首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Self-splicing of the Chlamydomonas chloroplast psbA introns.   总被引:1,自引:0,他引:1       下载免费PDF全文
D L Herrin  Y Bao  A J Thompson    Y F Chen 《The Plant cell》1991,3(10):1095-1107
We used alpha-32P-GTP labeling of total RNA preparations to identify self-splicing group I introns in Chlamydomonas. Several RNAs become labeled with alpha-32P-GTP, a subset of which is not seen with RNA from a mutant that lacks both copies of the psbA gene. Hybridization of the GTP-labeled RNAs to chloroplast DNA indicates that they originate from the psbA and rrn 23S genes, respectively, the only genes known to contain group I introns in this organism. Introns 1, 2, and 3 of psbA (with flanking exon sequences) were subcloned and transcribed in vitro. The synthetic RNAs were found to self-splice; splicing required Mg2+, GTP, and elevated temperature. In addition, the accuracy of self-splicing was confirmed for introns 1 and 2, and intermediates in the splicing reactions were detected. These results, together with our recent data on the 23S intron, indicate that the ability to self-splice is a general feature of Chlamydomonas group I introns. These findings have significant implications for the mechanism of group I intron splicing and evolution in Chlamydomonas and other chloroplast genomes.  相似文献   

3.
4.
The RNA molecules transcribed from many eukaryotic genes are interrupted by intervening sequences, which are removed by a process called RNA splicing. One structurally related group of intervening sequences, the group I intervening sequences, are found in a variety of microorganisms. Some of these, including the group I intervening sequence from the ribosomal RNA precursor of Tetrahymena thermophila, have been shown to mediate their own splicing in an RNA-catalyzed reaction. Following its excision from the ribosomal RNA precursor, the Tetrahymena intervening sequence acts as an enzyme, cutting and rejoining RNA substrates.  相似文献   

5.
Three small RNAs of the cytoplasmic 8OS ribosomes of the green unicellular alga Chlamydomonas reinhardii have been sequenced. They include two species of ribosomal 5S RNA, a major and a minor one of 122 and 121 nucleotides respectively, which differ from each other by 17 bases, and also the ribosomal 5.8S RNA of 156 nucleotides. Novel structural features can be recognized in the 5S RNAs of C. reinhardii by a comparison with published 5S RNA sequences. In addition the secondary structure of these small RNA molecules has been examined using a newly developed method based on differential nuclease susceptibility.  相似文献   

6.
Defence against pathogens in Arabidopsis is orchestrated by at least three signalling molecules: salicylic acid (SA), jasmonic acid (JA) and ethylene (ET). The hrl1 (hypersensitive response-like lesions 1) mutant of Arabidopsis is characterized by spontaneous necrotic lesions, accumulation of reactive oxygen species, constitutive expression of SA- and ET/JA-responsive defence genes, and enhanced resistance to virulent bacterial and oomycete pathogens. Epistasis analyses of hrl1 with npr1, etr1, coi1 and SA-depleted nahG plants revealed novel interactions between SA and ET/JA signalling pathways in regulating defence gene expression and cell death. RNA gel-blot analysis of RNA isolated separately from the lesion+ and the lesion- leaves of double mutants of hrl1 revealed different signalling requirements for the expression of defence genes in these tissues. Expression of the ET/JA-responsive PDF1.2 gene was markedly reduced in hrl1 npr1 and in SA-depleted hrl1 nahG plants. In hrl1 nahG plants, expression of PDF1.2 was regulated by benzathiadiazole in a concentration-dependent manner: induced at low concentration and suppressed at high concentration. The hrl1 etr1 plants lacked systemic PR-1 expression, and exhibited compromised resistance to virulent Pseudomonas syringae and Peronospora parasitica. Inhibiting JA responses in hrl1 coi1 plants lead to exaggerated cell death and severe stunting of plants. Finally, the hrl1 mutation lead to elevated expression of AtrbohD, which encodes a major subunit of the NADPH oxidase complex. Our results indicate that defence gene expression and resistance against pathogens in hrl1 is regulated synergistically by SA and ET/JA defence pathways.  相似文献   

7.
Summary Tobacco chloroplasts were found to contain three species of 5S RNA with different electrophoretic mobility. The nucleotide sequences of two species of the 5S RNA have been determined. The large 5S RNA species (5S RNAL) is composed of 121 nucleotides and the small 5S RNA species (5S RNAs) of 119 nucleotides. The 5S RNAL contains and extra uridine residue at both 5 and 3ends of the 5S RNAs.  相似文献   

8.
Ribosomal activity of the 16 S.23 S RNA complex   总被引:1,自引:0,他引:1  
It has been demonstrated in this laboratory that 16 S and 23 S RNAs form a binary complex like 30 S and 50 S ribosomes under certain specific conditions, and 5 S RNA can be incorporated into the complex in stoichiometric amounts in presence of three ribosomal proteins, L5, L18, and L15/25. These studies raised the basic question of whether such complex will have biological activity. Therefore, the following steps in protein synthesis were examined with the complex in place of the ribosomes: (i) poly-U-dependent binding of phenylalanyl tRNA; (ii) EF-G-dependent GTPase activity; (iii) initiation complex formation; (iv) peptidyl transferase activity; and (v) poly-U-dependent polyphenylalanine synthesis. All the steps could be unequivocally demonstrated by the addition of a limited number of proteins although the complex had comparatively much less activity than 70 S ribosomes. It appears that rRNAs are directly involved in various steps of protein synthesis. Furthermore, the 16 S.23 S RNA complex might have acted as a primitive ribosome, as suggested by Crick and Orgel.  相似文献   

9.
The mechanisms of chloroplast recombination are largely unknown. Using the chloroplast-encoded homing endonuclease I-CreI from Chlamydomonas reinhardtii, an experimental system is described that allows the study of double strand break (DSB)-induced recombination in chloroplasts. The I-CreI endonuclease is encoded by the chloroplast ribosomal group I intron of C.reinhardtii and cleaves specifically intronless copies of the large ribosomal RNA (23S) gene. To study DSB-induced recombination in chloroplast DNA, the genes encoding the I-CreI endonuclease were deleted and a target site for I-CreI, embedded in a cDNA of the 23S gene, was integrated at an ectopic location. Endonuclease function was transiently provided by mating the strains containing the recombination substrate to a wild-type strain. The outcome of DSB repair was analyzed in haploid progeny of these crosses. Interestingly, resolution of DSB repair strictly depended upon the relative orientation of the ectopic ribosomal cDNA and the adjacent copy of the 23S gene. Gene conversion was observed when the 23S cDNA and the neighbouring copy of the 23S gene were in opposite orientation, leading to mobilization of the intron to the 23S cDNA. In contrast, arrangement of the 23S cDNA in direct repeat orientation relative to the proximal 23S gene resulted in a deletion between the 23S cDNA and the 23S gene. These results demonstrate that C.reinhardtii chloroplasts have an efficient system for DSB repair and that homologous recombination is strongly stimulated by DSBs in chloroplast DNA.  相似文献   

10.
Secondary structure model for 23S ribosomal RNA.   总被引:31,自引:32,他引:31       下载免费PDF全文
A secondary structure model for 23S ribosomal RNA has been constructed on the basis of comparative sequence data, including the complete sequences from E. coli. Bacillus stearothermophilis, human and mouse mitochondria and several partial sequences. The model has been tested extensively with single strand-specific chemical and enzymatic probes. Long range base-paired interactions organize the molecule into six major structural domains containing over 100 individual helices in all. Regions containing the sites of interaction with several ribosomal proteins and 5S RNA have been located. Segments of the 23S RNA structure corresponding to eucaryotic 5.8S and 25 RNA have been identified, and base paired interactions in the model suggest how they are attached to 28S RNA. Functionally important regions, including possible sites of contact with 30S ribosomal subunits, the peptidyl transferase center and locations of intervening sequences in various organisms are discussed. Models for molecular 'switching' of RNA molecules based on coaxial stacking of helices are presented, including a scheme for tRNA-23S RNA interaction.  相似文献   

11.
The chloroplast ribosomal unit of Chlamydomonas reinhardii displays two features which are not shared by other chloroplast ribosomal units. These include the presence of an intron in the 23 S ribosomal RNA gene and of two small genes coding for 3 S and 7 S rRNA in the spacer between the 16 S and 23 S rRNA genes (Rochaix & Malnoë, 1978). Sequencing of the 7 S and 3 S rRNAs as well as their genes and neighbouring regions has shown that: (1) the 7 S and 3 S rRNA genes are 282 and 47 base-pairs long, respectively, and are separated by a 23 base-pair A + T-rich spacer. (2) A sequence microheterogeneity exists within the 3 S RNA genes. (3) The sequences of the 7 S and 3 S rRNAs are homologous to the 5′ termini of prokaryotic and other chloroplast 23 S rRNAs, indicating that the C. reinhardii counterparts of 23 S rRNA have a composite structure. (4) The sequences of the 7 S and 3 S rRNAs are related to that of cytoplasmic 5.8 S rRNA, suggesting that these RNAs may perform similar functions in the ribosome. (5) Partial nucleotide sequence complementarity is observed between the 5′ ends of the 7 S and 3 S RNAs on one hand and the 23 S rRNA sequences which flank the ribosomal intron on the other. These data are compatible with the idea that these small rRNAs may play a role in the processing of the 23 S rRNA precursor.  相似文献   

12.
The nucleotide sequence of tobacco chloroplast 4.5S ribosomal RNA has been determined to be: OHG-A-A-G-G-U-C-A-C-G-G-C-G-A-G-A-C-G-A-G-C-C-G-U-U-U-A-U-C-A-U-U-A-C-G-A-U-A-G-G-U-G-U-C-A-A-G-U-G-G-A-A-G-U-G-C-A-G-U-G-A-U-G-U-A-U-G-C-(G-A)-C-U-G-A-G-G-C-A-U-C-C-U-A-A-C-A-G-A-C-C-G-G-U-A-G-A-C-U-U-G-A-A-COH. The 4.5S RNA is 103 nucleotides long and its 5'-terminus is not phosphorylated.  相似文献   

13.
Summary Episomes carrying limited regions of the chromosome where 5S RNA genes have previously been located are described. The DNA purified from each of these episomes contains one gene per molecule for each of the three ribosomal RNA species as shown by hybridization experiments.This work was supported in part by a grant from the C.E.A.  相似文献   

14.
5S RNA as such is not incorporated into 16S-23S RNA complex formed under reconstitution condition. However, the addition of 50S ribosomal proteins, L5, L18 and L25/L15 results in its incorporation in stoichiometric amount. None of the proteins added individually is capable of incorporating 5S RNA into the complex. Of the different combinations in pairs that are possible out of the four proteins, the pairs L5, L18 and L15, L18 stimulate the incorporation to some extent. Of the four possible triplets, L5, L18, L25 or L5, L15, L18 is the most efficient for maximum incorporation of 5S RNA. The presence of all the four proteins is no more effective than the combinations of the three.  相似文献   

15.
16.
In order to investigate in vivo splicing of group II introns in chloroplasts, we previously have integrated the mitochondrial intron rI1 from the green alga Scenedesmus obliquus into the Chlamydomonas chloroplast tscA gene. This construct allows a functional analysis of conserved intron sequences in vivo, since intron rI1 is correctly spliced in chloroplasts. Using site-directed mutagenesis, deletions of the conserved intron domains V and VI were performed. In another set of experiments, each possible substitution of the strictly conserved first intron nucleotide G1 was generated, as well as each possible single and double mutation of the tertiary base pairing gamma-gamma ' involved in the formation of the intron's tertiary RNA structure. In most cases, the intron mutations showed the same effect on in vivo intron splicing efficiency as they did on the in vitro self-splicing reaction, since catalytic activity is provided by the intron RNA itself. In vivo, all mutations have additional effects on the chimeric tscA -rI1 RNA, most probably due to the role played by trans -acting factors in intron processing. Substitutions of the gamma-gamma ' base pair lead to an accumulation of excised intron RNA, since intron stability is increased. In sharp contrast to autocatalytic splicing, all point mutations result in a complete loss of exon RNA, although the spliced intron accumulates to high levels. Intron degradation and exon ligation only occur in double mutants with restored base pairing between the gamma and gamma' sites. Therefore, we conclude that intron degradation, as well as the ligation of exon-exon molecules, depends on the tertiary intron structure. Furthermore, our data suggest that intron excision proceeds in vivo independent of ligation of exon-exon molecules.  相似文献   

17.
18.
W Herr  H F Noller 《Biochemistry》1978,17(2):307-315
Nucleotide sequences around kethoxal-reactive guanine residues of 23S RNA in 50S ribosomal subunits have been determined. By use of the diagonal paper electrophoresis method )Noller, H.F. (1974), Biochemistry 13, 4694-4703), 41 ribonuclease T1 oligonucleotides, originating from about 25 sites, were identified and sequenced. These sites are single stranded and accessible in free 50S subunits, and are thus potential sites for interaction with functional ligands during protein synthesis. Examination of these sequences for potential intermolecular base-pairing reveals the following: (1) There are 19 possible complementary combinations between exposed sequences in 16S and 23S RNA containing more than 4 base pairs: 15 containing 5 base pairs and 4 containing 6 base pairs. Nine of these complementary combinations contain 16S RNA sequences which we have previously shown to be protected from kethoxall by 50S subunits (Chapman, N.M., and Noller, H.F. (1977), J. Mol. Biol. 109, 131-149). (2) One of the exposed sites in 23S RNA has a sequence which is complementary to the invariant GT psi CR sequence in tRNA.  相似文献   

19.
The proximity of loop D of 5 S rRNA to two regions of 23 S rRNA, domain II involved in translocation and domain V involved in peptide bond formation, is known from previous cross-linking experiments. Here, we have used site-directed mutagenesis and chemical probing to further define these contacts and possible sites of communication between 5 S and 23 S rRNA. Three different mutants were constructed at position A960, a highly conserved nucleotide in domain II previously crosslinked to 5 S rRNA, and the mutant rRNAs were expressed from plasmids as homogeneous populations of ribosomes in Escherichia coli deficient in all seven chromosomal copies of the rRNA operon. Mutations A960U, A960G and, particularly, A960C caused structural rearrangements in the loop D of 5 S rRNA and in the peptidyltransferase region of domain V, as well as in the 960 loop itself. These observations support the proposal that loop D of 5 S rRNA participates in signal transmission between the ribosome centers responsible for peptide bond formation and translocation.  相似文献   

20.
Recently, cis-acting elements and trans-acting RNA and protein factors necessary for splicing nuclear pre-mRNAs, group II introns or group III introns, have been discovered, and new roles for the splicing factors have been elucidated. Parallels among the pathways for splicing these different classes of introns have been identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号