首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
The Nrg1 and Nrg2 repressors of Saccharomyces cerevisiae have highly similar zinc fingers and closely related functions in the regulation of glucose-repressed genes. We show that NRG1 and NRG2 are differently regulated in response to carbon source at both the RNA and protein levels. Expression of NRG1 RNA is glucose repressed, whereas NRG2 RNA levels are nearly constant. Nrg1 protein levels are elevated in response to glucose limitation or growth in nonfermentable carbon sources, whereas Nrg2 levels are diminished. Chromatin immunoprecipitation assays showed that Nrg1 and Nrg2 bind DNA both in the presence and absence of glucose. In mutant cells lacking the corepressor Ssn6(Cyc8)-Tup1, promoter-bound Nrg1, but not Nrg2, functions as an activator in a reporter assay, providing evidence that the two Nrg proteins have distinct properties. We suggest that the differences in expression and function of these two repressors, in combination with their similar DNA-binding domains, contribute to the complex regulation of the large set of glucose-repressed genes.  相似文献   

14.
15.
The Neuregulin‐1 (Nrg1)/ErbB pathway plays multiple, critical roles in early cardiac and nervous system development and has been implicated in both heart and nerve repair processes. However, the early embryonic lethality of mouse Nrg1 mutants precludes an analysis of Nrg1's function in later cardiac development and homeostasis. In this study, we generated a novel nrg1 null allele targeting all known isoforms of nrg1 in zebrafish and examined cardiac structural and functional parameters throughout development. We found that zebrafish nrg1 mutants instead survived until young adult stages when they exhibited reduced survivorship. This coincided with structural and functional defects in the developing juvenile and young adult hearts, as demonstrated by reduced intracardiac myocardial density, cardiomyocyte cell number, swimming performance and dysregulated heartbeat. Interestingly, nrg1 mutant hearts were missing long axons on the ventricle surface by standard length (SL) 5 mm, which preceded juvenile and adult cardiac defects. Given that the autonomic nervous system normally exerts fine control of cardiac output through this nerve plexus, these data suggest that Nrg1 may play a critical role in establishing the cardiac nerve plexus such that inadequate innervation leads to deficits in cardiac maturation, function and survival.  相似文献   

16.
During peripheral nerve development, each segment of a myelinated axon is matched with a single Schwann cell. Tight regulation of Schwann cell movement, proliferation and differentiation is essential to ensure that these glial cells properly associate with axons. ErbB receptors are required for Schwann cell migration, but the operative ligand and its mechanism of action have remained unknown. We demonstrate that zebrafish Neuregulin 1 (Nrg1) type III, which signals through ErbB receptors, controls Schwann cell migration in addition to its previously known roles in proliferation and myelination. Chimera analyses indicate that ErbB receptors are required in all migrating Schwann cells, and that Nrg1 type III is required in neurons for migration. Surprisingly, expression of the ligand in a few axons is sufficient to induce migration along a chimeric nerve constituted largely of nrg1 type III mutant axons. These studies also reveal a mechanism that allows Schwann cells to fasciculate axons regardless of nrg1 type III expression. Time-lapse imaging of transgenic embryos demonstrated that misexpression of human NRG1 type III results in ectopic Schwann cell migration, allowing them to aberrantly enter the central nervous system. These results demonstrate that Nrg1 type III is an essential signal that controls Schwann cell migration to ensure that these glia are present in the correct numbers and positions in developing nerves.  相似文献   

17.
Amputation of a salamander tail leads to functional spinal cord regeneration through activation of endogenous stem cells. Identifying the signaling pathways that control cell proliferation in these neural stem cells will help elucidate the mechanisms underlying the salamander’s regenerative ability. Here, we show that neuregulin 1 (Nrg1)/ErbB2 signaling is an important pathway in the regulation of neural stem cell proliferation in the spinal cord of the axolotl salamander (Ambystoma mexicanum). Simultaneous localization of nrg1 mRNA and Nrg1 protein was performed by utilizing a hybridization chain reaction fluorescence in situ hybridization (FISH) methodology in tissue sections. Multiplexed FISH also permitted the phenotyping of multiple cell types on a single fixed section allowing the characterization of mRNA expression, protein expression, and tissue architecture. Pharmacological inhibition of ErbB2 showed that intact Nrg1/ErbB2 signaling is critical for adult homeostatic regeneration as well as for injury‐induced spinal cord regeneration. Overall, our results highlight the importance of the NRG1/ErbB2 signaling pathway in neural stem cell proliferation in the axolotl.  相似文献   

18.
Skin disorders are widespread, but available treatments are limited. A more comprehensive understanding of skin development mechanisms will drive identification of new treatment targets and modalities. Here we report the Zebrafish Integument Project (ZIP), an expression-driven platform for identifying new skin genes and phenotypes in the vertebrate model Danio rerio (zebrafish). In vivo selection for skin-specific expression of gene-break transposon (GBT) mutant lines identified eleven new, revertible GBT alleles of genes involved in skin development. Eight genes—fras1, grip1, hmcn1, msxc, col4a4, ahnak, capn12, and nrg2a—had been described in an integumentary context to varying degrees, while arhgef25b, fkbp10b, and megf6a emerged as novel skin genes. Embryos homozygous for a GBT insertion within neuregulin 2a (nrg2a) revealed a novel requirement for a Neuregulin 2a (Nrg2a) – ErbB2/3 – AKT signaling pathway governing the apicobasal organization of a subset of epidermal cells during median fin fold (MFF) morphogenesis. In nrg2a mutant larvae, the basal keratinocytes within the apical MFF, known as ridge cells, displayed reduced pAKT levels as well as reduced apical domains and exaggerated basolateral domains. Those defects compromised proper ridge cell elongation into a flattened epithelial morphology, resulting in thickened MFF edges. Pharmacological inhibition verified that Nrg2a signals through the ErbB receptor tyrosine kinase network. Moreover, knockdown of the epithelial polarity regulator and tumor suppressor lgl2 ameliorated the nrg2a mutant phenotype. Identifying Lgl2 as an antagonist of Nrg2a – ErbB signaling revealed a significantly earlier role for Lgl2 during epidermal morphogenesis than has been described to date. Furthermore, our findings demonstrated that successive, coordinated ridge cell shape changes drive apical MFF development, making MFF ridge cells a valuable model for investigating how the coordinated regulation of cell polarity and cell shape changes serves as a crucial mechanism of epithelial morphogenesis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号