首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Field-based experiments were conducted to evaluate the fate and infectivity of the entomopathogenic fungus Metarhizium anisopliae var. acridum (Deuteromycotina: Hyphomycetes) in grasshopper cadavers in the Sahel. Unlike uninfected cadavers, which were rapidly scavenged, those infected with the fungus persisted in the environment for a number of weeks. The environmental factor most associated with cadaver disappearance was rainfall. The high environmental humidity associated with rainfall was also required for sporulation of the fungus on host cadavers, although the likelihood of sporulation differed between microsites. Characteristics of the infection profile from infective cadavers were investigated by the sequential exposure of uninfected hosts to sporulating cadavers in field cages. This experiment revealed that cadavers remained infective for > 30 days, with the net infectivity changing through time. The most likely explanation for these changes is climatic influences on both the fungus and host. High humidity was not required for infection. A measurement of the transmission coefficient between healthy hosts and sporulating cadavers in the field was obtained at a realistic density of infectious cadavers. This revealed a figure of 0.45 m2 day–1. Overall, these experiments show that following host death, M. anisopliae var. acridum can be persistent in the environment, sporulate on host cadavers and reinfect new hosts at a realistically low field density, although at least in arid or semi-arid areas, rainfall may be critical to the horizontal transmission of this pathogen.  相似文献   

2.
Age-specific effects of invertebrate pathogens on their hosts can greatly influence the population dynamics in such interactions. Explanations for such differences are usually sought within differing intrinsic susceptibilities of the host life stages but we present data which indicate that host size, behaviour and life history may be the overriding factors determining age-specific effects of a fungal pathogen, Neozygites floridana (Entomophthorales: Neozygitaceae) on spider mites (Mononychellus tanajoa Bondar, Acari: Tetranychidae). Epizootics of N. floridana in spider mites are characterised by much greater relative mortality of adult females compared with other life stages (ca. 99%), despite similar physiological susceptibilities. We present empirical data that demonstrate encounter rates of mites with N. floridana increasing with life stage during an epizootic on cassava in northeastern Brazil. Estimates of the size, walking speeds and patterns, and life history of different life stages (and adult sexes) were used to calculate expected relative encounter rates which were found not to be different from the observed values (although not testable for larvae). This helps explain the different apparent susceptibility of host life stages in the field. Given the low ecological susceptibility of younger life stages to this pathogen, we predict that the interaction time between host and pathogen, determined by climatic conditions, will be critical in determining the degree of host population control in an epizootic. We further hypothesise that such variation in ecological susceptibility to pathogens can generate selection pressures on basic host traits, contributing to the sessile nature of many microarthropods. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
A naturally-occurring fungus called Entomophthora grylli was for the first time isolated from two species of grasshopper Oxya velox and Oxya vicinia in Jammu and Kashmir, India. The epizootic was confined along Indo–Pak border between 74 degrees 24′ and 75 degrees 18′, East longitude and 32 degrees 50′ and 33 degrees 30′ North latitude. The fungus proved to be highly pathogenic and the natural mortality was significantly influenced by the population density which increased from 26.00 to 73.60 over the period of epizootics. On the basis of the available literature this appears to be the first record from the Indian sub-continent. While many infected grasshoppers apparently produced neither conidia nor resting spores, the cadavers were found to be full of hyphal bodies and resting spores towards the end of epizootics. These resting spores or their germ tubes were not invasive as such but if provided a saturated environment for a week, they start germinating, resulting in germ conidia which were able to induce dermal pathogencity. Further, it was observed that the disease could not be transmitted to healthy individuals by ingestion. However, the intra-haemocoel infectivity of fresh resting spores, germinated resting spores, and germ conidia proved to be highly pathogenic as they resulted in 81.4% grasshopper mortality. Although E. grylli is fastidious, it is possible to multiply it on a large scale as protoplasts which are infective upon injection in their hosts. However, the lack of a cell wall renders them very fragile, and they are neither infective upon application to the insect's cuticle nor upon ingestion. In the present study, a method on delivery of pathogen through “sticky molasses pan trap” was developed for inducing infection in grasshoppers in a paddy nursery which would facilitate its use as a bioinsecticide, analogous to other entomopathogenic fungi.  相似文献   

4.
Tests were conducted on the hostspecificity of a Brazilian isolate of thefungus Neozygites floridana, a potentialbiological control agent for the cassava greenmite, Mononychellus tanajoa, in Africa.Five insect and two mite species, mostly fromthe cassava agroecosystem, were evaluated forsusceptibility to N. floridana, namelyEuseius concordis, E. citrifolius, Phenacoccus herreni, Stethorus sp., Aleurothrixus aepim, Apoanagyrusdiversicornis, and Bombyx mori.Individuals of each species were exposed tocapilliconidia (the infective stage of thefungus). None of the tested individuals wasfound with hyphal bodies (the vegetative stageof the fungus), whereas 73 to 94% of thecassava green mites in the controls becameinfected. Non-germinated capilliconidia were,however, found attached to several individualsin most species. N. floridana appears tobe safe for exportation. Further evaluation ofits performance against M. tanajoa inAfrica is therefore desirable.  相似文献   

5.
The tomato red spider mite, Tetranychus evansi (Acari: Tetranychidae) was recently introduced in Africa and Europe, where there is an increasing interest in using natural enemies to control this pest on solanaceous crops. Two promising candidates for the control of T. evansi were identified in South America, the fungal pathogen, Neozygites floridana and the predatory mite Phytoseiulus longipes. In this study, population dynamics of T. evansi and its natural enemies together with the influence of environmental conditions on these organisms were evaluated during four crop cycles in the field and in a protected environment on nightshade and tomato plants with and without application of chemical pesticides. N. floridana was the only natural enemy found associated with T. evansi in the four crop cycles under protected environment but only in the last crop cycle in the field. In the treatments where the fungus appeared, reduction of mite populations was drastic. N. floridana appeared in tomato plants even when the population density of T. evansi was relatively low (less than 10 mites/3.14 cm2 of leaf area) and even at this low population density, the fungus maintained infection rates greater than 50%. The application of pesticides directly affected the fungus by delaying epizootic initiation and contributing to lower infection rates than unsprayed treatments. Rainfalls did not have an apparent impact on mite populations. These results indicate that the pathogenic fungus, N. floridana can play a significant role in the population dynamics of T. evansi, especially under protected environment, and has the potential to control this pest in classical biological control programs.  相似文献   

6.
Vertical transmission and the overwintering success of three different microsporidia infecting Lymantria dispar (Lepidoptera: Lymantriidae) larvae were investigated. Endoreticulatus schubergi, a midgut pathogen, was transmitted to offspring via female and male via the egg chorion (transovum transmission). Between 8% and 29% of the emerging larvae became infected. No spores of E. schubergi were found in surface-washed eggs. Nosema lymantriae, a microsporidium that causes systemic infections, was transovarially transmitted. Between 35% and 72% of the progeny were infected. Vairimorpha disparis, a fat body pathogen, was not vertically transmitted. The infectivity of spores that overwintered in cadavers of infected L. dispar varied by species, placement in the environment, and weather conditions. Spores of E. schubergi were still infective after an eight month exposure period of cadavers on the ground. Spores of N. lymantriae and V. disparis remained highly infective only when cadavers overwintered under a more or less continuous snow cover for four months.  相似文献   

7.
Monitoring of a population of the phytophagous cassava green mite, Mononychellus tanajoa (Bondar), and its natural enemies was undertaken in central Bahia, Brazil, in mid-1996. In spite of the presence of extremely high densities of the predatory phytoseiid mite Neoseiulus idaeus Denmark & Muma, the phytophagous mite population reached such high densities itself that there was total overexploitation of the cassava plants, leading to total leaf loss. Meanwhile, the mite-pathogenic fungus Neozygites tanajoae Delalibera, Humber & Hajek did not affect the M. tanajoa population in its growth phase as there was no inoculum present, even though we predict from a simple regression model that there was the potential for epizootics at that time. Soon after the M. tanajoa population crashed due to defoliation, there could have been an epizootic but there were simply no mite hosts to infect. These data demonstrate the ineffectiveness of one natural enemy (the predator) in terms of prey population regulation and demonstrate the importance of timing in the possible effectiveness of the other (the pathogen). For the pathogen, this probably explains its sporadic effect on host populations as previously reported. We conclude that the fungus is likely to be most useful as an adjunct to biological control with predatory mites other than N. idaeus.  相似文献   

8.
The fungus, Neozygitis cf. floridana is parasitic on the cassava green mite, Mononychellus tanajoa (Bondar) (Acari: Tetranychidae) in South America and may be considered for classical biological control of cassava green mites in Africa, where cassava is an important subsistence crop, cassava green mites are an imported pest and specific natural enemies are lacking. Spider mites generally have a viscous structure of local populations, a trait that would normally hamper the spread of a fungus that is transmitted by the contact of susceptible hosts with the halo of capilliconidia surrounding an infectious host. However, if infected mites search and settle to produce capilliconidia on sites where they are surrounded by susceptible mites before becoming infectious, then the conditions for maximal transmission in a viscous host population are met. Because the ratio between spider mites and the leaf area they occupy is constant, parasite-induced host searching behaviour leads to a constant per capita transmission rate. Hence, the transmission rate only depends on the number of infectious hosts. These assumptions on parasite-induced host search and constant host density lead to a simple, analytically tractable model that can be used to estimate the maximal capacity of the fungus to decimate local populations of the cassava green mite. By estimating the parameters of this model (host density, per capita transmission rate and duration of infected and infectious state) it was shown that the fungal pathogen can reduce the population growth of M. tanajoa, but cannot drive local mite populations to extinction. Only when the initial ratio of infectious to susceptible mites exceeds unity or the effective growth rate of the mite population is sufficiently reduced by other factors than the fungus (e.g. lower food quality of the host plant, dislodgement and death by rain and wind and predation), will the fungal pathogen be capable of decimating the cassava green mite population. Under realistic field conditions, where all of these growth-reducing factors are likely to operate, there may well be room for effective control by the parasitic fungus. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

9.
The continental dispersal of an exotic spider mite species is described for the first time. The cassava green mite,Mononychellus tanajoa (Bondar) (Acari: Tetranychidae), has been found to be dispersed across the cassava belt of Africa in less than 10 years after first being discovered in 1971. This mite disperses within plants by walking, and within and between fields by drifting aerially. Widespread transportation of mite-infested plant material, however, is proposed to explain the rapid spread ofM. tanajoa in Africa. Observations of mite-infested plant material being transported in the field, and laboratory evidence of mite populations surviving up to 60 days on cassava stems removed from the field and isolated from external contaminates, support this hypothesis. The spread ofM. tanajoa in Africa as a model for future introductions on cassava suggests a pattern of movement at species-specific rates. Exotic natural enemies ofM. tanajoa, especially phytoseiid predators, are expected to spread at a rate slower than their host; consequently, large-scale and long-range releases will be needed to accelerate their spread.  相似文献   

10.
Arjen Biere  Sonja Honders 《Oecologia》1996,107(3):307-320
It is often assumed that host specialization is promoted by trade-offs in the performance of parasites on different host species, but experimental evidence for such trade-offs is scant. We studied differences in performance among strains of the anther smut fungus Ustilago violacea from two closely related host plant species, Silene alba and S. dioica, on progeny of (1) the host species from which they originated, (2) the alternative host species, and (3) inter-specific hybrids. Significant intra-specific variation in the pathogen was found for both infection success on a range of host genotypes (virulence) and components of spore production per infected host (aggressiveness) (sensu Burdon 1987). Strains did not have overall higher virulence on conspecifics of their host of origin than on strains from the heterospecific host, but they did have a significantly (c. 3 times) higher spore production per infected male host. This finding suggests that host adaptation may have evolved with respect to aggressiveness rather than virulence. The higher aggressiveness of strains on conspecifics of their host of origin resulted both from higher spore production per infected flower (spores are produced in the anthers), and greater ability to stimulate flower production on infected hosts. The latter indicates the presence of adaptive intraspecific variation in the ability of host manipulation. As transmission of the fungus is mediated by insects that are both pollinators of the host and vectors of the disease, we also assessed the effect of strains on host floral traits. Infection resulted in a reduction of inflorescence height, flower size, and nectar production per flower. Strains did not differ in their effect on nectar production, but infection with strains from S. alba resulted in a stronger reduction of inflorescence height and petal size on both host species. Vectors may therefore in principle discriminate among hosts infected by different strains and affect their efficiency of transmission. Contrary to assumptions of recent hypotheses about the role of host hybrids in the evolution of parasites, hybrids were not generally more susceptible than parental hosts. It is therefore unlikely that the rate of evolution of the pathogen on the parental species is slowed down by selection for specialization on the hybrids.  相似文献   

11.
Virulence of entomopathogens is often measured at the individual level using a single host individual or a group of host individuals. To what extent these virulence assessments reflect the impact of an entomopathogen on their host in the field remains largely untested, however. A methodology was developed to induce epizootics of the cassava green mite fungal pathogen Neozygites tanajoae under controlled conditions to evaluate population-level virulence of two (one Beninese and one Brazilian) isolates of the entomopathogen—which had shown similar individual-level virulence but different field impacts. In unrepeated separate experiments we inoculated mite-infested potted cassava plants with either 50 or 25 live mites (high and low inoculum) previously exposed to spores of N. tanajoae and monitored the development of fungal infections for each isolate under the same conditions. Both isolates caused mite infections and an associated decline in host mite populations relative to the control (without fungus) in all experiments, but prevalence of the fungus varied with isolate and increased with inoculum density. Peak infection levels were 90% for the Beninese isolate and 36% for the Brazilian isolate at high inoculum density, and respectively 17% and 25% at low inoculum density. We also measured dispersal from inoculated plants and found that spore dispersal increased with host infection levels, independent of host densities, whereas mite dispersal varied between isolates. These results demonstrate that epizootiology of N. tanajoae can be studied under controlled conditions and suggest that virulence tests at the population level may help to better predict performance of fungal isolates than individual-level tests.  相似文献   

12.
The cassava green mite (CGM), Mononychellus tanajoa, a native of South America was accidentally introduced into Africa where it causes serious crop losses. The possibility of introducing classical biological agents from the native home of CGM into Africa was investigated. Thus, we conducted a series of laboratory assays of the native fungal pathogens, Neozygites tanajoae from Brazil and Neozygites floridana from Colombia and Brazil, and compared them with N. tanajoae isolates from Benin. Infectivity of both fungal species, was assayed against the twospotted spider mite, Tetranychus urticae, and against the red mite, Oligonychus gossypii. Pathogenicity against CGM and host range studies were conducted by transferring adult females of each mite species to leaf discs containing sporulated cadavers with a halo of conidia of each fungal isolate. All isolates caused some degree of infectivity to CGM. None of the isolates of N. floridana and N. tanajoae tested were pathogenic to O. gossypii, and only two isolates infected T. urticae. Most isolates from Brazil were highly virulent and infected only CGM. Sixteen N. tanajoae isolates caused more than 89% mortality and more than 62% of the CGM became mummified. A mummified CGM is characteristically a swollen, brown fungus-killed mite that has great potential to produce conidia. However, high mortality was not always associated with high mummification. The median mummification time ranged from 4.4 to 6.7 days. Five Brazilian isolates caused >75% mummification with a median mummification time <5 days. Isolates that cause high mummification in a short period of time would be more likely to cause epizootics and to establish in the new environment. Therefore, these isolates would be the best candidates for introduction to Africa.  相似文献   

13.
The attraction of the predatory mites, Typhlodromalus manihoti and Typhlodromalus aripo, to the host plant-spider mite complex, Manihot esculentaMononychellus tanajoa, was investigated with a Y-tube olfactometer. Factors examined included predator starvation period, several combinations of cassava leaf biomass and initial M. tanajoa infestations, M. tanajoa-damaged leaves with mites and/or their residues removed, M. tanajoa alone, and mechanically damaged cassava leaves. We found that females of T. manihoti and T. aripo were significantly attracted to M. tanajoa-infested cassava leaves when the predators were starved for 2, 6, or 10 h. Satiated T. aripo was significantly attracted to infested cassava leaves whereas satiated T. manihoti did not discriminate between infested and non-infested leaves. When a choice was given between either two or four leaves infested with 200 female M. tanajoa and an equivalent number of non-infested leaves, 2 h-starved T. manihoti and T. aripo were significantly attracted to each of the infested groups of cassava leaves. At a density of 12 female M. tanajoa per leaf on four leaves, 2 h-starved T. manihoti was still attracted to M. tanajoa-infested leaves whereas 2 h-starved T. aripo was not attracted. When a choice was given between non-infested cassava leaves and either infested leaves from which only M. tanajoa females had been removed, or infested leaves from which all M. tanajoa and their visible products (web, feces) had been wiped off, T. aripo preferred odors from both types of previously infested leaves. Typhlodromalus manihoti was only attracted to infested leaves from which the M. tanajoa females only had been removed. Finally, the two predators were not attracted to 400 female M. tanajoa on clean cotton wool or to mechanically wounded leaves. This supports the hypothesis that M. tanajoa damage induces volatile cues in cassava leaves that attract T. manihoti and T. aripo to M. tanajoa-infested leaves.  相似文献   

14.
Typhlodromalus manihoti and Typhlodromalus aripo are exotic predators of the cassava green mite Mononychellus tanajoa in Africa. In an earlier paper, we showed that the two predators were attracted to odors from M. tanajoa-infested cassava leaves. In addition to the key prey species, M. tanajoa, two alternative prey mite species, Oligonychus ossypii and Tetranychus urticae also occur in the cassava agroecosystem. Here, we used a Y-tube olfactometer to determine the attraction of the predators to odors from O. gossypii- or T. urticae-infested cassava leaves and their prey-related odor preference. T. aripo but not T. manihoti was slightly attracted to odors from O. gossypii-infested leaves. Both predator species showed a stronger response to odors from cassava leaves infested by M. tanajoa over odors from cassava leaves infested by O. gossypii. Neither predator species was attracted to odors from T. urticae-infested leaves and the predators preferred the odors from M. tanajoa-infested leaves over those from T. urticae-infested leaves. When O. gossypii was present together with M. tanajoa on the same leaves or on different sets of leaves offered together as an odor source the two predators were attracted. In contrast, after mixing non-attractive odors from T. urticae-infested leaves with attractive odors from M. tanajoa-infested leaves, neither T. aripo nor T. manihoti was attracted. Ecological advantages and disadvantages of the predators’ behavior and possible implications for biological control of M. tanajoa are discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
To improve biocontrol of the cassava green mite, Mononychellus tanajoa, a series of screenhouse experiments were conducted on cassava to determine the effects of single and combined releases of the predatory mite Typhlodromalus aripo and the entomopathogenic fungus Neozygites tanajoae on the suppression of M. tanajoa. We showed that, separately or in combination, T. aripo and N. tanajoae significantly reduced M. tanajoa populations. Moreover, combined release of T. aripo and N. tanajoae on the same cassava plants improved M. tanajoa control. However, our data suggest between T. aripo and N. tanajoae an asymmetric competition that significantly affected N. tanajoae only. This interference is indirect, probably mediated by their common prey or host mite, M. tanajoa since N. tanajoae is not pathogenic to T. aripo. We conclude that adding N. tanajoae to T. aripo populations in Africa would not negatively affect T. aripo and would further promote biocontrol of M. tanajoa.  相似文献   

16.
The effect of temperature, humidity and photoperiod on the development of Neozygites cf. floridana (Weiser and Muma) in the cassava green mite, Mononychellus tanajoa (Bondar) was studied in the laboratory. Dead infected mites began to appear 2.5 days after inoculation. At 33 and 28°C peak mortalities were higher and occurred earlier (after 2.5 days), than at 23 and 18°C. Mean LT50 (time for half the infected mites to die) decreased with increasing temperature as follows: 3.9, 3.0, 2.9 and 2.5 days at 18, 23, 28 and 33°C, respectively. When placed under conditions of high relative humidity for a period of 24 h, the percentage of dead infected mites from which the fungus sporulated was highest at 28°C (51.4%) and lowest at 33°C (6.5%). The development of the fungus inside the mite was not significantly affected by ambient humidity or photoperiod. No significant interactions between tested factors were found.  相似文献   

17.
The population dynamics of the cassava green mite Mononychellus tanajoa was studied on cassava during 35 weeks (early March to first of November 1989) in an experimental field near Lake Victoria in Western Kenya. The mite population peaked at the onset of the long dry season with 1,100 mites/leaf, declined sharply to a level of about 300 individuals/leaf, not to increase again until the next rainy season commenced. An indigenous phytoseiid predator Iphiseius degenerans was abundant during the dry spell with a maximum about 9 predators/leaf.A nonlinear regression analysis revealed that food depletion in combination with I. degenerans predation limited the population growth of the mites, whereas rain intensity had no effect. The predator exhibited no aggregative response to high densities of M. tanajoa and stayed mainly in the lower part of the canopy while the spider mites preferred the top, indicating that I. degenerans is a generalist predator without capacity to control M. tanajoa alone. However, in combination with another density dependent factor, such as food depletion, the predator may have prevented the spider mites from causing complete defoliation during the dry season.  相似文献   

18.
We applied time series analysis and a mechanistic predator-prey model to long-term data of monthly population counts of the herbivorous pest mite Mononychellus tanajoa and its introduced phytoseiid predator Typhlodromalus aripo from a cassava field in Benin, West Africa. In this approach, we determined the extent to which the main features of the observed predator-prey fluctuations in cassava fields can be explained from biotic traits inherent to the biology of predator and prey, and the extent of the significance of abiotic factors in determining population levels. The time series analyses with cross-correlation showed that the period of predator-prey fluctuations coincided with the annual pattern of intense rainfall and onset of dry season. A pronounced M. tanajoa peak followed after a short lag (2 weeks) by a T. aripo peak coincided with a trough in rainfall intensity. Both the prey and predator had local and lower peaks that coincided with high rainfall intensity, but with a considerably longer lag (ca. 3 months) compared with the high peaks occurring at the onset of the dry season. Regression of log-transformed data series (over a 7-year period) showed that—except for the first year after predator release—M. tanajoa fluctuated around an almost time-invariant mean population density, while T. aripo densities showed a consistent decline over the full observation period. To explain observed trends and periodic components in the data-series of predator and prey densities, we review hypotheses that are based on (1) the annual patterns and trends in abiotic factors, (2) mechanisms endogenous to the predator-prey system and (3) a combination of exogenous and endogenous factors.  相似文献   

19.
Neozygites floridana (Weiser & Muma) (Zygomycetes: Entomophthorales) has been reported infecting naturally at least 18 species of tetranychids worldwide. However, the host range of N. floridana is unknown. Epizootics caused by this pathogen to tetranychid populations indicate that N. floridana has the potential to be used as a biological control agent. However, the virulence and specificity of species and strains of Neozygites need to be assessed in the laboratory to reveal its potential as a biological control agent. N. floridana isolates are currently been investigated in Brazil as biological control agents against the tomato red mite, Tetranychus evansi Baker & Pritchard, and the two-spotted spider mite, Tetranychus urticae Koch. The pathogenicity of five strains of N. floridana obtained from T. urticae, T. evansi and T. ludeni Zacher was assessed against populations of Mononychellus tanajoa (Bondar), Schizotetranychus sacharum Flechtmann & Baker, Tetranychus abacae Baker & Pritchard and Tetranychus armipenis Flechtmann & Baker, in addition to the species from which the fungus was obtained. Mummified mites were placed on leaf discs of the host plant of each tetranychid to promote fungal sporulation, and after 24 h the mites were transferred to the leaf discs. Contamination, infection and mummification were evaluated daily for seven days after confinement. Each isolate was pathogenic to three or four out of the six spider mite species tested. However, except for isolate ESALQ1421, all isolates caused higher levels of infection and significant mummification only to the tetranychid species from which they were collected. None of the isolates was pathogenic to S. sacharum and only one isolate infected T. abacae. Alternative hosts may be important for N. floridana survival in tropical regions where resting spores are rarely found.  相似文献   

20.
Pulkkinen K 《Oecologia》2007,154(1):45-53
Single parasite species often have a range of different hosts which vary in their ability to sustain the parasite. When foraging for food, alternative hosts with similar feeding modes may compete for the infective stages of trophically transmitted parasites. If some of the infective stages end up in unsuitable hosts, transmission of the parasite to the focal host is decreased. I studied whether the presence of conspecifics alters the probability of an uninfected susceptible recipient Daphnia becoming infected by a microparasite and if this effect depends on whether the added conspecifics themselves are susceptible or resistant to infection. The presence of both susceptible and resistant conspecifics decreased the probability of infection in recipients. This effect was dependent on the density of the conspecifics but was not found to be related to their size. In addition, when Daphnia were placed in medium derived from crowded Daphnia populations, the probability of infection in recipients decreased as compared to that in standard medium. This implies that decreases in transmission probability are not caused by dilution of spores through food competition only, but also by indirect interference mediated through infochemicals released by Daphnia. Since Daphnia have been found to respond to crowding by decreasing their filtering rate, the decrease in transmission is probably caused by decreased intake of spores in crowded conditions. The presence of conspecifics can thus decrease microparasite transmission in Daphnia which may have important consequences for epidemiology and evolution of Daphnia parasites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号