more tolerant of exercise at 32.2 degrees C Teff than the girls. Lean boys had lower HR than lean girls in each environment, but lower Tre only at 32.2 degrees C Teff.  相似文献   

18.
The present work was undertaken to examine the effect of wet suits on the pattern of heat exchange during immersion in cold water. Four Korean women divers wearing wet suits were immersed to the neck in water of critical temperature (Tcw) while resting for 3 h or exercising (2-3 met on a bicycle ergometer) for 2 h. During immersion both rectal (Tre) and skin temperatures and O2 consumption (VO2) were measured, from which heat production (M = 4.83 VO2), skin heat loss (Hsk = 0.92 M +/- heat store change based on delta Tre), and thermal insulation were calculated. The average Tcw of the subjects with wet suits was 16.5 +/- 1.2 degrees C (SE), which was 12.3 degrees C lower than that of the same subjects with swim suits (28.8 +/- 0.4 degrees C). During the 3rd h of immersion, Tre and mean skin temperatures (Tsk) averaged 37.3 +/- 0.1 and 28.0 +/- 0.5 degrees C, and skin heat loss per unit surface area 42.3 +/- 2.66 kcal X m-2 X h. The calculated body insulation [Ibody = Tre - Tsk/Hsk] and the total shell insulation [Itotal = (Tre - TW)/Hsk] were 0.23 +/- 0.02 and 0.5 +/- 0.04 degrees C X kcal-1 X m2 X h, respectively. During immersion exercise, both Itotal and Ibody declined exponentially as the exercise intensity increased. Surprisingly, the insulation due to wet suit (Isuit = Itotal - Ibody) also decreased with exercise intensity, from 0.28 degrees C X kcal-1 X m2 X h at rest to 0.12 degrees C X kcal-1 X m2 X h at exercise levels of 2-3 met.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
This study was designed to determine the extent to which changes in the evaporative power of the environment (Emax) affect sweating and evaporative rates. Six male subjects undertook four 60-min bouts of cycle ergometer exercise at 56% maximal O2 uptake (VO2max).Emax was varied by differences in ambient temperature and airflow; two exercise bouts took place at 24 degrees C and two at 35 degrees C, with air velocity at < 0.2 and 3.0 m/s in both. Total sweat production was estimated from body weight loss, whereas whole body evaporative rate was measured continuously from a Potter beam balance. Body core temperature was measured continuously from a thermocouple in the esophagus (T(es)), with mean skin temperature (Tsk) computed each minute from thermocouples at eight sites. Total body sweat loss was significantly greater (P < 0.05) in the 0.2- than in the 3.0-m/s condition at both 24 and 35 degrees C. Tsk was higher (P < 0.05) in the still-air conditions at both temperatures, but final T(es) was significantly higher (P < 0.05) in still air only in the 35 degrees C environment. Thus the reduced Emax in still air caused a greater heat storage, thereby stimulating a greater total sweat loss. However, in part because of reduced skin wettedness, the slope of the sweat rate-to-T(es) relation at 35 degrees C in the 3.0-m/s condition was 118% that at 0.2 m/s (P < 0.005).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
This study investigates the effects of a short-term aerobic training program in a hot environment on thermoregulation, blood parameters, sweat secretion and composition in tropic-dwellers who have been exposed to passive heat. Sixteen healthy Malaysian-Malay male volunteers underwent heat acclimation (HA) by exercising on a bicycle ergometer at 60% of VO2max for 60 min each day in a hot environment (Ta: 31.1+/-0.1 degrees C, rh: 70.0+/-4.4%) for 14 days. All parameters mentioned above were recorded on Day 1 and at the end of HA (Day 16). On these two days, subjects rested for 10 min, then cycled at 60% of VO2max for 60 min and rested again for 20 min (recovery) in an improvised heat chamber. Rectal temperature (Tre), mean skin temperature (Tsk) heart rate (HR), ratings of perceived exertion (RPE), thermal sensation (TS), local sweat rate and percent dehydration were recorded during the test. Sweat concentration was analysed for sodium [Na+]sweat and potassium. Blood samples were analysed for biochemical changes, electrolytes and hematologic indices. Urine samples were collected before and after each test and analysed for electrolytes.After the period of acclimation the percent dehydration during exercise significantly increased from 1.77+/-0.09% (Day 1) to 2.14+/-0.07% (Day 16). Resting levels of hemoglobin, hematocrit and red blood cells decreased significantly while [Na+]sweat increased significantly. For Tre and Tsk there were no differences at rest. Tre, HR, RPE, TS, plasma lactate concentration, hemoglobin and hematocrit at the 40th min of exercise were significantly lower after the period of acclimation but mean corpuscular hemoglobin and serum osmolality were significantly higher while no difference was seen in [Na+]sweat and Tsk. It can be concluded that tropic-dwelling subjects, although exposed to prolonged passive heat exposure, were not fully heat acclimatized. To achieve further HA, they should gradually expose themselves to exercise-heat stress in a hot environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号