首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
抗菌肽的抗肿瘤作用   总被引:10,自引:0,他引:10  
抗菌肽是宿主免疫防御系统的重要成分,具有广谱杀菌、相对分子量较小、热稳定性及水溶性好等优点,更重要的是抗菌肽能选择性杀灭肿瘤细胞,对人畜毒副作用小。因此,抗菌肽在生物和医药等方面,尤其是抗肿瘤方面有很好的开发前景。  相似文献   

2.
含有Fxa切割位点的抗菌肽X在大肠杆菌中的融合表达   总被引:3,自引:0,他引:3  
抗菌肽是昆虫体液免疫的重要成分[1,2 ] ,它们的分子量较小 ,具有抗菌、抗病毒和杀伤某些肿瘤细胞的功能 ,而不破坏人体正常细胞。基于它的这种选择性效应和分子小、无抗原性的特点 ,可望成为新一代的抗菌、抗肿瘤药物。然而 ,天然抗菌肽来源十分困难 ,不能满足研究和临床应用的需要 ,通过基因工程技术生产抗菌肽已成为人们普遍关注的焦点。抗菌肽CMIV是从家蚕蛹中分离并测定了其一级结构的新型抗菌肽 ,它由 35个氨基酸组成 ,不含甲硫氨酸 ,C 末端为酰胺[3 ] 。抗菌肽X是中国家蚕抗菌肽CMIV的变体 ,其一级结构与天然的抗菌肽CM…  相似文献   

3.
抗菌肽及其临床应用前景   总被引:4,自引:0,他引:4  
传统抗生素的广泛运用导致了耐药菌株的大量增加,迫切要求新型抗生素的出现。抗菌肽是广泛存在于生物体内的小分子多肽,是天然免疫系统的重要组成部分。它不仅具有广谱杀菌作用,甚至能够抑杀真菌、寄生虫、含包膜病毒以及肿瘤细胞。抗菌肽通过与致病菌胞膜的结合形成跨膜离子通道,导致了细胞内外的离子交换最终引起细胞死亡。由于它作用迅速,选择性强,而且很少有耐药性的发生,很有可能成为新一代的抗菌药物。本文简述了抗菌肽的结构特点,抗菌作用机制,生物学功能和临床应用方面的最新进展以及进一步就抗菌肽作为新型抗生素所面临的问题进行了探讨。  相似文献   

4.
抗菌肽临床应用前景分析   总被引:2,自引:0,他引:2  
抗菌肽是生物天然免疫的重要组成部分,几乎存在于所有种类的生物中。目前已发现的抗菌肽超过2 000种。抗菌肽具有广谱抗菌活性,对大多数革兰氏阳性菌、革兰氏阴性菌和真菌具有强大的抑制作用(包括多药物耐受微生物),而且这种作用具有较好的选择性。这些特点使抗菌肽具有成为抗感染药物的重大潜力;但抗菌肽的临床应用也面临着一些困难,如抗菌肽大量生产、体内稳定性、微生物耐受等。对抗菌肽临床应用面临的问题及正在进行临床研究和临床前研究的抗菌肽做一简要综述。  相似文献   

5.
昆虫抗菌肽(antimicrobial peptide,AMPs)是一类昆虫先天免疫系统中十分重要的效应因子,它分子量小、热稳定,并且具有广谱抗菌性,能够抑制、杀死多种细菌、真菌.近几年来,由于昆虫抗菌肽具有抗肿瘤的活性且其不具有抗原性而受到研究者的广泛关注.昆虫种类多、分布广,因此昆虫抗菌肽具有很高的开发潜力和实际应用价值.但是,目前对于昆虫抗菌肽抗肿瘤能力的研究尚不够深入,对其作用机制还没有一套准确并且系统的理论.现在普遍认为昆虫抗菌肽的抗肿瘤机制与其抗菌机制类似,可以分为破坏细胞膜机制以及非破坏细胞膜机制,并且同一种昆虫抗菌肽可以通过多种方式来抑制甚至杀死肿瘤细胞,但是对正常真核细胞无明显的毒副作用.相较于传统化疗药物的无差别杀伤,昆虫抗菌肽在肿瘤治疗领域有着巨大潜力.本文简要综述了昆虫抗菌肽对肿瘤细胞的抑制作用及其作用机制,并对其开发潜力和实际应用价值进行了展望,以期为今后的研究提供理论支持.  相似文献   

6.
昆虫抗菌肽(antimicrobial peptide,AMPs)是一类昆虫先天免疫系统中十分重要的效应因子,它分子量小、热稳定,并且具有广谱抗菌性,能够抑制、杀死多种细菌、真菌.近几年来,由于昆虫抗菌肽具有抗肿瘤的活性且其不具有抗原性而受到研究者的广泛关注.昆虫种类多、分布广,因此昆虫抗菌肽具有很高的开发潜力和实际应用价值.但是,目前对于昆虫抗菌肽抗肿瘤能力的研究尚不够深入,对其作用机制还没有一套准确并且系统的理论.现在普遍认为昆虫抗菌肽的抗肿瘤机制与其抗菌机制类似,可以分为破坏细胞膜机制以及非破坏细胞膜机制,并且同一种昆虫抗菌肽可以通过多种方式来抑制甚至杀死肿瘤细胞,但是对正常真核细胞无明显的毒副作用.相较于传统化疗药物的无差别杀伤,昆虫抗菌肽在肿瘤治疗领域有着巨大潜力.本文简要综述了昆虫抗菌肽对肿瘤细胞的抑制作用及其作用机制,并对其开发潜力和实际应用价值进行了展望,以期为今后的研究提供理论支持.  相似文献   

7.
抗菌肽的结构特征、生物活性及应用   总被引:4,自引:0,他引:4  
抗菌肽分子呈双亲性的仅一螺旋结构可使细菌、真菌、寄生虫的质膜形成离子通道,从而导致这些病原体死亡。抗菌肽分子也可通过影响它们的能量转运和代谢,损害它们的呼吸链的功能,抑制它们的蛋白质和DNA的合成,以及干扰病毒的侵染过程和抑制病毒的繁殖等机制,对病原体产生抑制或杀灭作用。此外,抗菌肽还可杀伤肿瘤细胞并提高机体的免疫功能。因此,抗菌肽有望开发为防治人和动物疾病的药物,应用前景广阔。  相似文献   

8.
鲎素抗菌肽是中国鲎天然免疫的重要组成部分,具有广谱抗菌活性,对细菌、真菌、肿瘤细胞及一些病毒具有强大的抑制作用,且这种作用具有较好的选择性。本文主要介绍了鲎素的种类和生物活性、鲎素的结构与功能关系、鲎素作用机理的最新研究进展,并对鲎素临床应用面临的问题及对策做了简要综述。  相似文献   

9.
抗菌肽(Antimicrobial polypeptides,AMPs)是两性带电分子,广泛存在于多种生物体内,具有广谱抗菌、调节免疫、抑制肿瘤等多种生物学功能。一些抗菌肽不仅对耐药性的病原细菌有很好的抑制和杀灭作用,而且还对真菌、原生动物、病毒等有很好的抑制作用。近年研究还发现,某些抗菌肽还可选择性杀伤肿瘤细胞,  相似文献   

10.
抗菌肽(AMP)是生物体内先天免疫系统的一个组成部分,保护机体免受致病微生物的入侵.抗菌肽具有很强的广谱抗菌活性,可抑制革兰氏阳性菌、革兰氏阴性菌、真菌和病毒的生长.为克服微生物对抗生素耐药性的问题,目前阳离子抗菌肽已被考虑作为抗生素的潜在替代品.本文将阐述抗菌肽的作用机理、选择性抗菌肽的设计及其应用.  相似文献   

11.

Antimicrobial peptides (AMPs) from prokaryotic source also known as bacteriocins are ribosomally synthesized by bacteria belonging to different eubacterial taxonomic branches. Most of these AMPs are low molecular weight cationic membrane active peptides that disrupt membrane by forming pores in target cell membranes resulting in cell death. While these peptides known to exhibit broad-spectrum antimicrobial activity, including antibacterial and antifungal, they displayed minimal cytotoxicity to the host cells. Their antimicrobial efficacy has been demonstrated in vivo using diverse animal infection models. Therefore, we have discussed some of the promising peptides for their ability towards potential therapeutic applications. Further, some of these bacteriocins have also been reported to exhibit significant biological activity against various types of cancer cells in different experimental studies. In fact, differential cytotoxicity towards cancer cells as compared to normal cells by certain bacteriocins directs for a much focused research to utilize these compounds as novel therapeutic agents. In this review, bacteriocins that demonstrated antitumor activity against diverse cancer cell lines have been discussed emphasizing their biochemical features, selectivity against extra targets and molecular mechanisms of action.

  相似文献   

12.
抗菌肽及其临床应用研究进展   总被引:1,自引:0,他引:1  
抗菌肽是生物体在抵抗病原微生物的防御反应过程中产生的一类具有抗微生物活性的小分子多肽。抗菌肽是机体天然免疫系统的重要组成部分,具有广谱的抗革兰氏阳性、阴性菌活性,对真菌、某些有包膜的病毒、寄生虫以及肿瘤细胞也有抑制活性。抗菌肽具有不同于传统抗生素的独特抗菌机制,病原菌不宜对其产生耐药性,有可能成为一种新的抗生素替代品。介绍了抗菌肽的来源与分类、理化特性与生物学活性,并重点阐述其最新的临床应用进展。  相似文献   

13.
Antimicrobial peptides (AMPs) are a group of peptides that are active against a diverse spectrum of microorganisms. Due to their mode of action, AMPs are a promising class of molecules that could overcome the problems of increasing resistance of bacteria to conventional antibiotics. Furthermore, AMPs are strongly membrane-active and some are able to translocate into cells without the necessity for permanent membrane permeabilization. This feature has brought them into focus for use as transport vectors in the context of drug delivery. Since the plasma membrane restricts transport of bioactive substances into cells, great research interest lies in the development of innovative ways to overcome this barrier and to increase bioavailability. In this context, peptide-based transport systems, such as cell-penetrating peptides (CPPs), have come into focus, and their efficiency has been demonstrated in many different applications. However, more recently, also some AMPs have been used as efficient vectors for intracellular translocation of various active molecules. This review summarizes recent efforts in this interesting field of drug delivery. Moreover, some examples of the application of CPPs as efficient antimicrobial substances will be discussed.  相似文献   

14.
15.
Control of cell selectivity of antimicrobial peptides   总被引:1,自引:0,他引:1  
Antimicrobial peptides (AMPs) are promising novel antibiotics, because they exhibit broad antimicrobial spectra and do not easily induce resistance. For clinical applications, it is important to develop potent AMPs with less toxicity against host cells. This review article summarizes the molecular basis for the cell selectivity (bacteria versus host cells) of AMPs and various attempts to control it, including the optimization of physicochemical parameters of peptides, the introduction of d-, fluorinated, and unusual amino acids into peptides, the constraining of peptide conformations, and the modification of peptides by polymers. Pros and cons of these approaches are discussed.  相似文献   

16.
The incidence of life‐threatening invasive fungal infections increased significantly in recent years. However, the antifungal therapeutic options are very limited. Antimicrobial peptides are a class of potential lead chemical for the development of novel antifungal agents. Antimicrobial peptide polybia‐CP was purified from the venom of the social wasp Polybia paulista. In this study, we synthesized polybia‐CP and determined its antifungal effects against a series of Candidian species. Our results showed that polybia‐CP has potent antifungal activity and fungicidal activity against the tested fungal cells with a proposed membrane‐active action mode. In addition, polybia‐CP could induce the increase of cellular reactive oxygen species production, which would attribute to its antifungal activity. In conclusion, the present study suggests that polybia‐CP has potential as an antifungal agent or may offer a new strategy for antifungal therapeutic option. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
Antimicrobial peptides (AMPs) are naturally produced, gene encoded molecules with a direct antimicrobial activity against pathogens, often also showing other immune-related properties. Anuran skin secretions are rich in bioactive peptides, including AMPs, and we have reported a novel targeted sequencing approach to identify novel AMPs simultaneously in different frog species, from small quantities of skin tissue. Over a hundred full-length peptides were identified from specimens belonging to five different Ranidae frog species, out of which 29 were novel sequences. Six of these were selected for synthesis and testing against a panel of Gram-negative and Gram-positive bacteria. One peptide, identified in Rana arvalis, proved to be a potent and broad-spectrum antimicrobial, active against ATCC bacterial strains and a multi-drug resistant clinical isolate. CD spectroscopy suggests it has a helical conformation, while surface plasmon resonance (SPR) that it may self-aggregate/oligomerize at the membrane surface. It was found to disrupt the bacterial membrane at sub-MIC, MIC and above-MIC concentrations, as observed by flow cytometry and/or visualized by atomic force microscopy (AFM). Only a limited toxicity was observed towards peripheral blood mononuclear cells (PBMC) with a more pronounced effect observed against the MEC-1 cell line.  相似文献   

18.
Antimicrobial peptides are natural antibiotics known to be present in both myeloid cells and epithelial surfaces of vertebrates. Nevertheless, the reports of antimicrobial peptides isolated from blood cells of teleosts are scarce. In this paper we show that acid-soluble erythrocyte extracts from rainbow trout, Oncorhynchus mykiss, display antibacterial activity against Planococcus citreus on a radial diffusion assay. Following tC18 solid phase extraction, cationic exchange chromatography and C18 reversed phase HPLC, two groups of fractions with antibacterial properties were obtained. This antibacterial activity is thermostable and susceptible to digestion by proteinase K, thus showing that the antibacterial agents have a proteinaceous nature. The factors eluted from a C18 column with circa 33% acetonitrile are active against P. citreus and Escherichia coli, with minimal inhibitory concentrations in the range 7-14 microg ml(-1) and 14-28 microg ml(-1), respectively; the ones eluted with approximately 44% acetonitrile on the same column only displayed activity against P. citreus, with a minimal inhibitory concentration of 1-2 microg ml(-1). These results raise the possibility that trout erythrocytes may contain antimicrobial factors not previously considered to be part of the innate immune system.  相似文献   

19.
Plant cysteine-rich peptides (CRPs) represent a diverse group of molecules involved in different aspects of plant physiology. Antimicrobial peptides, which directly suppress the growth of pathogens, are regarded as promising templates for the development of next-generation pharmaceuticals and ecologically friendly plant disease control agents. Their oligopeptide fragments are even more promising because of their low production costs. The goal of this work was to explore the antimicrobial activity of nine short peptides derived from the γ-core-containing regions of tomato CRPs against important plant and human pathogens. We discovered antimicrobial activity in peptides derived from the defensin-like peptides, snakins, and MEG, which demonstrates the direct involvement of these CRPs in defense reactions in tomato. The CRP-derived short peptides appeared particularly active against the gram-positive bacterium Clavibacter michiganensis, which causes bacterial wilt—opening up new possibilities for their use in agriculture to control this dangerous disease. Furthermore, high inhibitory potency of short oligopeptides was demonstrated against the yeast Cryptococcus neoformans, which causes serious diseases in humans, making these peptide molecules promising candidates for the development of next-generation pharmaceuticals. Studies of the mode of action of the two most active peptides indicate fungal membrane permeabilization as a mechanism of antimicrobial action.  相似文献   

20.
抗菌肽的作用机制、生物活性及应用研究进展   总被引:1,自引:0,他引:1  
抗菌肽广泛存在于生物界,是辅助生物机体抵抗外来病原体入侵的重要防御分子。抗菌肽不仅能抑制、杀灭多种细菌,而且具有抗真菌、抗寄生虫、抗病毒、抗肿瘤和免疫调节等生物学活性。抗菌肽的作用机制与传统抗生素不同,不仅具有广谱抗微生物作用,而且不易诱导机体产生耐药性,因此,在治疗临床耐药菌株方面具有极大的开发潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号