首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
The aim of this study was to clarify if small doses of neurotensin (2.5 and 5.0 pmol.kg-1.min-1, i.v.) in dogs alter the postprandial motor pattern of the duodenum in comparison with the adjacent jejunum. The intestinal motor patterns were quantified by means of closely spaced strain gauge transducers and a computerized method. An acaloric viscous meal of cellulose was used to induce postprandial motility. Gastric emptying was measured radiographically. During intravenous control infusion of saline, the characteristics of duodenal and jejunal motor pattern were significantly different. The duodenum contracted at a lower rate and showed a higher incidence of stationary contractions. The lower dose (2.5 pmol.kg-1.min-1) of neurotensin showed no significant effects, whereas the higher dose (5 pmol.kg-1.min-1) significantly slowed gastric emptying and altered the motor pattern of both intestinal segments in a similar manner. It reduced the number of contractions, shortened the contraction spread, increased the incidence of stationary contractions, and decreased the incidence of propagated contractions. The alterations of motility caused enhanced mixing of luminal contents. The differences in motor patterns seen in the control state between both intestinal segments were diminished during neurotensin. Data revealed no differences in sensitivity of the duodenum and jejunum to neurotensin. Results suggest that neurotensin is one of the gastrointestinal peptides involved in regulating intestinal contractile patterns.  相似文献   

2.
In an anesthetized, open-abdomen, canine model, the propagation pattern of the slow wave and its direction, velocity, amplitude, and frequency were investigated in the small intestine of 8 dogs. Electrical recordings were made using a 240-electrode array from 5 different sites, spanning the length of the small intestine. The majority of slow waves propagated uniformly and aborally (84%). In several cases, however, other patterns were found including propagation in the oral direction (11%) and propagation block (2%). In addition, in 69 cases (3%), a slow wave was initiated at a local site beneath the electrode array. Such peripheral pacemakers were found throughout the entire intestine. The frequency, velocity, and amplitude of slow waves were highest in the duodenum and gradually declined along the intestine reaching lowest values in the distal ileum (from 17.4+/-1.7 c/min to 12.2+/-0.7 c/min; 10.5+/-2.4 cm/s to 0.8+/-0.2 cm/s, and 1.20+/-0.35 mV to 0.31+/-0.10 mV, respectively; all p<0.001). Consequently, the wavelength of the slow wave was strongly reduced from 36.4+/-0.8 cm to 3.7 +/- 0.1 cm (p<0.001). We conclude that the patterns of slow wave propagation are usually, though not always, uniform in the canine small intestine and that the gradient in the wavelength will influence the patterns of local contractions.  相似文献   

3.
S Ahmad  E E Daniel 《Peptides》1991,12(3):623-629
We have previously characterized the neurotensin receptors on the circular smooth muscle (CM) of the canine small intestine (1). In the present studies, using radioligand binding technique, neurotensin receptors were localized on the membranes from deep muscular (DMP) and the submucous plexus while no binding was observed on either the longitudinal smooth muscle or myenteric plexus membranes. The high affinity binding sites (Kd 0.1-0.2 nM) on DMP membranes were similar to those on CM; the low affinity component was of much lower affinity (Kd approximately 40 nM). DMP had 4-6 times higher density of binding sites than the CM. The recognition properties of DMP receptors were similar to those on the CM and reduced sulfhydryl groups were required for the binding activity. The action of neurotensin on the contractility of the canine small intestine, therefore, appears to be through a direct action on the circular smooth muscle and through the prejunctional action on the DMP neurons through distinct receptors. Thiol groups in the neurotensin receptors may be important for the receptor function.  相似文献   

4.
The frequency and propagation velocity of distension-induced peristaltic contractions in the antrum and duodenum are distinctly different and depend on activation of intrinsic excitatory motoneurons as well as pacemaker cells, the interstitial cells of Cajal associated with Auerbach's plexus (ICC-AP). Because ICC are critical for coordination of motor activities along the long axis of many regions in the gut, the role of ICC in antroduodenal coordination was investigated. We used immunohistochemistry, electron microscopy, simultaneous multiple electrical recordings in vitro, and videofluoroscopy in vivo in mice and rats. A strongly reduced number of ICC-AP with loss of network characteristics was observed in a 4-mm area in the rat and a 1-mm area in the mouse pyloric region. The pyloric region showed a slow wave-free gap of 4.1 mm in rats and 1.3 mm in mice. Between antrum and duodenum, there was no interaction of electrical activities and in the absence of gastric emptying, there was no coordination of motor activities. When the pyloric sphincter opened, 2.4 s before the front of the antral wave reached the pylorus, the duodenum distended after receiving gastric content and aboral duodenal peristalsis was initiated, often disrupting other motor patterns. The absence of ICC-AP and slow wave activity in the pyloric region allows the antrum and duodenum to have distinct uncoordinated motor activities. Coordination of aborally propagating peristaltic antral and duodenal activity is initiated by opening of the pylorus, which is followed by distention-induced duodenal peristalsis. Throughout this coordinated motor activity, the pacemaker systems in antrum and duodenum remain independent.  相似文献   

5.
6.
Close intraarterial injections of motilin to the small intestine of the anaesthetized dog produce prolonged phasic contractions. Tetrodotoxin infused intraarterially blocked field stimulated contractions and abolished the response to motilin as did treatment with a combination of hexamethonium and atropine. Atropine alone increased the dose of motilin required to induce responses. Hexamethonium alone similarly increased the dose of motilin required in the jejunum, but not for the ileum. These results suggest that motilin acts to contract small intestine by stimulation of intrinsic excitatory nerves, some of which are post-ganglionic cholinergic and some of which are not, but are activated by a pathway with a nicotinic synapse. The ED50 for ileal contractions was greater than that for the jejunum and the time to reach maximum contractions longer suggesting a decreased responsiveness of the lower small intestine to motilin as compared to the upper gastro-intestinal tract. These results and the lesser quantity of immunoreactive motilin in the ileum than in the jejunum may explain the lack of relationship of the activity front of the migrating motor complex in the lower small intestine to venous motilin concentrations.  相似文献   

7.
Serotonin [5-hydroxytryptamine (5-HT)] acts as a modulator of colonic motility and secretion. We characterized the action of the 5-HT precursor 5-hydroxytryptophan (5-HTP) on colonic myenteric neurons and propulsive motor activity in conscious mice. Fos immunoreactivity (IR), used as a marker of neuronal activation, was monitored in longitudinal muscle/myenteric plexus whole mount preparations of the distal colon 90 min after an intraperitoneal injection of 5-HTP. Double staining of Fos IR with peripheral choline acetyltransferase (pChAT) IR or NADPH-diaphorase activity was performed. The injection of 5-HTP (0.5, 1, 5, or 10 mg/kg ip) increased fecal pellet output and fluid content in a dose-related manner, with a peak response observed within the first 15 min postinjection. 5-HTP (0.5-10 mg/kg) dose dependently increased Fos expression in myenteric neurons, with a maximal response of 9.9 +/- 1.0 cells/ganglion [P < 0.05 vs. vehicle-treated mice (2.3 +/- 0.6 cells/ganglion)]. There was a positive correlation between Fos expression and fecal output. Of Fos-positive ganglionic cells, 40 +/- 4% were also pChAT positive and 21 +/- 5% were NADPH-diaphorase positive in response to 5-HTP, respectively. 5-HTP-induced defecation and Fos expression were completely prevented by pretreatment with the selective 5-HT4 antagonist RS-39604. These results show that 5-HTP injected peripherally increases Fos expression in different populations of cholinergic and nitrergic myenteric neurons in the distal colon and stimulates propulsive colonic motor function through 5-HT4 receptors in conscious mice. These findings suggest an important role of activation of colonic myenteric neurons in the 5-HT4 receptor-mediated colonic propulsive motor response.  相似文献   

8.
Using [3H]-nitrendipine (Nit) and [125I]-omega conotoxin (w-CTX), the cellular and subcellular distribution of calcium channel subtypes in the homogenates of canine small intestinal circular muscle was studied. Nit. bound to the membranes from the circular smooth muscle cells (PM) and to the synaptosomal membranes from the deep muscular plexus (DMP); the Kd and Bmax values of Nit binding from these two sources were similar (Kd 0.4 +/- 0.16 nM and 0.77 +/- 0.24 nM; Bmax 206 +/- 22 and 192 +/- 39 fmol/mg of protein in DMP and PM respectively). w-CTX, however, bound only to the DMP (Kd 18.41 +/- 7.5 pM, Bmax 265 +/- 36 fmol/mg of protein). In DMP, nifedipine (10(-6) M) failed to interact with the binding of w-CTX; similarly, no modulation of Nit binding with unlabelled w-CTX (10(-7) M) could be detected. Therefore w-CTX and Nit binding sites represent two distinct, non-interactive and differentially distributed binding sites in canine small intestine.  相似文献   

9.
Galanin: an inhibitory neural peptide of the canine small intestine   总被引:4,自引:0,他引:4  
Galanin injected intraarterially during phasic activity of the canine small intestine in vivo produced inhibition. Fifty percent inhibition occurred at 1.5 +/- 0.5 X 10(-10) mols lasting for 0.7 min. The inhibitory response was not decreased by treatment with atropine, hexamethonium, yohimbine or naloxone, suggesting that muscarinic, nicotinic, alpha 2 adrenergic or opiate receptors were not being stimulated. Since tetrodotoxin blockade of nerves did not reduce the response and galanin at 10(-10) mols was able to eliminate the smooth muscle response to intraarterial acetylcholine, we suggest that galanin acts to inhibit smooth muscle directly. Galanin 10(-9) M added to the muscle bath also inhibited phasic activity of the canine ileum circular muscle in vitro in the presence of tetrodotoxin. These results suggest that the neural peptide galanin may be a non-adrenergic, non-cholinergic, non-opioid neurotransmitter in the canine small intestine.  相似文献   

10.
11.
Induction of angiotensin-converting enzyme was examined in proximal and distal intestinal segments of rats fed a low-protein (4%) diet and then switched to a high-protein (gelatin) diet. Animals were killed at varying time points, and brush-border membranes and total RNA were prepared from the segments. In the proximal intestine, there was a fivefold increase in angiotensin-converting enzyme levels after 14 days but only a twofold change in mRNA. In the distal intestine, there was no increase in enzyme activity but mRNA increased 2.4-fold. Organ culture was used to measure changes in enzyme biosynthesis. There was a 5- to 6-fold increase in the biosynthesis of angiotensin-converting enzyme in the proximal intestine 24 h after the switch to the gelatin diet and a 1.6-fold increase in mRNA levels. No change in biosynthesis was observed in the distal small intestine despite an increase in mRNA. These results support the conclusion that rapid dietary induction of intestinal angiotensin-converting enzyme is differentially regulated in proximal and distal segments of the small intestine.  相似文献   

12.
Contractile responses of the small intestine to serotonine and histamine are mediated by cholinergic neurones, while the inhibitory responses of the substances--by nonadrenergic inhibitory neurones of the enterometasympathetic nervous system. An inhibitory response of the small intestine to met-enkephalin results from its depressing action on the effector cholinergic neurones. Catecholamines activate enteric cholinergic neurones via presynaptic beta-adrenoceptors and inhibit them via pre- and postsynaptic alpha-adrenoceptors. The cholinergic neurones of the enterometasympathetic nervous system seem to be under a double adrenergic control, and a mechanisms seems to exist in the small intestine for adrenergic activation of its contractile apparatus.  相似文献   

13.
The migrating motor complex (MMC) is a cyclic motor pattern with several phases enacted over the entire length of the small intestine. This motor pattern is initiated and coordinated by the enteric nervous system and modulated by extrinsic factors. Because in vitro preparations of the MMC do not exist, it has not been possible to determine the intrinsic nerve circuits that manage this motor pattern. We have used computer simulation to explore the possibility that the controlling circuit is the network of AH/Dogiel type II (AH) neurons. The basis of the model is that recurrent connections between AH neurons cause local circuits to enter a high-firing-rate state that provides the maximal motor drive observed in phase III of the MMC. This also drives adjacent segments of the network causing slow migration. Delayed negative feedback within the circuit, provided by activity-dependent synaptic depression, forces the network to return to rest after passage of phase III. The anal direction of propagation is a result of slight anal bias observed in projections of AH neurons. The model relates properties of neurons to properties of the MMC cycle: phase III migration speed is governed by neuron excitability, MMC cycle length is governed by the rate of recovery of synaptic efficacy, and phase III duration is governed by duration of slow excitatory postsynaptic potentials in AH neurons. In addition, the model makes experimental predictions that can be tested using standard techniques.  相似文献   

14.
15.
16.
Oleoylethanolamide (OEA) is a lipid mediator that inhibits food intake by activating the nuclear receptor peroxisome proliferator-activated receptor-alpha. In the rodent small intestine OEA levels decrease during food deprivation and increase upon refeeding, suggesting that endogenous OEA may participate in the regulation of satiety. Here we show that feeding stimulates OEA mobilization in the mucosal layer of rat duodenum and jejunum but not in the serosal layer from the same intestinal segments in other sections of the gastrointestinal tract (stomach, ileum, colon) or in a broad series of internal organs and tissues (e.g. liver, brain, heart, plasma). Feeding also increases the levels of other unsaturated fatty acid ethanolamides (FAEs) (e.g. linoleoylethanolamide) without affecting those of saturated FAEs (e.g. palmitoylethanolamide). Feeding-induced OEA mobilization is accompanied by enhanced accumulation of OEA-generating N-acylphosphatidylethanolamines (NAPEs) increased activity and expression of the OEA-synthesizing enzyme NAPE-phospholipase D, and decreased activity and expression of the OEAdegrading enzyme fatty acid amide hydrolase. Immunostaining studies revealed that NAPE-phospholipase D and fatty acid amide hydrolase are expressed in intestinal enterocytes and lamina propria cells. Collectively, these results indicate that nutrient availability controls OEA mobilization in the mucosa of the proximal intestine through a concerted regulation of OEA biosynthesis and degradation.  相似文献   

17.
Cholera toxin (CT) may induce uncontrolled firing in recurrent networks of secretomotor neurons in the submucous plexus. This hypothesis was tested in chloralose-anesthetized rats in vivo. The secretory reflex response to graded intestinal distension was measured with or without prior exposure to luminal CT. The transmural potential difference (PD) was used as a marker for electrogenic chloride secretion. In controls, distension increased PD, and this response was reduced by the neural blocker tetrodotoxin given serosally and the vasoactive intestinal peptide (VIP) receptor antagonist [4Cl-d-Phe(6),Leu(17)]VIP (2 mug.min(-1).kg(-1) iv) but unaffected by the serotonin 5-HT(3) receptor antagonist granisetron, by the nicotinic receptor antagonist hexamethonium, by the muscarinic receptor antagonist atropine, or by the cyclooxygenase inhibitor indomethacin. Basal PD increased significantly with time in CT-exposed segments, an effect blocked by granisetron, by indomethacin, and by [4Cl-d-Phe(6),Leu(17)]VIP but not by hexamethonium or atropine. In contrast, once the increased basal PD produced by CT was established, [4Cl-d-Phe(6),Leu(17)]VIP and indomethacin had no significant effect, whereas granisetron and hexamethonium markedly depressed basal PD. CT significantly reduced the increase in PD produced by distension, an effect reversed by granisetron, indomethacin, and atropine. CT also activated a specific motility response to distension, repeated cluster contractions, but only in animals pretreated with granisetron, indomethacin, or atropine. These data are compatible with the hypothesis that CT induces uncontrolled activity in submucous secretory networks. Development of this state depends on 5-HT(3) receptors, VIP receptors, and prostaglandin synthesis, whereas its maintenance depends on 5-HT(3) and nicotinic receptors but not VIP receptors. The motility effects of CT (probably reflecting myenteric activity) are partially suppressed via a mechanism involving 5-HT(3) and muscarinic receptors and prostaglandin synthesis.  相似文献   

18.
In an open-abdominal anesthetized and fasted canine model of the intact small intestine, the presence, location, shape, and frequency of spike patches were investigated. Recordings were performed with a 240-electrode array (24 x 10, 2-mm interelectrode distance) from several sites sequentially, spanning the whole length of the small intestine. All 240 electrograms were recorded simultaneously during periods of 5 min and were analyzed to reconstruct the origin and propagation of individual spikes. At every level in the small intestine, spikes propagated in all directions before stopping abruptly, thereby activating a circumscribed area termed a "patch." Two types of spikes were found: longitudinal spikes, which propagated predominantly in the longitudinal direction and occurred most often in the duodenum, and a second type, circumferential spikes, which propagated predominantly in the circular direction and occurred much more frequently in the jejunum and ileum. Circumferential spikes conducted faster than longitudinal spikes (17 +/- 6 and 7 +/- 2 cm/s, respectively; P < 0.001). Circumferential spikes originated in >90% of all cases from the antimesenteric border, whereas longitudinal spikes were initiated all around the circumference of the intestinal tube. Finally, the spatial sequence of spike patches after the slow wave was very irregular in the upper part of the intestine but much more regular in the lower part. In conclusion, spikes and spike patches occur throughout the small intestine, whereas their type, sites of origin, extent of propagation, and frequencies of occurrence differ along the length of the small intestine, suggesting differences in local patterns of motility.  相似文献   

19.
1. The effect of perfusion on the activities of hexokinase and lactate dehydrogenase was studied in the proximal half of the small intestine of fed and starved rats. 2. Perfusion of preparations from starved rats with a medium containing glucose caused a significant increase in hexokinase activity of the particle-free supernatant. The increase in activity was observed as early as 5min after the start of perfusion and persisted for up to 66min of perfusion. No increase in hexokinase activity of the particle-free supernatant was observed when a medium containing mannitol was used. As a further control, preparations from fed rats were perfused under the same conditions. With the medium containing glucose, the hexokinase activity of the particle-free supernatant remained unchanged during the first 15min of perfusion and thereafter fell gradually until, after 66min of perfusion, 73% of the original activity was retained. 3. The activity of lactate dehydrogenase in the particle-free supernatant prepared from the proximal half of the untreated small intestine of starved rats was significantly lower than in corresponding preparations from fed animals. However, it did not change significantly on perfusion with media containing either mannitol or glucose. 4. The distribution of hexokinase activity between total particulate fraction and particle-free supernatant was measured in preparations from starved rats after perfusion for 5–10min. In preparations that had not been perfused the ratio of hexokinase activity in total particulate fraction/particle-free supernatant was significantly higher in starved than in fed animals. After perfusion with a medium containing glucose, the total homogenate activity had not changed significantly, whereas the ratio of hexokinase activity in total particulate fraction/particle-free supernatant decreased significantly and approached the value obtained with fed animals. 5. The results agree with the view that the glucose-dependent increase of hexokinase activity in the soluble cell compartment as observed in vivo and in vitro in the intestinal mucosa of starved rats is brought about by a release of hexokinase activity from a particulate subcellular structure(s).  相似文献   

20.
Substance P when injected intraarterially into the small intestine of the anaesthetized dog during phasic activity produces three concentration dependent responses of the circular muscle. At lowest doses (approximately 10(-12) moles) inhibition occurs via release of acetylcholine to a muscarinic auto-receptor. At slightly higher doses (10(-10) moles) inhibition is preceeded by excitation via release of acetylcholine to muscarinic receptors on the smooth muscle. At still higher doses (10(-9) moles) substance P excites the smooth muscle directly. The present study demonstrates that other members of the tachykinin family also produce inhibition in vivo. The potency sequence was found to be physalaemin greater than or equal to substance P = neuromedin K greater than kassinin greater than alpha neurokinin = eledoisin. Such a sequence suggests that substance P is a natural stimulant of this pathway and that the receptor is SPP-like. The C-terminal fragment, substance P8-11, was a weak agonist at this receptor, while substance P1-9 was ineffective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号