首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The major acidic exopolysaccharide of Rhizobium meliloti, termed succinoglycan, is required for nodule invasion and possibly nodule development. Succinoglycan is a polymer of octasaccharide subunits composed of one galactose residue, seven glucose residues, and acetyl, succinyl, and pyruvyl modifications, which is synthesized on an isoprenoid lipid carrier. A cluster of exo genes in R. meliloti are required for succinoglycan production, and the biosynthetic roles of their gene products have recently been determined (T.L. Reuber and G. C. Walker, Cell 74:269-280, 1993). Our sequencing of 16 kb of this cluster of exo genes and further genetic analysis of this region resulted in the discovery of several new exo genes and has allowed a correlation of the genetic map with the DNA sequence. In this paper we present the sequences of genes that are required for the addition of the succinyl and pyruvyl modifications to the lipid-linked intermediate and genes required for the polymerization of the octasaccharide subunits or the export of succinoglycan. In addition, on the basis of homologies to known proteins, we suggest that ExoN is a uridine diphosphoglucose pyrophosphorylase and that ExoK is a beta(1,3)-beta (1,4)-glucanase. We propose a model for succinoglycan biosynthesis and processing which assigns roles to the products of nineteen exo genes.  相似文献   

2.
Djordjevic MA 《Proteomics》2004,4(7):1859-1872
The proteome of the model symbiotic bacterium, Sinorhizobium meliloti was examined to determine the enzymatic reactions and cell processes that occur when S. meliloti occupies the root nodules of Medicago truncatula and Melilotus alba. The proteomes of the nodule bacteria were compared to that of S. meliloti grown under laboratory cultured conditions as an additional control. All the detectable protein spots on the two-dimensional (2-D) gels between pH 4-7 were analyzed. In total, the identity of proteins in 1545 spots from 2-D gels was determined using peptide mass fingerprinting. There were clear differences in the proteome of nodule bacteria and cultured bacteria and putative nodule-specific and nodule suppressed proteins were identified. The data were analyzed using metabolic pathway prediction programs and used to review the biochemical and genetic studies that had been done previously on S. meliloti over several decades. There was a broad congruency between the proteomic and biochemical data when the overall pathways of central carbon and nitrogen metabolism were considered. A selective suite of ABC-type transporters was present in nodule bacteria that were biased towards the transport of amino acids and inorganic ions (P and Fe) suggesting that a highly specialized nutrient exchange was occurring between the nodule bacteria and the host. Proteins prominent in nodule bacteria were those involved in the pathways for vitamin synthesis and stress-related processes (chaperoning, heat shock, detoxification of reactive oxygen species, regulation of stress and osmo-regulation). Some of these proteins were found only in nodule bacteria. These results show the extent of the shift in metabolism that occurs when S. meliloti invades legume plants and establishes a nitrogen fixing symbiosis.  相似文献   

3.
The genome of Sinorhizobium meliloti type strain Rm1021 consists of three replicons: the chromosome and two megaplasmids, pSymA and pSymB. Additionally, many indigenous S. meliloti strains possess one or more smaller plasmids, which represent the accessory genome of this species. Here we describe the complete nucleotide sequence of an accessory plasmid, designated pSmeSM11a, that was isolated from a dominant indigenous S. meliloti subpopulation in the context of a long-term field release experiment with genetically modified S. meliloti strains. Sequence analysis of plasmid pSmeSM11a revealed that it is 144,170 bp long and has a mean G+C content of 59.5 mol%. Annotation of the sequence resulted in a total of 160 coding sequences. Functional predictions could be made for 43% of the genes, whereas 57% of the genes encode hypothetical or unknown gene products. Two plasmid replication modules, one belonging to the repABC replicon family and the other belonging to the plasmid type A replicator region family, were identified. Plasmid pSmeSM11a contains a mobilization (mob) module composed of the type IV secretion system-related genes traG and traA and a putative mobC gene. A large continuous region that is about 42 kb long is very similar to a corresponding region located on S. meliloti Rm1021 megaplasmid pSymA. Single-base-pair deletions in the homologous regions are responsible for frameshifts that result in nonparalogous coding sequences. Plasmid pSmeSM11a carries additional copies of the nodulation genes nodP and nodQ that are responsible for Nod factor sulfation. Furthermore, a tauD gene encoding a putative taurine dioxygenase was identified on pSmeSM11a. An acdS gene located on pSmeSM11a is the first example of such a gene in S. meliloti. The deduced acdS gene product is able to deaminate 1-aminocyclopropane-1-carboxylate and is proposed to be involved in reducing the phytohormone ethylene, thus influencing nodulation events. The presence of numerous insertion sequences suggests that these elements mediated acquisition of accessory plasmid modules.  相似文献   

4.
5.
Two-dimensional gel electrophoresis was used to identify differentially displayed proteins expressed during the symbiotic interaction between the bacterium Sinorhizobium meliloti strain 1021 and the legume Melilotus alba (white sweetclover). Our aim was to characterize novel symbiosis proteins and to determine how the two symbiotic partners alter their respective metabolisms as part of the interaction, by identifying gene products that are differentially present between the symbiotic and non-symbiotic states. Proteome maps from control M. alba roots, wild-type nodules, cultured S. meliloti, and S. meliloti bacteroids were generated and compared. Over 250 proteins were induced or up-regulated in the nodule, compared with the root, and over 350 proteins were down-regulated in the bacteroid form of the rhizobia, compared with cultured cells. N-terminal amino acid sequencing and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry peptide mass fingerprint analysis, in conjunction with data base searching, were used to assign putative identity to nearly 100 nodule, bacterial, and bacteroid proteins. These included the previously identified nodule proteins leghemoglobin and NifH as well as proteins involved in carbon and nitrogen metabolism in S. meliloti. Bacteroid cells showed down-regulation of several proteins involved in nitrogen acquisition, including glutamine synthetase, urease, a urea-amide binding protein, and a PII isoform, indicating that the bacteroids were nitrogen proficient. The down-regulation of several enzymes involved in polyhydroxybutyrate synthesis and a cell division protein was also observed. This work shows that proteome analysis will be a useful strategy to link sequence information and functional genomics.  相似文献   

6.
The rkp-3 region is indispensable for capsular polysaccharide (K antigen) synthesis in Sinorhizobium meliloti Rm41. Strain Rm41 produces a K antigen of strain-specific structure, designated as the KR5 antigen. The data in this report show that the rkp-3 gene region comprises 10 open reading frames involved in bacterial polysaccharide synthesis and export. The predicted amino acid sequences for the rkpL-Q gene products are homologous to enzymes involved in the production of specific sugar moieties, while the putative products of the rkpRST genes show a high degree of similarity to proteins required for transporting polysaccharides to the cell surface. Southern analysis experiments using gene-specific probes suggest that genes involved in the synthesis of the precursor sugars are unique in strain Rm41, whereas sequences coding for export proteins are widely distributed among Sinorhizobium species. Mutations in the rkpL-Q genes result in a modified K antigen pattern and impaired symbiotic capabilities. On this basis, we suggest that these genes are required for the production of the KR5 antigen that is necessary for S. meliloti Rm41 exoB (AK631)-alfalfa (Medicago sativa) symbiosis.  相似文献   

7.
An essential gene for symbiotic nitrogen fixation (fixF) is located near the common nodulation region of Rhizobium meliloti. A DNA fragment carrying fixF was characterized by hybridization with Klebsiella pneumoniae nif DNA and by nucleotide sequence analysis. The fixF gene was found to be related to K. pneumoniae nifN and was therefore renamed as the R. meliloti nifN gene. Upstream of the nifN coding region a second open reading frame was identified coding for a putative polypeptide of 110 amino acids (ORF110). By fragment-specific Tn5 mutagenesis it was shown that the nifN gene and ORF110 form an operon. The control region of this operon contains a nif promoter and also the putative nifA-binding sequence. For the deduced amino acid sequence of the nifN gene product a striking homology to the R. meliloti nifK protein was found. One cysteine residue and its adjacent amino acid sequence, which are highly conserved in the R. meliloti nifK, R. meliloti nifN, and K. pneumoniae nifN proteins, may play a role in binding the FeMo cofactor.  相似文献   

8.
9.
Four putative apyrase genes were identified from the model legume Medicago truncatula. Two of the genes identified from M. truncatula (Mtapy1 and Mtapy4) are expressed in roots and are inducible within 3 h after inoculation with Sinorhizobium meliloti. The level of mRNA expression of the other two putative apyrases, Mtapy2 and Mtapy3, was unaffected by rhizobial inoculation. Screening of a bacterial artificial chromosome library of M. truncatula genomic DNA showed that Mtapy1, Mtapy3, and Mtapy4 are present on a single bacterial artificial chromosome clone. This apyrase cluster was mapped to linkage group seven. A syntenic region on soybean linkage group J was found to contain at least two apyrase genes. Screening of nodulation deficient mutants of M. truncatula revealed that two such mutants do not express apyrases to any detectable level. The data suggest a role for apyrases early in the nodulation response before the involvement of root cortical cell division leading to the nodule structure.  相似文献   

10.
Bacillus subtilis JH642 and a wild strain of B. subtilis called 22a both produce an antilisterial peptide that can be purified by anion-exchange and gel filtration chromatography. Amino acid analysis confirmed that the substance was the cyclic bacteriocin subtilosin. A mutant defective in production of the substance was isolated from a plasmid gene disruption library. The plasmid insertion conferring the antilisterial-peptide-negative phenotype was located in a seven-gene operon (alb, for antilisterial bacteriocin) residing immediately downstream from the sbo gene, which encodes the precursor of subtilosin. An insertion mutation in the sbo gene also conferred loss of antilisterial activity. Comparison of the presubtilosin and mature subtilosin sequences suggested that certain residues undergo unusual posttranslational modifications unlike those occurring during the synthesis of class I (lantibiotic) or some class II bacteriocins. The putative products of the genes of the operon identified show similarities to peptidases and transport proteins that may function in processing and export. Two alb gene products resemble proteins that function in pyrroloquinoline quinone biosynthesis. The use of lacZ-alb and lacZ-sbo gene fusions, along with primer extension analysis, revealed that the sbo-alb genes are transcribed from a major promoter, residing upstream of sbo, that is very likely utilized by the sigma(A) form of RNA polymerase. The sbo and alb genes are negatively regulated by the global transition state regulator AbrB and are also under positive autoregulation that is not mediated by the subtilosin peptide but instead requires one or more of the alb gene products.  相似文献   

11.
Reactive oxygen species such as hydrogen peroxide (H(2)O(2)), play a crucial role as signaling molecules in the establishment and functioning of the nitrogen-fixing legume-Rhizobium symbiosis. The regulation of protein function through oxidative modification has emerged as an important molecular mechanism modulating various biological processes. Protein cysteine residues are known to be sensitive targets of H(2)O(2), in a posttranslational modification called sulfenylation. We trapped and identified sulfenylated proteins in the Medicago truncatula-Sinorhizobium meliloti symbiosis, by combining the use of chemical and genetic probes with mass spectrometry analysis. We identified 44 M. truncatula proteins sulfenylated in inoculated roots (two days post infection, 2dpi) and 65 such proteins in the functioning symbiotic organ, the nodule (four weeks post infection, 4wpi); 18 proteins were identified at both time points. However, the largest functional groups at 2dpi and 4wpi were different: redox state-linked proteins early in the interaction and proteins involved in amino-acid and carbohydrate metabolism in the nodule. Twenty proteins from S. meliloti, including some directly involved in nitrogen fixation, were also identified as sulfenylated. These results suggest that sulfenylation may regulate the activity of proteins playing major roles in the development and functioning of the symbiotic interaction.  相似文献   

12.
The plant plasma membrane-localized NADPH oxidases, known as respiratory burst oxidase homologues (RBOHs), appear to play crucial roles in plant growth and development. They are involved in important processes, such as root hair growth, plant defence reactions and abscisic acid signalling. Using sequence similarity searches, we identified seven putative RBOH-encoding genes in the Medicago truncatula genome. A phylogenetic reconstruction showed that Rboh gene duplications occurred in legume species. We analysed the expression of these MtRboh genes in different M. truncatula tissues: one of them, MtRbohA, was significantly up-regulated in Sinorhizobium meliloti-induced symbiotic nodules. MtRbohA expression appeared to be restricted to the nitrogen-fixing zone of the functional nodule. Moreover, using S. meliloti bacA and nifH mutants unable to form efficient nodules, a strong link between nodule nitrogen fixation and MtRbohA up-regulation was shown. MtRbohA expression was largely enhanced under hypoxic conditions. Specific RNA interference for MtRbohA provoked a decrease in the nodule nitrogen fixation activity and the modulation of genes encoding the microsymbiont nitrogenase. These results suggest that hypoxia, prevailing in the nodule-fixing zone, may drive the stimulation of MtRbohA expression, which would, in turn, lead to the regulation of nodule functioning.  相似文献   

13.
To understand the mechanisms of ectoine-induced osmoprotection in Sinorhizobium meliloti, a proteomic examination of S. meliloti cells grown in minimal medium supplemented with ectoine was undertaken. This revealed the induction of 10 proteins. The protein products of eight genes were identified by using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. Five of these genes, with four other genes whose products were not detected on two-dimensional gels, belong to the same gene cluster, which is localized on the pSymB megaplasmid. Four of the nine genes encode the characteristic components of an ATP-binding cassette transporter that was named ehu, for ectoine/hydroxyectoine uptake. This transporter was encoded by four genes (ehuA, ehuB, ehuC, and ehuD) that formed an operon with another gene cluster that contains five genes, named eutABCDE for ectoine utilization. On the basis of sequence homologies, eutABCDE encode enzymes with putative and hypothetical functions in ectoine catabolism. Analysis of the properties of ehuA and eutA mutants suggests that S. meliloti possesses at least one additional ectoine catabolic pathway as well as a lower-affinity transport system for ectoine and hydroxyectoine. The expression of ehuB, as determined by measurements of UidA activity, was shown to be induced by ectoine and hydroxyectoine but not by glycine betaine or by high osmolality.  相似文献   

14.
15.
16.
Legumes develop different types of lateral organs from their primary root, lateral roots and nodules, the latter depending on a symbiotic interaction with Sinorhizobium meliloti. Phytohormones have been shown to function in the control of these organogeneses. However, related signaling pathways have not been identified in legumes. We cloned and characterized the expression of Medicago truncatula genes encoding members of cytokinin signaling pathways. RNA interference of the cytokinin receptor homolog Cytokinin Response1 (Mt CRE1) led to cytokinin-insensitive roots, which showed an increased number of lateral roots and a strong reduction in nodulation. Both the progression of S. meliloti infection and nodule primordia formation were affected. We also identified two cytokinin signaling response regulator genes, Mt RR1 and Mt RR4, which are induced early during the symbiotic interaction. Induction of these genes by S. meliloti infection is altered in mutants affected in the Nod factor signaling pathway; conversely, cytokinin regulation of the early nodulin Nodule Inception1 (Mt NIN) depends on Mt CRE1. Hence, cytokinin signaling mediated by a single receptor, Mt CRE1, leads to an opposite control of symbiotic nodule and lateral root organogenesis. Mt NIN, Mt RR1, and Mt RR4 define a common pathway activated during early S. meliloti interaction, allowing crosstalk between plant cytokinins and bacterial Nod factors signals.  相似文献   

17.
18.
Genomic structure of the putative BTF3 transcription factor.   总被引:4,自引:0,他引:4  
M Kanno  C Chalut  J M Egly 《Gene》1992,117(2):219-228
  相似文献   

19.
We used proteome analysis to identify proteins induced during nodule initiation and in response to auxin in Medicago truncatula. From previous experiments, which found a positive correlation between auxin levels and nodule numbers in the M. truncatula supernodulation mutant sunn (supernumerary nodules), we hypothesized (1) that auxin mediates protein changes during nodulation and (2) that auxin responses might differ between the wild type and the supernodulating sunn mutant during nodule initiation. Increased expression of the auxin response gene GH3:beta-glucuronidase was found during nodule initiation in M. truncatula, similar to treatment of roots with auxin. We then used difference gel electrophoresis and tandem mass spectrometry to compare proteomes of wild-type and sunn mutant roots after 24 h of treatment with Sinorhizobium meliloti, auxin, or a control. We identified 131 of 270 proteins responding to treatment with S. meliloti and/or auxin, and 39 of 89 proteins differentially displayed between the wild type and sunn. The majority of proteins changed similarly in response to auxin and S. meliloti after 24 h in both genotypes, supporting hypothesis 1. Proteins differentially accumulated between untreated wild-type and sunn roots also showed changes in auxin response, consistent with altered auxin levels in sunn. However, differences between the genotypes after S. meliloti inoculation were largely not due to differential auxin responses. The role of the identified candidate proteins in nodule initiation and the requirement for their induction by auxin could be tested in future functional studies.  相似文献   

20.
Sinorhizobium meliloti forms a symbiosis with the legume alfalfa, whereby it differentiates into a nitrogen-fixing bacteroid. The lipid A species of S. meliloti are modified with very long-chain fatty acids (VLCFAs), which play a central role in bacteroid development. A six-gene cluster was hypothesized to be essential for the biosynthesis of VLCFA-modified lipid A. Previously, two cluster gene products, AcpXL and LpxXL, were found to be essential for S. meliloti lipid A VLCFA biosynthesis. In this paper, we show that the remaining four cluster genes are all involved in lipid A VLCFA biosynthesis. Therefore, we have identified novel gene products involved in the biosynthesis of these unusual lipid modifications. By physiological characterization of the cluster mutant strains, we demonstrate the importance of this gene cluster in the legume symbiosis and for growth in the absence of salt. Bacterial LPS species modified with VLCFAs are substantially less immunogenic than Escherichia coli LPS species, which lack VLCFAs. However, we show that the VLCFA modifications do not suppress the immunogenicity of S. meliloti LPS or affect the ability of S. meliloti to induce fluorescent plant defense molecules within the legume. Because VLCFA-modified lipids are produced by other rhizobia and mammalian pathogens, these findings will also be important in understanding the function and biosynthesis of these unusual fatty acids in diverse bacterial species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号