首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The plant Silene latifolia has separate sexes and sex chromosomes, and is of interest for studying the early stages of sex chromosome evolution, especially the evolution of non-recombining regions on the Y chromosome. Hitch-hiking processes associated with ongoing genetic degeneration of the non-recombining Y chromosome are predicted to reduce Y-linked genes'' effective population sizes, and S. latifolia Y-linked genes indeed have lower diversity than X-linked ones. We tested whether this represents a true diversity reduction on the Y, versus the alternative possibility, elevated diversity at X-linked genes, by collecting new data on nucleotide diversity for autosomal genes, which had previously been little studied. We find clear evidence that Y-linked genes have reduced diversity. However, another alternative explanation for a low Y effective size is a high variance in male reproductive success. Autosomal genes should then also have lower diversity than expected, relative to the X, but this is not found in our loci. Taking into account the higher mutation rate of Y-linked genes, their low sequence diversity indicates a strong effect of within-population hitch-hiking on the Y chromosome.  相似文献   

2.
Uchida W  Matsunaga S  Kawano S 《Protoplasma》2005,226(3-4):207-216
Summary. The development of male organs is induced in female flowers of the dioecious plant Silene latifolia by infection with the fungus Microbotryum violaceum. Stamens in a healthy female flower grow only to stage 6, whereas those in an infected female flower develop to the mature stage (stage 12), at which the stamens are filled with fungal teliospores instead of pollen grains. To investigate these host–parasite interactions, young floral buds and fungus-induced anthers of infected female flowers were examined by electron microscopy following fixation by a high-pressure freezing method. Using this approach, we found that parasitic hyphae of this fungus contain several extracellular vesicles and have a consistent appearance up to stage 8. At that stage, parasitic hyphae are observed adjacent to dying sporogenous cells in the infected female anther. At stage 9, an increased number of dead and dying sporogenous cells is observed, among which the sporogenous hyphae of the fungus develop and form initial teliospores. Several types of electron-dense material are present in proximity to some fungi at this stage. The initial teliospores contain two types of vacuoles, and the fungus cell wall contains abundant carbohydrate, as revealed by silver protein staining. The sporogenous cell is probably sensitive to infection by the fungus, resulting in disruption. In addition, the fungus accelerates cell death in the anther and utilizes constituents of the dead host cell to form the mature teliospore. Correspondence and reprints (present address): Molecular Membrane Biology Laboratory, RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan.  相似文献   

3.
Silene latifolia is a model dioecious plant with heteromorphic sex chromosomes. The Y chromosome is the largest in this species. Theoretical models propose an accumulation of repetitive DNA sequences in non-recombining parts of the Y chromosome. In this study, we isolated a BAC7H5 clone preferentially hybridizing to the Y chromosome of S. latifolia. Sequence analysis revealed that this BAC7H5 contains part of the chloroplast genome, indicating that these chloroplast sequences have accumulated on the Y chromosome and also may contribute to its large size. We constructed Y chromosome- and X chromosome-specific libraries and screened them to find Y- and/or X-linked copies of chloroplast sequences. Sequence analysis revealed higher divergence of a non-genic region of the chloroplast sequences located on the Y chromosome while genic regions tested showed only very low (max 0.9%) divergence from their chloroplast homologues.  相似文献   

4.

Background and Aims

Silene dioica and S. latifolia experience only limited introgression despite overlapping flowering phenologies, geographical distributions, and some pollinator sharing. Conspecific pollen precedence and other reproductive barriers operating between pollination and seed germination may limit hybridization. This study investigates whether barriers at this stage contribute to reproductive isolation between these species and, if so, which mechanisms are responsible.

Methods

Pollen-tube lengths for pollen of both species in styles of both species were compared. Additionally, both species were pollinated with majority S. latifolia and majority S. dioica pollen mixes; then seed set, seed germination rates and hybridity of the resulting seedlings were determined using species-specific molecular markers.

Key Results

The longest pollen tubes were significantly longer for conspecific than heterospecific pollen in both species, indicating conspecific pollen precedence. Seed set but not seed germination was lower for flowers pollinated with pure heterospecific versus pure conspecific pollen. Mixed-species pollinations resulted in disproportionately high representation of nonhybrid offspring for pollinations of S. latifolia but not S. dioica flowers.

Conclusions

The finding of conspecific pollen precedence for pollen-tube growth but not seed siring in S. dioica flowers may be explained by variation in pollen-tube growth rates, either at different locations in the style or between leading and trailing pollen tubes. Additionally, this study finds a barrier to hybridization operating between pollination and seed germination against S. dioica but not S. latifolia pollen. The results are consistent with the underlying cause of this barrier being attrition of S. dioica pollen tubes or reduced success of heterospecifically fertilized ovules, rather than time-variant mechanisms. Post-pollination, pre-germination barriers to hybridization thus play a partial role in limiting introgression between these species.  相似文献   

5.
Differences in reproductive demands between the sexes of dioecious plants could cause divergence in physiology between the sexes. We found that the reproductive effort of female Silene latifolia plants increased to more than twice that of male plants or female plants that were prevented from setting fruit by lack of pollination after 4 weeks of flowering. Whole-plant source/sink ratios of pollinated females were significantly lower than those of males or unpollinated females because of investment in fruit. We hypothesized that these differences in source/sink ratio between the sexes and within females, depending on pollination, would lead to differences in leaf photosynthetic rates. Within females, we found that photosynthetic capacity was consistent with measurement of whole-plant source/sink ratio. Females that were setting fruit had 30% higher light-saturated photosynthetic rates by 28 days after flowering than females that were not setting fruit. Males, however, had consistently higher photosynthetic rates than females from 10 days after flowering onwards. Males also had approximately twice the dark respiration rates of fruiting females. We found that female reproductive structures are longer-lived and contribute more carbon to their own support than male reproductive structures. Despite the higher rates of leaf dark respiration and lower calyx photosynthetic rates, males fix more carbon than do females. We conclude that females have a sink-regulated mechanism of photosynthesis that allows them to respond to variations in fruit set. This mechanism is not, however, sufficient to explain why male S. latifolia plants have higher rates of photosynthesis, higher source/sink ratios, and lower reproductive allocation, but fail to grow larger than female plants.  相似文献   

6.

Background

Silene latifolia represents one of the best-studied plant sex chromosome systems. A new approach using RNA-seq data has recently identified hundreds of new sex-linked genes in this species. However, this approach is expected to miss genes that are either not expressed or are expressed at low levels in the tissue(s) used for RNA-seq. Therefore other independent approaches are needed to discover such sex-linked genes.

Results

Here we used 10 well-characterized S. latifolia sex-linked genes and their homologs in Silene vulgaris, a species without sex chromosomes, to screen BAC libraries of both species. We isolated and sequenced 4 Mb of BAC clones of S. latifolia X and Y and S. vulgaris genomic regions, which yielded 59 new sex-linked genes (with S. vulgaris homologs for some of them). We assembled sequences that we believe represent the tip of the Xq arm. These sequences are clearly not pseudoautosomal, so we infer that the S. latifolia X has a single pseudoautosomal region (PAR) on the Xp arm. The estimated mean gene density in X BACs is 2.2 times lower than that in S. vulgaris BACs, agreeing with the genome size difference between these species. Gene density was estimated to be extremely low in the Y BAC clones. We compared our BAC-located genes with the sex-linked genes identified in previous RNA-seq studies, and found that about half of them (those with low expression in flower buds) were not identified as sex-linked in previous RNA-seq studies. We compiled a set of ~70 validated X/Y genes and X-hemizygous genes (without Y copies) from the literature, and used these genes to show that X-hemizygous genes have a higher probability of being undetected by the RNA-seq approach, compared with X/Y genes; we used this to estimate that about 30 % of our BAC-located genes must be X-hemizygous. The estimate is similar when we use BAC-located genes that have S. vulgaris homologs, which excludes genes that were gained by the X chromosome.

Conclusions

Our BAC sequencing identified 59 new sex-linked genes, and our analysis of these BAC-located genes, in combination with RNA-seq data suggests that gene losses from the S. latifolia Y chromosome could be as high as 30 %, higher than previous estimates of 10-20 %.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1698-7) contains supplementary material, which is available to authorized users.  相似文献   

7.
Summary Experiments and observations conducted during the past 90 years have provided conflicting evidence concerning the existence of a size difference between pollen grains containing an X chromosome (female-determining) and those containing a Y chromosome (maledetermining) in dioecious Silene latifolia. Were such a size difference to exist, this might explain, at least in part, the observation that X-bearing pollen tubes reach the ovary more quickly, on average, than Y-bearing pollen tubes. We tested for such a size difference by separating pollen collected from single anthers into three size classes: small, large, and random. Fruit set (number of pollinated flowers that set fruit) and seed set (number of seeds per capsule) did not differ for these three pollination treatments. Progeny sex ratios resulting from these three pollen size classes also did not differ significantly. Thus, pollen grain size is not affected by which of the two sex chromosomes is present. Our experiment is the first direct test of this relationship. Based on our results, size differences should not be invoked to explain competitive differences in male- and female-determining microgametophytes.  相似文献   

8.
On the basis of gene frequency data of three flavone glycosylating genes, populations of the agricultural weed Silene latifolia (Caryophyllaceae) in Europe can be divided into two chemical races: an eastern and a western race. Morphological data also show a clear east-west division. When the two datasets are combined at least nine different geographical races can be distinguished using cluster analysis. Because these observations are hard to explain by selection, it has been proposed that these different races probably originated as a consequence of migration during the spread of agriculture over Europe in the past. To discriminate between selection and genetic drift many more selectively neutral easy-to-score characters are needed. In order to test whether random amplified polymorphic DNAs (RAPDs) might be suitable for this purpose, we performed a small-scale RAPD analysis on 16 geographical different populations. Using Jaccard's coefficient of similarity, we calculated genetic distances by pair-wise comparisons of both unique and shared amplification products, and a dendrogram was subsequently constructed using an unweighted pair-group method with arithmetical averages (UPGMA). On the basis of the dendrogram two clusters were discerned that clearly coincide with the aforementioned east-west division in populations. As there has been little or no artificial selection on this weed, its migration routes may be a good reflection of the different geographical routes agriculture has taken. We propose that a phylogenetic analysis of RAPD data of many more populations may provide additional information on the spread of agriculture over Europe.  相似文献   

9.
10.
The quantitative and qualitative variability in floral scent of 98 specimens of the dioecious species Silene latifolia belonging to 15 European and 19 North American populations was determined. Floral scent was collected from single flowers using dynamic headspace methods, and analysed by Micro-SPE and GC-MS methods. The flowers showed a nocturnal rhythm, and scent was emitted only at night. The amount of emitted volatiles varied greatly during the season, from 400 ng/flower/2 min in June to 50 ng/flower/2 min in August and September. The qualitative variability in the floral scent was high and different chemotypes, characterised by specific scent compounds, were found. Female and male flowers emitted the same type and amount of volatiles. The differences in floral scent composition between European and North American populations were small. Typical compounds were isoprenoids like lilac aldehyde isomers, or trans-beta-ocimene, and benzenoids like benzaldehyde, phenyl acetaldehyde, or veratrole. Some of these compounds are known to attract nocturnal Lepidoptera species. The high qualitative variability is discussed in relation to the pollination biology of S. latifolia, and the results are compared with other studies investigating intraspecific variability of flower scent.  相似文献   

11.
The yeast Skp1 protein is a component of the SCF complex, an E3 enzyme involved in the specific protein degradation pathway via ubiquitination. Skp1 binds to F-box proteins to trigger specific recognition of proteins targeted for degradation. SKP1-like genes have been found in a variety of eukaryotes including yeast, man, Caenorhabditis elegans and Arabidopsis thaliana. The Arabidopsis genome contains 20 SKP1-like genes called ASK (for Arabidopsis SKP1-like), among which only ASK1 has been characterized in detail. The analysis of the expression pattern of the ASK genes in Arabidopsis should provide key information for the understanding of the biological role of this family in protein degradation and in different cellular mechanisms. In this paper, we describe the expression profiles of 19 ASK promoter-GUS fusions in stable transformants of Arabidopsis, with a special emphasis on floral organ development. Four ASK promoters did not show any detectable expression in either inflorescences or seedlings. Our results on the ASK1 expression profile are consistent with previous reports. Several ASK promoters show clear tissue-specific expression (for instance in the connective of anthers or in the embryo). We also found that almost half (9/19) of ASK promoters direct a post-meiotic expression in the male gametophyte. Tight regulation of the expression of this gene family indicates a crucial role of the ubiquitin degradation pathway during development, particularly during male gametophyte development.  相似文献   

12.
BACKGROUND AND AIMS: The overall goal of this paper is to construct an overview of the genetic basis for flower size evolution in Silene latifolia. It aims to examine the relationship between the molecular bases for flower size and the underlying assumption of quantitative genetics theory that quantitative variation is ultimately due to the impact of a number of structural genes. SCOPE: Previous work is reviewed on the quantitative genetics and potential for response to selection on flower size, and the relationship between flower size and nuclear DNA content in S. latifolia. These earlier findings provide a framework within which to consider more recent analyses of a joint quantitative trait loci (QTL) analysis of flower size and DNA content in this species. KEY RESULTS: Flower size is a character that fits the classical quantitative genetics model of inheritance very nicely. However, an earlier finding that flower size is correlated with nuclear DNA content suggested that quantitative aspects of genome composition rather than allelic substitution at structural loci might play a major role in the evolution of flower size. The present results reported here show that QTL for flower size are correlated with QTL for DNA content, further corroborating an earlier result and providing additional support for the conclusion that localized variations in DNA content underlie evolutionary changes in flower size. CONCLUSIONS: The search image for QTL should be broadened to include overall aspects of genome regulation. As we prepare to enter the much-heralded post-genomic era, we also need to revisit our overall models of the relationship between genotype and phenotype to encompass aspects of genome structure and composition beyond structural genes.  相似文献   

13.
Three knotted1-like homeobox genes in Arabidopsis   总被引:1,自引:1,他引:0  
Five arabidopsis kn1-like homeobox genes were cloned through low-stringency screening of Arabidopsis cDNA libraries with the kn1 homeobox from maize. These five genes were named KNAT1-5 (for kn1-like Arabidopsis thaliana). An analysis of KNAT1 and 2 has been presented previously [19]. Here we present an analysis of the genes KNAT3, 4 and 5. On the basis of sequence and expression patterns, these three genes belong to the class II subfamily of kn1-like homeobox genes [16]. Low-stringency Southern analysis suggests several additional members of the class II genes exist in the Arabidopsis genome. The predicted amino acid sequences of the three genes share extensive homology outside of the homeodomain, including 84% between KNAT3 and KNAT4. Northern analysis shows that although all three genes are expressed in all tissues examined, the level of KNAT3 RNA is highest in young siliques, inflorescences and roots, KNAT4 RNA level is strongest in leaves and young siliques, and KNAT5 RNA level is highest in roots. The specificity of these patterns was confirmed by RNA fingerprint analysis. KNAT3 and 4 are light-regulated as they show reduced expression in etiolated seedlings and also in hy3, cop1 and det1 mutant backgrounds.  相似文献   

14.
The monoterpene lilac aldehyde is found in floral scent of several plants species, among them Silene latifolia. This plant is involved in a nursery pollination system, because a noctuid moth, Hadena bicruris, is not only pollinator but also seed predator. Lilac aldehyde is the key floral scent compound of S. latifolia for attracting Hadena. This monoterpene has three stereogenic centers, and eight different isomers are possible. Here, we analysed the ratio of lilac aldehyde isomers from plants originating from 18 different populations of S. latifolia using enantioselective multidimensional GC-MS (enantio-MDGC-MS), and compared resulting variability with variability found in total scent emitted by specimen under study. Though variability in total emitted scent was high, ratio of lilac aldehyde isomers was a more conservative trait. There was no correlation between the ratio of lilac aldehyde isomers and the total emitted floral scent pattern. Both, ratio of stereoisomers and total emitted scent were independent from the geographic origin of the plants. In conclusion, the ratio of lilac aldehyde stereoisomers in S. latifolia is a reliable trait, and may used by the nursery pollinator H. bicruris for host-plant detection.  相似文献   

15.
Jasmonates are a new class of plant hormones that play important roles in plant development and plant defense. TheCOI1 gene was previously shown to be required for jasmonate-regulated plant fertility and defense. We demonstrated for the first time that COI1 interacts with theArabidopsis SKP1-LIKE1 (ASK1) to form a complex that is required for jasmonate action inplanta. Functional analysis by antisense strategy showed thatASK1 is involved in male fertility.  相似文献   

16.
The major satellite DNAs of the dioecious plant Silene latifolia are represented by the repetitive sequences X43.1, RMY1 and members of the SacI family, which are located at the distal ends of chromosomes. To characterize the satellite DNAs at the distal ends of the chromosomes in S. latifolia (Sl-distal-satDNA), we isolated a bacterial artificial chromosome clone (number 15B12) that contained multiple repeat sequences with KpnI restriction sites, and subcloned a portion of this sequence into a plasmid vector. Sequencing analysis confirmed that recognition or degenerate sites for KpnI were repeated 26 times at intervals of 310–324 bp in the inserted DNA. The phylogenetic tree that was constructed with the 26 KpnI repeat units contained clustered branches that were independent of the SacI family. It is clear that the KpnI repeat belongs to an Sl-distal-satDNA family that is distinct from the SacI family. We designated this family as "KpnI" after the restriction enzyme that does not have a site in the SacI family. Multi-colored fluorescent in situ hybridization was performed with the KpnI family and RMY1 probes under high stringency conditions. The results suggest that chromosome 7 is unique and that it carries the KpnI family at only one end.  相似文献   

17.
Serpentine soils are hostile to plant life. They are dry, contain high concentrations of nickel and have an unfavorable calcium/magnesium ratio. The dioecious plant Silene dioica (L.) Clairv. (Caryophyllaceae) is the most common herb on serpentine soils in the Swedish mountains. It also commonly grows on non-serpentine soils in the subalpine and coastal area. I have compared the germination frequency, plant establishment and growth of serpentine and subalpine non-serpentine populations in serpentine soil under greenhouse conditions. Further more I have studied the specific effect of nickel on root and shoot growth of serpentine and non-serpentine plants from the subalpine and coastal area in solutions with different concentrations of nickel. Plants from serpentine and non-serpentine populations grew well and in a similar fashion in serpentine soil. Moreover, S. dioica plants, irrespective of original habitat, tolerated enhanced concentrations of nickel when grown in solutions. An analysis of metal content in serpentine plants from natural populations shows that S. dioica has a higher nickel concentration in the roots than in the shoots. The growth studies show that S. dioica is constitutively adapted to serpentine, and that all populations have the genetic and ecological tolerance to grow on serpentine.  相似文献   

18.
19.
Sex identification in dioecious plants using nonflowering material would have broad applications in both basic and applied research. We present a method using flow cytometry for diagnosing the sex of the dioecious speciesSilene latifolia Poiret (Caryophyllaceae) by means of sexual differences in nuclear DNA content and base-pair composition. Males have a significantly larger genome, attributable to the known sex-chromosome heteromorphism. Males and females also differ in the AT/GC composition, attributable to differences in non-recombining portions of the sex chromosomes. The two measures enable assignment of individuals to sex with a combined error rate of 9%. These results forS. latifolia indicate useful directions for future research into sex diagnostics for other dioecious species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号