首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 118 毫秒
1.
线粒体是一种具有双层膜结构、半自主的细胞器,也是一种动态细胞器,可以通过不断的融合与分裂改变线粒体的形态和数量。线粒体的融合与分裂也就使线粒体动力学逐渐成为研究热点,其在肿瘤形成过程中发挥重要作用。胶质瘤是临床常见的中枢神经系统恶性肿瘤,目前尚无有效的治疗措施,而研究发现线粒体动力学异常在胶质瘤发生发展中起重要作用。所以本文将就线粒体动力学、线粒体动力学的调控及其与胶质瘤发生发展的关系做一综述。  相似文献   

2.
抗增殖蛋白(prohibitins,PHBs)是一类进化保守的重要蛋白质。哺乳动物细胞中,抗增殖蛋白家族含有2个同源亚型PHB1和PHB2。PHBs涉及多种细胞功能,包括细胞增殖、细胞迁移和细胞凋亡。PHBs的亚细胞定位不同决定其行使不同的功能。细胞膜上的PHBs能够调节膜运输,并与细胞增殖迁移相关。细胞核内的PHBs参与调控转录和细胞周期。线粒体内膜上的PHBs参与维持线粒体基因组和线粒体形态的稳定,并参与线粒体内的凋亡途径。另外,PHBs可以在细胞核和线粒体之间“穿梭”,是细胞核与线粒体交流的重要媒介。近年来,PHBs的研究不断深入,发现PHBs与多种肿瘤的发生和发展密切相关。本文以PHBs在肿瘤发生发展过程中扮演的角色为切入点,从蛋白质的结构和定位,在肿瘤的发生、发展、迁移和凋亡中的作用及其靶向药物几方面进行综述。进一步揭示PHBs在不同类型肿瘤发生发展进程中的分子机制,为开发新的高效的药物靶点奠定了理论基础。  相似文献   

3.
能量代谢重编程是肿瘤细胞一个重要的标志特征,而由线粒体DNA(mitochondrial DNA,mtDNA)结构及功能异常引起的线粒体功能障碍是其机制之一。人类mtDNA为位于线粒体基质中由16569bp组成的双链闭合环状分子,编码与氧化磷酸化电子传递链相关的13种多肽以及与线粒体蛋白合成相关的22种tRNA和2种rRNA。近年来,人们发现多种肿瘤组织及细胞中存在mtDNA序列的多类型突变或拷贝数的变异,且mtDNA的这些异常与肿瘤的发生发展、早期诊断及放化疗监测等密切相关。异常的mtDNA因削弱线粒体产能、增加细胞内活性氧(reactive oxygen species,ROS)水平、打破Ca2+稳态,从而赋予肿瘤细胞代谢重编程、凋亡抵抗等侵袭性进程。针对mtDNA异常在肿瘤发生发展中的作用及机制研究,将为肿瘤的早期诊断及靶向治疗提供新的策略。  相似文献   

4.
线粒体是细胞能量和自由基代谢中心,并在细胞凋亡、钙调控、细胞周期和信号转导中发挥重要作用,维持线粒体功能正常对于细胞正常行使职能意义重大。线粒体的功能与线粒体DNA(mitochondrial DNA,mtDNA)的数量和质量紧密相关,mtDNA的数量即mtDNA拷贝数又受到mtDNA质量的影响,因此mtDNA拷贝数可作为线粒体功能的重要表征。mtDNA拷贝数变异引起线粒体功能紊乱,进而导致疾病发生。本文综述了mtDNA拷贝数变异与神经退行性疾病、心血管疾病、肿瘤等疾病的发生发展和个体衰老之间的关系,以及mtDNA复制转录相关因子、氧化应激、细胞自噬等因素介导mtDNA拷贝数变异的调控机制。以期为进一步深入探究mtDNA拷贝数调控的分子机制,以及未来治疗神经退行性疾病、肿瘤及延缓衰老等提供一定的理论基础。  相似文献   

5.
单胺氧化酶A(monoamine oxidase A,MAOA)是一种线粒体结合酶,已证实其缺陷与负面情绪密切相关。近几年发现MAOA在部分肿瘤的发生、发展和预后中起到重要作用。现对MAOA在前列腺癌、肝癌、胆管癌、淋巴瘤、乳腺癌、胰腺癌中的表达以及作用的研究进展进行综述,并且展望未来MAOA在肿瘤研究中的方向及其临床应用前景。  相似文献   

6.
线粒体内质网结构偶联(mitochondria-associated endoplasmic reticulum membranes,MAMs)是线粒体外膜与内质网膜间形成的、具有稳定间距的相互作用膜结构,在介导两细胞器间的物质和信息传递中发挥关键作用。研究表明, MAMs上分布有大量Ca~(2+)转运通道及相关调控蛋白,可精细调控线粒体Ca~(2+)稳态及ATP生成、细胞凋亡等一系列重要细胞生命活动。进一步研究还发现,MAMs上富集了大量肿瘤相关分子,因此,其参与恶性肿瘤发生的作用机制迅速成为肿瘤基础研究的热点。该文围绕MAMs对线粒体Ca~(2+)摄取及肿瘤发生调控的最新研究进展予以综述,旨在为进一步理解肿瘤发病机制提供新的思路和依据。  相似文献   

7.
线粒体是真核细胞中重要的细胞器,是高等生命体赖以生存的能量来源.线粒体异常可引起细胞甚至器官发生病变,越来越多的疾病被证实与线粒体功能障碍有关.线粒体移植是从患者正常组织分离线粒体然后注入线粒体损伤或缺失的部位,使损伤细胞得到救治、器官功能得以恢复的全新干预技术.线粒体移植作为一种新兴治疗方案在一些疾病干预的基础研究中崭露头角,尤其是在保护心脏缺血再灌注损伤领域已经发展到临床试验阶段.本文从线粒体起源出发,总结了仍处于实验阶段的几种线粒体移植方法,概述了线粒体移植在脑缺血引起神经元损伤保护领域、心肌缺血再灌注损伤保护领域和肿瘤治疗领域的研究进展,从分子层面探讨了线粒体损伤及线粒体移植修复的机理,并提出研发患者专属的"线粒体移植治疗生物制剂"的设想,旨在为线粒体缺陷有关疾病的治疗研究提供新的视角.  相似文献   

8.
线粒体DNA直接控制细胞氧化磷酸化过程,其基因组序列发生突变尤其是微卫星DNA 不稳定性会严重降低线粒体产生能量的功能,诱发细胞程序性死亡和癌细胞形成。目前,有关人类线粒体微卫星DNA不稳定性与肿瘤关系的研究越来越受到关注。仅就微卫星DNA的特点和不稳定性形成的机理以及与肿瘤关系的研究进展作以概述。  相似文献   

9.
线粒体自噬(mitochondrial autophagy, or mitophagy)指的是细胞通过自吞噬作用,降解与清除受损线粒体或者多余线粒体,其对整个线粒体网络的功能完整性和细胞存活具有重要作用。线粒体自噬过程受多种途径调控,PINK1/Parkin通路是其中的一条,其异常与多种疾病的发生密切相关,如心血管疾病、肿瘤和帕金森病等。在去极化线粒体中,磷酸酶及张力蛋白同源物(PTEN)诱导的激酶1(PTEN-induced kinase 1,PINK1)作为受损线粒体的分子传感器,触发线粒体自噬的起始信号,并将Parkin募集至线粒体;Parkin作为线粒体自噬信号的“增强子”,通过对线粒体蛋白质进一步泛素化介导自噬信号的扩大;去泛素化酶和PTEN-long蛋白参与调控该过程,并对维持线粒体稳态具有重要作用。本文主要对PINK1与Parkin蛋白质的分子结构和其介导线粒体自噬发生的分子机制,以及参与调控该途径的关键蛋白质进行综述,为进一步研究以线粒体自噬缺陷为特征的疾病治疗提供理论基础。  相似文献   

10.
线粒体在生物体的新陈代谢中起着非常重要的作用,不仅为代谢活动提供能量,还可以产生具有信号传递和基因调节作用的活性氧.线粒体发生功能障碍或损坏都可能造成严重的后果,甚至导致细胞死亡.受损线粒体通常通过线粒体自噬降解,研究发现线粒体自噬紊乱与多种疾病发生有关.本文阐述了线粒体自噬的调节机制和介导途径,详细论述了近年来线粒体自噬在神经退行性疾病、心脏病及肿瘤中的作用,总结指出线粒体自噬的两面性,即一方面正常范围内的线粒体自噬可以维持人体细胞的正常生理机能,另一方面,线粒体自噬水平过高和过低都会引发疾病.  相似文献   

11.
细胞自噬(autophagy)是将细胞内受损、变性或衰老的蛋白质以及细胞器运输到溶酶体进行消化降解的过程.正常生理情况下,细胞自噬利于细胞保持自稳状态;在发生应激时,细胞自噬防止有毒或致癌的损伤蛋白质和细胞器的累积,抑制细胞癌变;然而肿瘤一旦形成,细胞自噬为癌细胞提供更丰富的营养,促进肿瘤生长.因此,在肿瘤发生发展的过程中,细胞自噬的作用具有两面性.尽管大多数抑癌蛋白可以激活细胞自噬这一结论被广泛接受,但p53作为重要的抑癌蛋白,在细胞核和细胞浆不同的亚细胞定位中对细胞自噬有着截然相反的调控.对于细胞自噬和癌症发生之间关系亟待深入的研究,这将会有助于人类更好地认识并最终攻克癌症.本文将针对细胞自噬与肿瘤发生过程中主要的信号调节通路展开介绍.  相似文献   

12.
肿瘤的发生是一个多种信号网络相互参与调节的复杂过程,随着进程的继续,肿瘤细胞逐渐表现出无限增殖、抵抗凋亡、逃避免疫监督、侵袭与转移以及出现异常的代谢途径等标志性特征。线粒体作为一种独特的细胞器,其在细胞能量代谢、氧自由基生成和细胞凋亡等过程中的作用都与肿瘤细胞的发生密切相关。文中就近年来线粒体功能异常在肿瘤发生、形成中所发挥的作用进行综述。  相似文献   

13.
Death of cancer cells influences tumor development and progression, as well as the response to anticancer therapies. This can occur through different cell death programmes which have recently been shown to implicate components of the acidic organelles, lysosomes. The role of lysosomes and lysosomal enzymes, including cathepsins and some lipid hydrolases, in programmed cell death associated with apoptotic or autophagic phenotypes is presented, as evidenced from observations on cultured cells and living animals. The possible molecular mechanisms that underlie the action of lysosomes during cell death are also described. Finally, the contribution of lysosomal proteins and lysosomes to tumor initiation and progression is discussed. Elucidation of this role and the underlying mechanisms will shed a new light on these 'old' organelles and hopefully pave the way for the development of novel anticancer strategies.  相似文献   

14.
自噬是一种以胞质内出现双层膜结构包裹长寿命蛋白和细胞器的自噬体为特征的细胞“自我消化”过程,在维持细胞内稳态、发育、肿瘤发生和感染中发挥重要作用。近来,诸多研究表明,自噬作为一把“双刃剑”,对肿瘤的发生发展既有促进作用,也有抑制作用。PI3K/Akt/mTOR通路由PI3激酶(PI3K)、蛋白激酶B(PKB/Akt)和哺乳动物类雷帕霉素靶蛋白(mTOR)3个作用分子组成,是一个中心的调节机构,对肿瘤细胞的生长与增殖有促进作用,同时对自噬进行抑制。本文就PI3K/Akt/mTOR通路与自噬及肿瘤发生发展的关系作一综述。  相似文献   

15.
Cholangiocytes, like most cells, express primary cilia extending from their membranes. These organelles function as antennae which detect stimuli from bile and transmit the information into cells regulating several signaling pathways involved in secretion, proliferation and apoptosis. The ability of primary cilia to detect different signals is provided by ciliary associated proteins which are expressed in its membrane. Defects in the structure and/or function of these organelles lead to cholangiociliopathies that result in cholangiocyte hyperproliferation, altered fluid secretion and absorption. Since primary cilia dysfunction has been observed in several epithelial tumors, including cholangiocarcinoma (CCA), primary cilia have been proposed as tumor suppressor organelles. In addition, the loss of cilia is associated with dysregulation of several molecular pathways resulting in CCA development and progression. Thus, restoration of the primary cilia may be a potential therapeutic approach for several ciliopathies and CCA.  相似文献   

16.
17.
How do bioenergetic organelles relate to the cells they are in and how was this relationship established over the course of evolution? Plastids and mitochondria are viewed as prokaryotic residents in eukaryotic cells. These organelles are semiautonomous: they perpetuate themselves by division but regulate and are subject to regulation by the cell in which they are residents. Although these organelles are usually constitutive, their development is arrested in certain organisms when an inducing substrate is absent (light, for example, in the case of the chloroplast) with the formation of precursor organelles such as proplastids. Various trends in the evolution of photocontrol systems are discussed including those concerned with photoperception and photomorphogenesis. The photocontrol of chloroplast development by blue and red light is discussed in relation to its possible evolutionary origins in a system for finding the right light for photosynthesis. Models for various types of cellular regulation by light during chloroplast development are discussed. Also considered is the evolution of plastid pigments in response to available light. A parallel evolution of accessory pigments and chlorophylls is suggested which led to chlorophyll reaction centers serving as energy sinks for light absorbed by accessory pigments and, therefore, having their absorptions pushed to the longest possible wavelengths as accessory pigments evolved to fill the middle of the spectrum in response to ecological selection. An endosymbiotic origin of bioenergetic organelles is suggested based on polyphyletic origins of chloroplasts from a number of oxygenic procaryotic precursors. The similarity between proplastids and these oxygenic procaryotes suggests that the original invading organelle may have resembled a modern proplastid rather than a mature chloroplast.  相似文献   

18.
Yang S  Kimmelman AC 《Autophagy》2011,7(8):912-913
Autophagy is a regulated catabolic process that leads to the lysosomal degradation of damaged proteins, organelles and other macromolecules, with subsequent recycling of bioenergetic intermediates. The role of autophagy in cancer is undoubtedly complex and likely dependent on tumor type and on the cellular and developmental context. While it has been well demonstrated that autophagy may function as a tumor suppressor, there is mounting evidence that autophagy may have pro-tumorigenic roles, e.g., promoting therapeutic resistance as well as survival under stresses such as hypoxia and nutrient deprivation. These two, seemingly disparate functions can be reconciled by a possible temporal role of autophagy during tumor development, initially suppressing tumor initiation yet supporting tumor growth at later stages.  相似文献   

19.
《Autophagy》2013,9(8):912-913
Autophagy is a regulated catabolic process that leads to the lysosomal degradation of damaged proteins, organelles and other macromolecules, with subsequent recycling of bioenergetic intermediates. The role of autophagy in cancer is undoubtedly complex and likely dependent on tumor type and on the cellular and developmental context. While it has been well demonstrated that autophagy may function as a tumor suppressor, there is mounting evidence that autophagy may have pro-tumorigenic roles, e.g., promoting therapeutic resistance as well as survival under stresses such as hypoxia and nutrient deprivation. These two, seemingly disparate functions can be reconciled by a possible temporal role of autophagy during tumor development, initially suppressing tumor initiation yet supporting tumor growth at later stages.  相似文献   

20.
Autophagy: a barrier or an adaptive response to cancer   总被引:23,自引:0,他引:23  
Macroautophagy or autophagy is a degradative pathway terminating in the lysosomal compartment after the formation of a cytoplasmic vacuole that engulfs macromolecules and organelles. The recent discovery of the molecular controls of autophagy that are common to eukaryotic cells from yeast to human suggests that the role of autophagy in cell functioning is far beyond its nonselective degradative capacity. The involvement of proteins with properties of tumor suppressor and oncogenic properties at different steps of the pathway implies that autophagy must be considered in tumor progression. Autophagy as a stress response mechanism protects cancer cells from low nutrient supply or therapeutic insults. Autophagy is also involved in the elimination of cancer cells by triggering a non-apoptotic cell death program, suggesting a negative role in tumor development. These two aspects of autophagy will be discussed in this review.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号