首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
甲基苯丙胺近年来在国际上迅速泛滥,作为一类精神刺激药物,世界范围内对其神经毒性的研究一直是热点问题.随着分子生物学及功能影像学等各种技术的快速发展,甲基苯丙胺的神经毒性机制研究日益深入,但是其防治仍然有待进一步研究.本文参考了近年来发表的国内外文献27篇,对其神经毒性及防治作一综述.  相似文献   

2.
目的:探索诺米芬辛(Nomifensine)对甲基苯丙胺依赖大鼠多巴胺能神经元毒性的保护作用并探讨其作用机制。方法:Wistar雄性大鼠30只,随机分为生理盐水组、甲基苯丙胺组(MA组)和甲基苯丙胺加诺米芬辛组三组。每晚8时分别腹腔注射Nacl10mg/kg、MA 10mg/kg和MA 10mg/kg+Nomifensine 2mg/kg,连续四天。通过观察动物的刻板行为和条件位置偏爱实验(CPP实验),建立甲基苯丙胺依赖大鼠模型。最后一次给药后的24小时处死各组实验动物,用免疫组织化学染色法(S-P法)和荧光分光光度计法检测大鼠脑内黑质、纹状体内多巴胺神经元细胞的形态和数量的变化,对神经纤维进行灰度值分析。结果:1.生理盐水组分别与甲基苯丙胺组、甲基苯丙胺加诺米芬辛组在刻板行为评分和持续时间上比较呈显著性差异;甲基苯丙胺加诺米芬辛组和甲基苯丙胺组在刻板行为评分和持续时间上比较呈显著性差异;甲基苯丙胺加诺米芬辛组和甲基苯丙胺组在CPP实验结果上比较呈显著性差异。2.通过脑内黑质、纹状体内多巴胺神经元细胞计数、神经纤维灰度值和TH含量荧光分光光度计测量,结果显示甲基苯丙胺加诺米芬辛组神经系统损伤轻于阳性对照组。结论:诺米芬辛对甲基苯丙胺中毒大鼠多巴胺能神经元有保护作用。  相似文献   

3.
多巴胺在缺血性脑损伤中作用机制的研究进展   总被引:1,自引:0,他引:1  
多巴胺是哺乳动物脑内重要的儿茶酚胺灰神经递质,但在某些病理条件下可引起神经毒性作用。近年来研究表明,DA在缺血性脑损伤中有重要作用。缺血时DA的酶促氧化和自身氧化导致自由基的产生被认为是DA神经毒性的主要原因,但这一观点尚需进一步探讨。  相似文献   

4.
甲基苯胺(Methamphetamine,MA)不但影响神经系统,而且对心血管系统也会产生影响.急性MA中毒可以引起心动过速、心律不齐、心肌缺血及高血压,最终导致心脏的损伤;慢性MA中毒可以引起心肌炎性细胞浸润、心肌肥厚、心肌纤维化甚至心脏破裂.本文就MA滥用对心血管系统的影响及其机制的研究进展进行综述.  相似文献   

5.
目的:探讨MA中毒多巴胺能神经毒性的损伤机制。方法:将Wistar大鼠40只,随机分成对照组10只和实验组30只(实验组分成三个亚组,分为末次给药后1天组、4天组和7天组,n=10)。实验组给予20mg/kg的MA腹腔注射,对照组给予同样剂量的生理盐水,每天注射一次,注射时间为20:00,连续注射4天。分别于末次给药后1天,7天,14天处死实验大鼠,用免疫组织化学染色法(S-P法)和荧光分光光度计法检测大鼠中脑黑质致密区(SNC)、中脑腹侧被盖区(VTA)、前额叶皮质(PFC)以及纹状体(CPu)四个脑区的多巴胺神经元细胞的形态和数量的变化,对神经纤维进行灰度值分析。结果:1、黑质致密区和腹侧被盖区TH阳性细胞图像分析结果与细胞计数分析结果一致:与对照组相比,各实验组TH免疫反应阳性降低,差异具显著性(P〈0.05),d1组开始降低(P〈0.05),d7组达到低谷(P〈0.01),d14天组黑质致密区和腹侧被盖区TH免疫反应阳性有不同程度的恢复(P〈0.05)。2、纹状体和前额叶皮质TH阳性纤维图像定量分析结果:各实验组TH免疫反应阳性均减低(P〈0.05),d7组阳性反应最弱(P〈0.01),d14组仍未恢复(P〈0.05)。3、黑质致密区、腹侧被盖区、纹状体及前额叶皮质荧光分光光度计检测DA递质含量结果:与上述免疫组化结果基本一致。结论:1、大鼠各脑区TH阳性表达和DA含量,均出现不同程度的减低。2、MA中毒大鼠各脑区DA递质含量的变化与TH的变化结果基本一致。  相似文献   

6.
目的:探讨MA中毒多巴胺能神经毒性的损伤机制。方法:将Wistar大鼠40只,随机分成对照组10只和实验组30只(实验组分成三个亚组,分为末次给药后1天组、4天组和7天组,n=10)。实验组给予20mg/kg的MA腹腔注射,对照组给予同样剂量的生理盐水,每天注射一次,注射时间为20:00,连续注射4天。分别于末次给药后1天,7天,14天处死实验大鼠,用免疫组织化学染色法(S-P法)和荧光分光光度计法检测大鼠中脑黑质致密区(SNC)、中脑腹侧被盖区(VTA)、前额叶皮质(PFC)以及纹状体(CPu)四个脑区的多巴胺神经元细胞的形态和数量的变化,对神经纤维进行灰度值分析。结果:1、黑质致密区和腹侧被盖区TH阳性细胞图像分析结果与细胞计数分析结果一致:与对照组相比,各实验组TH免疫反应阳性降低,差异具显著性(P<0.05),d1组开始降低(P<0.05),d7组达到低谷(P<0.01),d14天组黑质致密区和腹侧被盖区TH免疫反应阳性有不同程度的恢复(P<0.05)。2、纹状体和前额叶皮质TH阳性纤维图像定量分析结果:各实验组TH免疫反应阳性均减低(P<0.05),d7组阳性反应最弱(P<0.01),d14组仍未恢复(P<0.05)。3、黑质致密区、腹侧被盖区、纹状体及前额叶皮质荧光分光光度计检测DA递质含量结果:与上述免疫组化结果基本一致。结论:1、大鼠各脑区TH阳性表达和DA含量,均出现不同程度的减低。2、MA中毒大鼠各脑区DA递质含量的变化与TH的变化结果基本一致。  相似文献   

7.
甲基苯丙胺(methamphetamine, MA)滥用可严重损害中枢神经系统,但其机制尚未完全阐明,且缺乏有效治疗药物。MA滥用致中枢神经系统受损与小胶质细胞、星形胶质细胞、NF-κB、TNF-α、IL-6和IL-1β及其他一些与中枢神经系统炎症相关因子具有重要联系。现以甲基苯丙胺滥用和关键中枢神经系统炎症反应相关细胞、因子为关注点,重点阐述它们之间的关系,对该领域的研究进展进行综述。  相似文献   

8.
段云峰  吴晓丽  王涛  金锋 《生命科学》2013,(10):1027-1035
五羟色胺(5-HT)和多巴胺(DA)是影响攻击行为的重要神经递质。参与这两种神经递质合成和分解、运输及信号转导等过程的物质均可能影响攻击行为,如影响5-HT作用的色氨酸、色氨酸羟化酶、单胺氧化酶、5-羟吲哚乙酸及5-HT转运体和5-HT受体;影响DA作用的多巴胺β羟化酶和儿茶酚胺邻位甲基转移酶以及DA转运体。未来攻击行为研究,应考虑色氨酸自身代谢、受体亚型及其他单胺类和儿茶酚胺类神经递质的影响。将肠道微生物纳入攻击行为研究也是未来研究的新方向。  相似文献   

9.
帕金森氏病(PD)是由于多巴胺能神经元变性、坏死,导致黑质-纹状体系统的多巴胺含量下降而引起的一种神经系统退行性疾病,目前还没有一种很好的方法能使之治愈.Neurturin(NTN)能特异地作用于中脑多巴胺能神经元,对该类神经元具营养和保护作用.经静脉注射1-甲基-4-苯基-1,2,3,6-四氢吡啶(MPTP)诱导恒河猴产生帕金森氏病模型,并在NTN治疗组,注射MPTP之前48 h脑室内注射重组毕赤酵母表达的人NTN 1 mg. 结果表明:模型组猴均逐渐出现了PD症状,而NTN治疗组猴,PD症状比较轻或不明显;荧光分光光度法测定MPTP模型组猴黑质、壳核和尾状核多巴胺(DA)、5-羟色胺(5-HT)和5-羟吲哚乙酸(5-HIAA)的含量结果与正常对照组相比均显著降低,NTN治疗组猴的黑质、壳核和尾状核中的DA、5-HT和5-HIAA与对照组相比无显著性差异,而与模型组相比,DA、5-HT和5-HIAA含量均明显增加;光镜检查MPTP模型组猴黑质神经元细胞明显脱失,而NTN治疗组猴黑质神经元细胞丢失不明显,与正常对照组猴无差别.上述结果表明,制备的重组人NTN在恒河猴体内能保护中脑黑质多巴胺能神经元不受MPTP的损伤,使其DA含量及多巴胺能神经元维持正常,在MPTP存在下没有发生PD症状.  相似文献   

10.
活性氧在谷氨酸兴奋性神经毒性中的作用   总被引:4,自引:0,他引:4  
活性氧在谷氨酸兴奋性神经毒性中的作用易永杨祥良徐辉碧(华中理工大学化学系,武汉430074)关键词谷氨酸兴奋性毒性活性氧作为神经递质的谷氨酸贮存于神经末梢突触囊泡内,随神经冲动由钙内流介导释放到突触间隙,尔后作用于突触后膜的谷氨酸受体,在中枢神经系统...  相似文献   

11.
The neurotoxic actions of methamphetamine (METH) may be mediated in part by reactive oxygen species (ROS). Methamphetamine administration leads to increases in ROS formation and lipid peroxidation in rodent brain; however, the extent to which proteins may be modified or whether affected brain regions exhibit similar elevations of lipid and protein oxidative markers have not been investigated. In this study we measured concentrations of TBARs, protein carbonyls and monoamines in various mouse brain regions at 4 h and 24 h after the last of four injections of METH (10 mg/kg/injection q 2 h). Substantial increases in TBARs and protein carbonyls were observed in the striatum and hippocampus but not the frontal cortex nor the cerebellum of METH-treated mice. Furthermore, lipid and protein oxidative markers were highly correlated within each brain region. In the hippocampus and striatum elevations in oxidative markers were significantly greater at 24 h than at 4 h. Monoamine levels were maximally reduced within 4 h (striatal dopamine [DA] by 95% and serotonin [5-HT] in striatum, cortex and hippocampus by 60-90%). These decrements persisted for 7 days after METH, indicating effects reflective of nerve terminal damage. Interestingly, NE was only transiently depleted in the brain regions investigated (hippocampus and cortex), suggesting a pharmacological and non-toxic action of METH on the noradrenergic nerve terminals. This study provides the first evidence for concurrent formation of lipid and protein markers of oxidative stress in several brain regions of mice that are severely affected by large neurotoxic doses of METH. Moreover, the differential time course for monoamine depletion and the elevations in oxidative markers indicate that the source of oxidative stress is not derived directly from DA or 5HT oxidation.  相似文献   

12.
Chronic intake of methamphetamine (METH) causes tolerance to its behavioral and subjective effects. To better mimic human patterns of drug abuse, the present study used a rodent model that took into account various facets of human drug administration and measured METH-induced effects on brain monoamine levels. Adult male Sprague–Dawley rats were injected with METH or saline according to an escalating dose schedule for 2 weeks. This was followed by a challenge regimen of either saline or one of two doses of METH (3 × 10 mg/kg every 2 h or 6 × 5 mg/kg given every hour, both given within a single day). Both challenge doses of METH caused significant degrees of depletion of dopamine in the striatum and norepinephrine and serotonin in the striatum, cortex, and hippocampus. Animals pre-treated with METH showed significant attenuation of METH-induced striatal dopamine depletion but not consistent attenuation of norepinephrine and serotonin depletion. Unexpectedly, METH pre-treated animals that received the 3 × 10 mg/kg challenge showed less increases in tympanic temperatures than saline pre-treated rats whereas METH pre-treated animals that received the 6 × 5 mg/kg METH challenge showed comparable increases in temperatures to saline pre-treated rats. Therefore, pre-treatment-induced partial protection against monoamine depletion is probably not because of attenuated METH-induced hyperthermia in those rats.  相似文献   

13.
Methamphetamine exposure in utero leads to a variety of higher‐order cognitive deficits, such as decreased attention and working, and spatial memory impairments in exposed children (Piper et al., 2011; Roussotte et al., 2011; Kiblawi et al., 2011). As with other teratogens, the timing of methamphetamine exposure greatly determines its effects on both neuroanatomical and behavioral outcomes. Methamphetamine exposure in rodents during the third trimester human equivalent period of brain development results in distinct and long‐lasting route‐based and spatial navigation deficits (Williams et al., 2003; Vorhees et al., 2005, 2008, 2009;). Here, we examine the impact of neonatal methamphetamine‐induced neurotoxicity on behavioral outcomes, neurotransmission, receptor changes, plasticity proteins, and DNA damage. Birth Defects Research (Part C) 108:131–141, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

14.
Methamphetamine (METH) causes release of stored intracellular dopamine (DA). We explored the interactions of METH with the recombinant human vesicular monoamine (hVMAT2) and/or human DA transporters (hDAT) in transfected mammalian (HEK293) cells and compared the findings with those for DA. In 'static' release assays at 37 degrees C, less than 20% of pre-loaded [(3)H]DA was lost after 60 min, while nearly 80% of pre-loaded [(3)H]METH was lost at 37 degrees C under non-stimulated conditions. Results obtained by measuring substrate release using a superfusion apparatus revealed an even greater difference in substrate efflux. At pH 7.4, nearly all of the pre-loaded [(3)H]METH was lost after just 6 min, compared with the loss of 70-80% of pre-loaded [(3)H]DA (depending on cell type) after superfusion for 32 min. Increasing the extracellular pH from 7.4 to 8.6 had opposite effects on [(3)H]DA and [(3)H]METH retention. At pH 8.6, [(3)H]METH was retained more effectively by both hDAT and hDAT-hVMAT2 cells, compared with results obtained at extracellular pH 7.4. [(3)H]DA, however, was more effectively retained at pH 7.4 than at pH 8.6. These data suggest that DA and METH interact differently with the DAT and VMAT2, and require different H(+) concentrations to exert their effects.  相似文献   

15.
16.
Rats treated with (±)-3,4-methylenedioxymethamphetamine (MDMA) or (+)-methamphetamine (MA) neonatally exhibit long-lasting learning impairments (i.e., after treatment on postnatal days (P)11–15 or P11–20). Although both drugs are substituted amphetamines, they each produce a unique profile of cognitive deficits (i.e., spatial vs. path integration learning and severity of deficits) which may be the result of differential early neurochemical changes. We previously showed that MA and MDMA increase corticosterone (CORT) and MDMA reduces levels of serotonin (5-HT) 24 h after treatment on P11, however, learning deficits are seen after 5 or 10 days of drug treatment, not just 1 day. Accordingly, in the present experiment, rats were treated with MA or MDMA starting on P11 for 5 or 10 days (P11–15 or P11–20) and tissues collected on P16, P21, or P30. Five-day MA administration dramatically increased CORT on P16, whereas MDMA did not. Both drugs decreased hippocampal 5-HT on P16 and P21, although MDMA produced larger reductions. Ten-day treatment with either drug increased dopamine utilization in the neostriatum on P21, whereas 5-day treatment had no effect. No CORT or brain 5-HT or dopamine changes were found with either drug on P30. Although the monoamine changes are transient, they may alter developing neural circuits sufficiently to permanently disrupt later learning and memory abilities.  相似文献   

17.
The human immunodeficiency virus (HIV)-1 transactivating protein Tat may be pathogenically relevant in HIV-1-induced neuronal injury. The abuse of methamphetamine (MA), which is associated with behaviors that may transmit HIV-1, may damage dopaminergic afferents to the striatum. Since Tat and MA share common mechanisms of injury, we examined whether co-exposure to these toxins would lead to enhanced dopaminergic toxicity. Animals were treated with either saline, a threshold dose of MA, a threshold concentration of Tat injected directly into the striatum, or striatal injections of Tat followed by exposure to MA. Threshold was defined as the highest concentration of toxin that would not result in a significant loss of striatal dopamine levels. One week later, MA-treated animals demonstrated a 7% decline in striatal dopamine levels while Tat-treated animals showed an 8% reduction. Exposure to both MA + Tat caused an almost 65% reduction in striatal dopamine. This same treatment caused a 56% reduction in the binding capacity to the dopamine transporter. Using human fetal neurons, enhanced toxicity was also observed when cells were exposed to both Tat and MA. Mitochondrial membrane potential was disrupted and could be prevented by treatment with antioxidants. This study demonstrates that the HIV-1 'virotoxin' Tat enhances MA-induced striatal damage and suggests that HIV-1-infected individuals who abuse MA may be at increased risk of basal ganglia dysfunction.  相似文献   

18.
Animal data suggest that the widely abused psychostimulant methamphetamine can damage brain dopamine neurones by causing dopamine-dependent oxidative stress; however, the relevance to human methamphetamine users is unclear. We measured levels of key antioxidant defences [reduced (GSH) and oxidized (GSSG) glutathione, six major GSH system enzymes, copper-zinc superoxide dismutase (CuZnSOD), uric acid] that are often altered after exposure to oxidative stress, in autopsied brain of human methamphetamine users and matched controls. Changes in the total (n = 20) methamphetamine group were limited to the dopamine-rich caudate (the striatal subdivision with the most severe dopamine loss) in which only activity of CuZnSOD (+ 14%) and GSSG levels (+ 58%) were changed. In the six methamphetamine users with severe (- 72 to - 97%) caudate dopamine loss, caudate CuZnSOD activity (+ 20%) and uric acid levels (+ 63%) were increased with a trend for decreased (- 35%) GSH concentration. Our data suggest that brain levels of many antioxidant systems are preserved in methamphetamine users and that GSH depletion, commonly observed during severe oxidative stress, might occur only with severe dopamine loss. Increased CuZnSOD and uric acid might reflect compensatory responses to oxidative stress. Future studies are necessary to establish whether these changes are associated with oxidative brain damage in human methamphetamine users.  相似文献   

19.
Methamphetamine causes persistent damage to dopamine nerve endings of the striatum. Repeated, intermittent treatment of mice with low doses of methamphetamine leads to the development of tolerance to its neurotoxic effects. The mechanisms underlying tolerance are not understood but clearly involve more than alterations in drug bioavailability or reductions in the hyperthermia caused by methamphetamine. Microglia have been implicated recently as mediators of methamphetamine-induced neurotoxicity. The purpose of the present studies was to determine if a tolerance regimen of methamphetamine would attenuate the microglial response to a neurotoxic challenge. Mice treated with a low-dose methamphetamine tolerance regimen showed minor reductions in striatal dopamine content and low levels of microglial activation. When the tolerance regimen preceded a neurotoxic challenge of methamphetamine, the depletion of dopamine normally seen was significantly attenuated. The microglial activation that occurs after a toxic methamphetamine challenge was blunted likewise. Despite the induction of tolerance against drug-induced toxicity and microglial activation, a neurotoxic challenge with methamphetamine still caused hyperthermia. These results suggest that tolerance to methamphetamine neurotoxicity is associated with attenuated microglial activation and they further dissociate its neurotoxicity from drug-induced hyperthermia.  相似文献   

20.
Methamphetamine (METH) produces long-term decreases in markers of dopamine (DA) terminals in animals and humans. A decrease in the function of the vesicular monoamine transporter 2 (VMAT2) has been associated with damage to striatal DA terminals caused by METH; however, a possible mechanism for this decrease in VMAT2 function has not been defined. The current study showed that METH caused a rapid decrease to 68% of controls in VMAT2 protein immunoreactivity of the vesicular fraction from striatal synaptosomes within 1 h after a repeated high-dose administration regimen of METH. This decrease was associated with a 75% increase in nitrosylation of VMAT2 protein in the synaptosomal fraction as measured by nitrosocysteine immunoreactivity of VMAT2 protein. The rapid decreases in VMAT2 persisted when evaluated 7 days later and were illustrated by decreases in VMAT2 immunoreactivity and DA content of the vesicular fraction to 34% and 51% of control values, respectively. The decreases were blocked or attenuated by prior injections of the neuronal nitric oxide synthase inhibitor, S-methyl-l-thiocitrulline. These studies demonstrate that METH causes a rapid neuronal nitric oxide synthase-dependent oxidation of VMAT2 and long-term decreases in VMAT2 protein and function. The results also suggest that surviving DA terminals after METH exposure may have a compromised capacity to buffer cytosolic DA concentrations and DA-derived oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号