首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
Heterologous binding of rat brain hexokinase to wild type, porinless, and recombinant yeast mitochondria expressing human porin was assessed, partially characterized, and compared to that in the homologous system (rat liver mitochondria). With porin-containing yeast mitochondria it is shown that (i) a significant, saturatable association occurs; (ii) its extent and apparent affinity, correlated with the origin of porin, are enhanced in the presence of dextran; (iii) the binding requires Mg ions and apparently follows a complex cooperative mechanism. This heterologous association does not seem to differ fundamentally from that in the homologous system and represents a good basis for molecular studies in yeast. With porinless yeast mitochondria, binding occurs at much lower affinity, but to many more sites per mitochondrion. The results indicating a major but not exclusive role for porin in the binding are discussed in terms of (i) the mode and mechanism of binding, and (ii) the suitability of the rat hexokinase–yeast mitochondria couple for the study of heterogeneous catalysis in reconstituted cellular model systems.  相似文献   

2.
Current thought is that proliferating cells undergo a shift from oxidative to glycolytic metabolism, where the energy requirements of the rapidly dividing cell are provided by ATP from glycolysis. Drawing on the hexokinase–mitochondrial acceptor theory of insulin action, this article presents evidence suggesting that the increased binding of hexokinase to porin on mitochondria of cancer cells not only accelerates glycolysis by providing hexokinase with better access to ATP, but also stimulates the TCA cycle by providing the mitochondrion with ADP that acts as an acceptor for phosphoryl groups. Furthermore, this acceleration of the TCA cycle stimulates protein synthesis via two mechanisms: first, by increasing ATP production, and second, by provision of certain amino acids required for protein synthesis, since the amino acids glutamate, alanine, and aspartate are either reduction products or partially oxidized products of the intermediates of glycolysis and the TCA cycle. The utilization of oxygen in the course of the TCA cycle turnover is relatively diminished even though TCA cycle intermediates are being consumed. With partial oxidation of TCA cycle intermediates into amino acids, there is necessarily a reduction in formation of CO2 from pyruvate, seen as a relative diminution in utilization of oxygen in relation to carbon utilization. This has been assumed to be an inhibition of oxygen uptake and therefore a diminution of TCA cycle activity. Therefore a switch from oxidative metabolism to glycolytic metabolism has been assumed (the Crabtree effect). By stimulating both ATP production and protein synthesis for the rapidly dividing cell, the binding of hexokinase to mitochondrial porin lies at the core of proliferative energy metabolism. This article further reviews literature on the binding of the isozymes of hexokinase to porin, and on the evolution of insulin, proposing that intracellular insulin-like proteins directly bind hexokinase to mitochondrial porin.  相似文献   

3.
Abstract: High-affinity binding sites (apparent K D= 1.5 nM) for [3H]desipramine have been demonstrated and characterized in membranes prepared from rat brain. The binding of [3H]desipramine was found to be saturable, reversible, heat-sensitive, sodium-dependent, and regionally distributed among various regions of the brain. High concentrations of [3H]desipramine binding sites were found in the septum, cerebral cortex, and hypothalamus, whereas lower concentrations were found in the medulla, cerebellum, and corpus striatum. A very good correlation ( r = 0.81, P < 0.001) was observed between the potencies of a series of drugs in inhibiting high-affinity [3H]desipramine binding and their capacity to block norepinephrine uptake into synaptosomes. In 6-hydroxydopamine-lesioned rats there was a marked decrease in [3H]norepinephrine uptake and [3H]desipramine binding with no significant alterations in either [3H]serotonin uptake or [3H]imipramine binding. These results suggest that the high-affinity binding of [3HJdesipramine to rat brain membranes is pharmacologically and biochemically distinct from the high-affinity binding of [3H]imipramine, and that there is a close relationship between the high-affinity binding site for [3H]desipramine and the uptake site for norepinephrine.  相似文献   

4.
DMCM (methyl 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate) produces convulsions in mice and rats, probably by interacting with benzodiazepine (BZ) receptors. Investigation of specific binding of [3H]DMCM to rat hippocampus and cortex revealed polyphasic saturation curves, indicating a high-affinity site (KD = 0.5-0.8 nM) and a site with lower affinity (KD = 3-6 nM). BZ receptor ligands of various chemical classes, but not other agents, displace [3H]DMCM from specific binding sites--indicating that [3H]DMCM binds to BZ receptors in rat brain. The regional distribution of [3H]DMCM binding is complementary to that of the BZ1-selective radioligand [3H]PrCC. Specific binding of [3H]DMCM (0.1 nM) was reduced by gamma-aminobutyric acid (GABA) receptor agonist to approximately 20% of the control value at 37 degrees C in chloride-containing buffers; the reduction was bicuculline methiodide- and RU 5135-sensitive. The effective concentrations of 10 GABA analogues in reducing [3H]DMCM binding correlated closely to published values for their GABA receptor affinity. Specific binding of [3H]DMCM is regulated by unknown factors; e.g. enhanced binding was found by Ag+ treatment of membranes, in the presence of picrotoxinin, or by exposure to ultraviolet light in the presence of flunitrazepam. In conclusion, [3H]DMCM appears to bind to high-affinity brain BZ receptors, although the binding properties are different from those of [3H]flunitrazepam and [3H]PrCC. These differences might relate in part to subclass selectivity and in part to differences in efficacy of DMCM at BZ receptors.  相似文献   

5.
The binding of [125I]beta h-endorphin to rat brain membranes was investigated in the presence of GTP and guanylyl-5'-imidodiphosphate. In contrast to the binding of the mu-selective opioid agonist, [3H][D-Ala2,MePhe4,Glyol5]enkephalin, and the delta-selective opioid agonist, [3H][D-penicillamine2, D-penicillamine5]enkephalin, [125I]beta h-endorphin binding was not affected by GTP or guanylyl-5'-imidodiphosphate in a concentration-dependent manner in the absence of cations. However, in the presence of NaCl, the inclusion of either GTP or guanylyl-5'-imidodiphosphate resulted in a concentration-dependent inhibition of [125I]beta h-endorphin binding. This inhibition was significantly greater than the decrease in [125I]beta h-endorphin binding observed in the presence of sodium alone. Although GTP most potently inhibited [125I]beta h-endorphin binding in the presence of sodium, inhibition of [125I]beta h-endorphin binding by GTP was also observed in the presence of the monovalent cations lithium and potassium, but not the divalent cations magnesium, calcium, or manganese. The effect produced by GTP in the presence of NaCl was mimicked by GDP, but not by GMP or other nucleotides. Unlike [125I]beta h-endorphin, the binding of the putative sigma receptor agonist, (+)-[3H]SKF 10,047, was not significantly altered by GTP or guanylyl-5'-imidodiphosphate in the absence or presence of sodium.  相似文献   

6.
Specific [3H]MK801 binding to rat brain NMDA receptors after the administration of the convulsant drug 3-mercaptopropionic acid (MP) and the adenosine analogue cyclopentyladenosine (CPA) was studied by means of a quantitative autoradiographic method. MP administration (150 mg/kg, i.p.) caused significant decreases in [3H]MK801 binding in several hippocampus subareas and layers, mainly in CA1 and CA3 at seizure (11–27%) and postseizure (8–16%) and in cerebral occipital cortex at seizure (18–22%). In nucleus accumbens, a rise was observed at postseizure (44%) and a tendency to increase at seizure (24%). CPA (2mg/kg, i.p.) decreased ligand binding in hippocampus (CA1, CA2, CA3) (17–22%) and in occipital cerebral cortex (18–24%). When CPA was administered 30 minutes before MP (which delayed seizure onset) and rats were sacrified at seizure, decreases in [3H]MK801 binding in several layers of CA1 and CA3 of hippocampus (11–27%) and in CA1, CA2, CA3 (24–35%) after CPA+MP postseizure, and an increase in CA2 after CPA and CPA+MP postseizure (20–34%), were observed. A drop was found in the occipital subarea (18–24%) after CPA and in the frontal and occipital subarea after CPA+MP postseizure (24–34%) while no changes were observed in any treatment involving the other cerebral cortex regions, thalamic nuclei, caudate putamen and olfactory tubercle. These results show that [3H]MK801 binding changes according to drug treatment and the area being studied, thus indicating a different role in seizure activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号