首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stimulation of the superior laryngeal nerve (SLN) results in apnea in animals of different species, the mechanism of which is not known. We studied the effect of the GABA(A) receptor blocker bicuculline, given intravenously and intracisternally, on apnea induced by SLN stimulation. Eighteen 5- to 10-day-old piglets were studied: bicuculline was administered intravenously to nine animals and intracisternally to nine animals. The animals were anesthetized and then decerebrated, vagotomized, ventilated, and paralyzed. The phrenic nerve responses to four levels of electrical SLN stimulation were measured before and after bicuculline. SLN stimulation caused a significant decrease in phrenic nerve amplitude, phrenic nerve frequency, minute phrenic activity, and inspiratory time (P < 0.01) that was proportional to the level of electrical stimulation. Increased levels of stimulation were more likely to induce apnea during stimulation that often persisted beyond cessation of the stimulus. Bicuculline, administered intravenously or intracisternally, decreased the SLN stimulation-induced decrease in phrenic nerve amplitude, minute phrenic activity, and phrenic nerve frequency (P < 0.05). Bicuculline also reduced SLN-induced apnea and duration of poststimulation apnea (P < 0.05). We conclude that centrally mediated GABAergic pathways are involved in laryngeal stimulation-induced apnea.  相似文献   

2.
Cardiovascular failure and apnea in shock   总被引:1,自引:0,他引:1  
A model of shock was developed in anesthetized dogs by limiting venous return with a balloon inflated in the right atrium. The change in ventilation (VE) in response to a sustained decrease in arterial pressure (Pa) to 50-60 Torr was studied by recording transdiaphragmatic pressure (Pdi) and diaphragm (Edi) and parasternal intercostal (Eic) electrical activity. Four dogs died of cardiac arrest after 20-60 min. In 11 dogs, VE, after an initial increase, decreased progressively until apnea occurred after 103 +/- 24 min, after 60% reductions in breathing frequency, Pdi, and Eic and a 30% fall in Edi. No decrease in diaphragm contractility was found in response to artificial phrenic nerve stimulation. The cardiocirculatory function deteriorated during shock until it became irreversible at apneic time. No recovery from apnea occurred without a recovery of Pa. We conclude that the fall in VE and ensuing apnea in this model resulted from a decrease in central respiratory neural output associated with a progressive deterioration of the cardiocirculatory function.  相似文献   

3.
We investigated the effectiveness of the "expiration reflex" in 10 anesthetized spontaneously breathing cats. The expiration reflex was produced by mechanical stimulation of the vocal folds and electrical stimulation of the superior laryngeal nerve at different moments in the respiratory cycle and at various levels of respiratory chemical drive. The effectiveness of the expiration reflex was evaluated from sudden changes in expiratory flow immediately following the stimulation. Both mechanical and electrical stimulations given during early inspiration caused little or no expiratory efforts, whereas stimulations given during early expiration or hypocapnic apnea produced a typical expiration reflex. Changes in arterial CO2 and O2 partial pressures influenced neither the relationships between the stimulation and its effect on the expiration reflex nor the strength of the expiration reflex. These results indicate that the timing of stimulation with relation to the phase of the respiratory cycle is critical to its effect on the expiration reflex and that changes in respiratory chemical drive do not modify the expiration reflex characteristics.  相似文献   

4.
The present study was designed to investigate the effect of stimulus duration and chemosensory input on the recovery of central respiratory activity from apnea induced by superior laryngeal nerve (SLN) electrical stimulation. Newborn piglets less than 8 days of age were anesthetized, paralyzed, and mechanically ventilated at differing levels of end-tidal CO2 partial pressure (PCO2). The vagi were cut bilaterally in the neck. Integrated phrenic nerve activity was used as the index of respiratory activity. SLN stimulation caused apnea that persisted after stimulus cessation. The length of apnea following stimulus cessation was directly related to stimulus duration and inversely related to end-tidal PCO2. After apnea, respiratory activity returned gradually to the initial control level. The recovery pattern was well described by a linear regression function using the natural logarithm of time as the independent variable. Prolonging stimulus duration progressively inhibited the amount of initial respiratory activity following apnea. On the other hand, the rate of respiratory recovery was independent of stimulus duration and, except at low end-tidal PCO2 following long (30 s) stimuli, was independent of the end-tidal PCO2 level. These results demonstrate that a long-acting central mechanism regulates recovery from apnea induced by SLN stimulation.  相似文献   

5.
Inspiratory rhythm in airway smooth muscle tone   总被引:2,自引:0,他引:2  
In anesthetized paralyzed open-chested cats ventilated with low tidal volumes at high frequency, we recorded phrenic nerve activity, transpulmonary pressure (TPP), and either the tension in an upper tracheal segment or the impulse activity in a pulmonary branch of the vagus nerve. The TPP and upper tracheal segment tension fluctuated with respiration, with peak pressure and tension paralleling phrenic nerve activity. Increased end-tidal CO2 or stimulation of the carotid chemoreceptors with sodium cyanide increased both TPP and tracheal segment tension during the increased activity of the phrenic nerve. Lowering end-tidal CO2 or hyperinflating the lungs to achieve neural apnea (lack of phrenic activity) caused a decrease in TPP and tracheal segment tension and abolished the inspiratory fluctuations. During neural apnea produced by lowering end-tidal CO2, lung inflation caused no further decrease in tracheal segment tension and TPP. Likewise, stimulation of the cervical sympathetics, which caused a reduction in TPP and tracheal segment tension during normal breathing, caused no further reduction in these parameters when the stimulation occurred during neural apnea. During neural apnea the tracheal segment tension and TPP were the same as those following the transection of the vagi or the administration of atropine (0.5 mg/kg). Numerous fibers in the pulmonary branch of the vagus nerve fired in synchrony with the phrenic nerve. Only these fibers had activity which paralleled changes in TPP and tracheal tension. We propose that the major excitatory input to airway smooth muscle arises from cholinergic nerves that fire during inspiration, which have preganglionic cell bodies in the ventral respiratory group in the region of the nucleus ambiguus and are driven by the same pattern generators that drive the phrenic and inspiratory intercostal motoneurons.  相似文献   

6.
Respiratory long-term facilitation (LTF) is a long-lasting (>1 h) augmentation of respiratory motor output that occurs even after cessation of hypoxic stimuli, is serotonin-dependent, and is thought to prevent sleep-disordered breathing such as sleep apnea. Raphe nuclei, which modulate several physiological functions through serotonin, receive dense projections from orexin-containing neurons in the hypothalamus. We examined possible contributions of orexin to ventilatory LTF by measuring respiration in freely moving prepro-orexin knockout mice (ORX-KO) and wild-type (WT) littermates before, during, and after exposure to intermittent hypoxia (IH; 5 x 5 min at 10% O2), sustained hypoxia (SH; 25 min at 10% O2), or sham stimulation. Respiratory data during quiet wakefulness (QW), slow wave sleep (SWS), and rapid-eye-movement sleep were separately calculated. Baseline ventilation before hypoxic stimulation and acute responses during stimulation did not differ between the ORX-KO and WT mice, although ventilation depended on vigilance state. Whereas the WT showed augmented minute ventilation (by 20.0 +/- 4.5% during QW and 26.5 +/- 5.3% during SWS; n = 8) for 2 h following IH, ORX-KO showed no significant increase (by -3.1 +/- 4.6% during QW and 0.3 +/- 5.2% during SWS; n = 8). Both genotypes showed no LTF after SH or sham stimulation. Sleep apnea indexes did not change following IH, even when LTF appeared in the WT mice. We conclude that LTF occurs during both sleep and wake periods, that orexin is necessary for eliciting LTF, and that LTF cannot prevent sleep apnea, at least in mice.  相似文献   

7.
To determine whether the responses of tracheal smooth muscle and the nasal vasculature to stimulation of lung C-fiber receptors depend on the level of respiratory drive, the effects of right atrial injection of capsaicin and phenyldiguanide were studied in chloralose-anesthetized, paralyzed, artificially ventilated cats. Studies were performed while the animals were hyperventilated to apnea and, in addition, when breathing was stimulated by inhalation of 7% CO2 or by N-methyl-D-aspartic acid (NMDA) applied to the ventral surface of the medulla. When the cats were hyperventilated to apnea with O2, injection of capsaicin into the right atrium increased tracheal tone and slightly raised nasal resistance. However, when the animals were ventilated with 7% CO2 in O2 or respiratory activity was stimulated by the application of NMDA, administration of capsaicin eliminated spontaneous phrenic nerve activity and caused an abrupt decrease in tracheal tone but still increased nasal resistance. Similar responses were also obtained with right atrial injection of phenyldiguanide. These results showed for the first time that in the cat the direction of the reflex effects on tracheal tone but not nasal resistance depends on the preexisting level of respiratory drive and on cholinergic activity to airway smooth muscle.  相似文献   

8.
Recently Green et al. (J. Appl. Physiol. 57:562-567, 1984) reported that pulmonary C-fibers initiate the prompt apnea evoked by pulmonary arterial injections of capsaicin; however, their role in the subsequent rapid shallow breathing of the pulmonary chemoreflex is still in dispute. To determine whether this reflex tachypnea is triggered by pulmonary C-fibers rather than by afferents further downstream, we separately perfused the pulmonary and systemic circulations in dogs anesthetized with either halothane or alpha-chloralose as the lungs were ventilated with a servo-controlled ventilator driven by phrenic nerve activity. Injection of capsaicin (10 micrograms/kg) into the pulmonary artery of the isolated pulmonary circulation evoked an immediate apnea followed by rapid shallow breathing. Injection of the same dose of capsaicin into the left atrium of the isolated pulmonary circulation had no effect. By contrast, when capsaicin was administered at a slower rate into the pulmonary artery (10-20 micrograms X kg-1 X min-1) rapid shallow breathing occurred but without apnea. Our results are consistent with the hypothesis that in spontaneously breathing animals, stimulation of pulmonary C-fibers can evoke rapid shallow breathing.  相似文献   

9.
Respiratory motor outputs contain medium-(MFO) and high-frequency oscillations (HFO) that are much faster than the fundamental breathing rhythm. However, the associated changes in power spectral characteristics of the major respiratory outputs in unanesthetized animals during the transition from normal eupneic breathing to hypoxic gasping have not been well characterized. Experiments were performed on nine unanesthetized, chemo- and barodenervated, decerebrate adult rats, in which asphyxia elicited hyperpnea, followed by apnea and gasping. A gated fast Fourier transform (FFT) analysis and a novel time-frequency representation (TFR) analysis were developed and applied to whole phrenic and to medial branch hypoglossal nerve recordings. Our results revealed one MFO and one HFO peak in the phrenic output during eupnea, where HFO was prominent in the first two-thirds of the burst and MFO was prominent in the latter two-thirds of the burst. The hypoglossal activity contained broadband power distribution with several distinct peaks. During gasping, two high-amplitude MFO peaks were present in phrenic activity, and this state was characterized by a conspicuous loss in HFO power. Hypoglossal activity showed a significant reduction in power and a shift in its distribution toward lower frequencies during gasping. TFR analysis of phrenic activity revealed the increasing importance of an initial low-frequency "start-up" burst that grew in relative intensity as hypoxic conditions persisted. Significant changes in MFO and HFO rhythm generation during the transition from eupnea to gasping presumably reflect a reconfiguration of the respiratory network and/or alterations in signal processing by the circuitry associated with the two motor pools.  相似文献   

10.
In this study we test the hypothesis that aortic nerve traffic is responsible for the pressor response to periodic apneas. In nine intubated, sedated chronically instrumented pigs, periodic obstructive apneas were caused by occlusion of the endotracheal tube for 30 s, followed by spontaneous breathing for 30 s. This was done under control (C) conditions, after section of the aortic nerve (ANS), and after bilateral cervical vagotomy (Vagot). Blood-gas tensions and airway pressure changed similarly under all conditions: PO(2) decreased to 50-60 Torr, PCO(2) increased to approximately 55 Torr, and airway pressure decreased by 40-50 mmHg during apnea. With C, mean arterial pressure (MAP) increased from 111 +/- 4 mmHg at baseline to 120 +/- 5 mmHg at late apnea (P < 0.01). After ANS and Vagot, there was no change in MAP with apneas compared with baseline. Relative to baseline, cardiac output and stroke volume decreased with C but not with ANS or Vagot during apneas. Increased MAP was due to increased systemic vascular resistance. Heart rate behaved similarly with C and ANS, being greater at early interapnea than late apnea. With Vagot, heart rate increased throughout the apnea-interapnea cycle relative to baseline. We conclude that, in sedated pigs, aortic nerve traffic mediates the increase in MAP and systemic vascular resistance observed during periodic apneas. Increase in MAP is responsible for decreased cardiac output and stroke volume. Additional vagal reflexes, most likely parasympathetic efferents, are responsible for interacting with sympathetic excitatory influences in modulating heart rate.  相似文献   

11.
Obstructive apnea and voluntary breath holding are associated with transient increases in muscle sympathetic nerve activity (MSNA) and arterial pressure. The contribution of changes in blood flow relative to the contribution of changes in vascular resistance to the apnea-induced transient rise in arterial pressure is unclear. We measured heart rate, mean arterial blood pressure (MAP), MSNA (peroneal microneurography), and femoral artery blood velocity (V(FA), Doppler) in humans during voluntary end-expiratory apnea while they were exposed to room air, hypoxia (10.5% inspiratory fraction of O2), and hyperoxia (100% inspiratory fraction of O2). Changes from baseline of leg blood flow (Q) and vascular resistance (R) were estimated from the following relationships: Q proportional to V(FA), corrected for the heart rate, and R proportional to MAP/Q. During apnea, MSNA rose; this rise in MSNA was followed by a rise in MAP, which peaked a few seconds after resumption of breathing. Responses of MSNA and MAP to apnea were greatest during hypoxia and smallest during hyperoxia (P < 0.05 for both compared with room air breathing). Similarly, apnea was associated with a decrease in Q and an increase in R. The decrease in Q was greatest during hypoxia and smallest during hyperoxia (-25 +/- 3 vs. -6 +/- 4%, P < 0.05), and the increase in R was the greatest during hypoxia and the least during hyperoxia (60 +/- 8 vs. 21 +/- 6%, P < 0.05). Thus voluntary apnea is associated with vasoconstriction, which is in part mediated by the sympathetic nervous system. Because apnea-induced vasoconstriction is most intense during hypoxia and attenuated during hyperoxia, it appears to depend at least in part on stimulation of arterial chemoreceptors.  相似文献   

12.
This study examines the effect of progressive isocapnic CO hypoxemia on respiratory afterdischarge and the phrenic neurogram response to supramaximal carotid sinus nerve (CSN) stimulation. Twelve anesthetized, vagotomized, peripherally chemodenervated, ventilated cats with blood pressure controlled were studied. During isocapnic hypoxemia, the amplitude of the phrenic neurogram was progressively depressed. In contrast, the increase in peak phrenic amplitude produced by CSN stimulation was unchanged, suggesting that the central respiratory response to CSN stimulation is unaffected by progressive hypoxemia. The time constant of respiratory afterdischarge (tau) was calculated from best-fit plots of phrenic amplitude vs. time after cessation of CSN stimulation. Under control conditions the value of tau was 57.7 +/- 3 (SE) s (n = 12). During progressive isocapnic hypoxemia, tau decreased as a linear function of arterial O2 content (CaO2) such that a 40% reduction of CaO2 resulted in a 48% reduction in tau. This reduction of respiratory afterdischarge may contribute to the genesis of periodic breathing during hypoxia.  相似文献   

13.
We previously compared the effects of increased respiratory muscle work during whole body exercise and at rest on diaphragmatic fatigue and showed that the amount of diaphragmatic force output required to cause fatigue was reduced significantly during exercise (Babcock et al., J Appl Physiol 78: 1710, 1995). In this study, we use positive-pressure proportional assist ventilation (PAV) to unload the respiratory muscles during exercise to determine the effects of respiratory muscle work, per se, on exercise-induced diaphragmatic fatigue. After 8-13 min of exercise to exhaustion under control conditions at 80-85% maximal oxygen consumption, bilateral phrenic nerve stimulation using single-twitch stimuli (1 Hz) and paired stimuli (10-100 Hz) showed that diaphragmatic pressure was reduced by 20-30% for up to 60 min after exercise. Usage of PAV during heavy exercise reduced the work of breathing by 40-50% and oxygen consumption by 10-15% below control. PAV prevented exercise-induced diaphragmatic fatigue as determined by bilateral phrenic nerve stimulation at all frequencies and times postexercise. Our study has confirmed that high- and low-frequency diaphragmatic fatigue result from heavy-intensity whole body exercise to exhaustion; furthermore, the data show that the workload endured by the respiratory muscles is a critical determinant of this exercise-induced diaphragmatic fatigue.  相似文献   

14.
The effect of stimulation of afferent mesenteric nerves on tidal volume (VT), phrenic nerve, and external intercostal muscle activities was studied in anesthetized spontaneously breathing cats. Both mechanical distension of the small intestine and electrical stimulation of the mesenteric nerves resulted in an initial inspiratory inhibition of VT followed by a gradual recovery above the prestimulus controls. Changes in VT were accompanied by a depression of phrenic nerve activity and an excitation of external intercostal muscle activity. During the recovery phase of VT, the amplitude of phrenic nerve activity returned only partially, whereas the activity of the external intercostal muscle was greater than the prestimulus controls. In a second group of experiments, brief tetanic stimulation at the beginning of inspiration led to a complete and maintained inhibition of phrenic nerve activity but with a simultaneous excitation of external intercostal muscle activity and without any change in VT; whereas expiratory stimulation caused a decrease in expiratory abdominal muscle activity, without changing the peak amplitude of phrenic nerve activity. The respiratory changes observed with distension of the small intestine were abolished after denervation of the mesenteric plexus. It is concluded that activation of the visceral afferents of the mesenteric region reflexly changes diaphragmatic breathing to intercostal breathing. It is assumed that such a type of breathing pattern may occur in pregnancy and in pathophysiological situations involving splanchnic viscera.  相似文献   

15.
Synaptic processes in various functional groups of thoracic motoneurons (Th9-Th11) evoked by stimulation of segmental nerves were investigated in anesthetized and decerebrate cats. No reciprocal relations were found between these groups of motoneurons. Only excitatory mono- and polysynaptic responses were recorded in the motoneurons of the principal intercostal nerve following stimulation of the homonymous nerve. Activation of the afferents of the external intercostal muscle and dorsal branches does not cause noticeable synaptic processes in these motoneurons; much more rarely it is accompanied by the development of low-amplitude polysynaptic EPSP's. In motoneurons of the dorsal branches, stimulation of homonymous nerves leads to the appearance of simple, short-latent EPSP's. Late responses of the IPSP or EPSP - IPSP type with a predominance of the inhibitory component were observed in most motoneurons of this type following activation of the afferent fibers of the principal intercostal nerve. In other motoneurons of the dorsal muscles, stimulation of the main intercostal nerve (and nerve of the external intercostal muscle) did not evoke apparent synpatic processes. EPSP's (mono- and polysynaptic) appeared in the motoneurons of the external intercostal muscle following stimulation of the homonymous and main intercostal nerves. Activation of the afferents of the dorsal branches was ineffective. The character of the synaptic responses of the respiratory motoneurons to segmental afferent stimulation, investigated under conditions of spontaneous respiration, was different. The characteristics of synaptic activation of thoracic motoneurons by segmental afferents under conditions of hyperventilation apnea and during spontaneous breathing of the animals are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 2, No. 3, pp. 279–288, May–June, 1970.  相似文献   

16.
满恒业  刘磊 《生理学报》1992,44(1):92-97
实验在45只麻醉、自主呼吸、断双侧颈迷走神经的家兔上进行。电刺激或微量注射L-谷氨酸钠于中缝隐核(Nucleus raphe obscurus,NRO),观察到:(1)长串电脉冲刺激NRO(50—200μA,波宽0.3ms,100Hz,4—6s),出现膈神经放电被抑制的反应,被抑制的程度与刺激强度、刺激频率间存在相关性。(2)吸气期用短串电脉冲(100—200μA,波宽0.3ms,50—100Hz,5—20个脉冲)刺激NRO,可提前终止膈神经放电,产生吸气切断效应。吸气切断时间具有刺激落位和刺激强度依赖性。(3)NRO内微量注射细胞体兴奋剂谷氨酸钠(1mol/L,1μl),注药期间出现膈神经放电抑制,注药后为吸气时程(Ti)缩短和呼气时程(Te)延长。  相似文献   

17.
Sleep apnea and other respiratory diseases produce hypoxemia and hypercapnia, factors that adversely affect skeletal muscle performance. To examine the effects of these chemical alterations on force production by an upper airway dilator muscle, the contractile and endurance characteristics of the geniohyoid muscle were examined in situ during severe hypoxia (arterial PO2 less than 40 Torr), mild hypoxia (PO2 45-65 Torr), and hypercapnia (PCO2 55-80 Torr) and compared with hyperoxic-normocapnic conditions in anesthetized cats. Muscles were studied at optimal length, and contractile force was assessed in response to supramaximal electrical stimulation of the hypoglossal nerve (n = 7 cats) or geniohyoid muscle (n = 2 cats). There were no significant changes in the twitch kinetics or force-frequency curve of the geniohyoid muscle during hypoxia or hypercapnia. However, the endurance of the geniohyoid, as reflected in the fatigue index (ratio of force at 2 min to initial force in response to 40-Hz stimulation at a duty cycle 0.33), was significantly reduced by severe hypoxia but not by hypercapnia or mild hypoxia. In addition, the downward shift in the force-frequency curve after the repetitive stimulation protocol was greater during hypoxia than hyperoxia, especially at higher frequencies. In conclusion, the ability of the geniohyoid muscle to maintain force output during high levels of activation is adversely affected by severe hypoxia but not mild hypoxia or hypercapnia. However, none of these chemical perturbations affected muscle contractility acutely.  相似文献   

18.
Effects of intravenous injection of sheep hydatid cyst fluid on respiratory and cardiovascular systems were studied in sodium pentobarbital-anesthetized dogs. Under sterile conditions, the fluid was drawn from the liver and lung hydatid cysts of sheep, and centrifuged for 20 min at 500g. The supernatant fluid was used as the test solution. In a majority of animals, administration of 5 ml of the cyst fluid caused a sharp fall in arterial blood pressure, with or without respiratory changes. The latter, when present, included temporary cessation of respiration followed by rapid shallow breathing. There was usually an increase in the heart rate as the arterial blood pressure dropped. Atropine, 0.5 mg/kg body wt, given subcutaneously prior to the cyst fluid administration, did not block the responses. Cardiovascular responses produced by intravenous injection of cyst fluid were similar in dogs with positive pressure breathing and with spontaneous breathing. In 7 out of 10 responsive dogs, pretreatment with the antihistamine, chlorpheniramine, abolished the respiratory and cardiovascular responses.  相似文献   

19.
We evaluated rapid and transient changes in phrenic nerve (PN) and internal intercostal (IIC) activities when 0.2-0.5 ml of saline saturated with 100% CO2 was injected into the vertebral artery during various respiratory phases in decerebrated spontaneously breathing cats. The injections evoked an initial transient inhibition of ongoing PN or IIC activity with a mean onset latency of 0.17 s, followed by excitation of subsequent respiratory activities with an onset latency ranging from 0.4 to 2.7 s; the average onset latency of expiratory excitation (1.49 s) was significantly longer than that of inspiratory facilitation (0.89 s). The initial inhibitory responses were analogous to reflex effects of injections of phenyl biguanide, indicating that the initial inhibition was due to activation of vascular nociceptors and the subsequent excitation was due to stimulation of the central chemoreceptors. In addition, CO2-saline injections during hypocapnic apnea developed a quick reappearance of respiratory rhythm, and the first facilitatory effect appeared in tonic IIC activity, which became more active before rhythm started. In summary, the present study, by use of a technique of vertebral arterial injections of 100% CO2-saline, revealed dynamic properties of respiratory control system mediated by central chemoreceptors and vascular nociceptors.  相似文献   

20.
The aim of this study was to ascertain the persistence of heart rate and blood pressure oscillations at the onset of voluntary apnea in humans and to assess the dependence of the fluctuations parameters on the chemoreceptor activity. In 24 young subjects (10 males, 14 females, mean age 20.4 years) heart rate (represented by its reciprocal value--RR-intervals), systolic blood pressure (SBP) and diastolic blood pressure (DBP) during controlled breathing (CB) of atmospheric air and oxygen followed by apnea were recorded continuously. The cosine functions were then fitted by nonlinear regression analysis to the heart rate, SBP and DBP oscillations during CB and at the onset of apnea. The parameters of oscillations were different during atmospheric air breathing compared to oxygen breathing. During oxygen breathing there was an increase of the RR-interval oscillations--relative bradycardia and enhanced magnitude of respiratory sinus arythmia. During apnea, the base level of the blood pressure oscillations was higher after breathing of atmospheric air compared to oxygen breathing. At least one cosine-like wave oscillation was present at the onset of apnea in the heart rate, SBP and DBP and the second wave was present in all assessed parameters in at least 70% of recordings. The oscillations in RR-intervals are, to some extent, independent of blood pressure oscillations. No significant gender differences were found either in the duration of breath holding or in the RR and SBP oscillations parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号