首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Adaptive tolerance is the physiologic down-regulation of T cell responsiveness in the face of persistent antigenic stimulation. In this study, we examined the role of CTLA-4 in this process using CTLA-4-deficient and wild-type TCR transgenic, Rag2(-/-), CD4(+) T cells transferred into a T cell-deficient, Ag-expressing host. Surprisingly, we found that the tuning process of adoptively transferred T cells could be induced and the hyporesponsive state maintained in the absence of CTLA-4. Furthermore, movement to a deeper state of anergy following restimulation in vivo in a second Ag-bearing host was also unaffected. In contrast, CTLA-4 profoundly inhibited late T cell expansion in vivo following both primary and secondary transfers, and curtailed IL-2 and IFN-gamma production. Removal of this braking function in CTLA-4-deficient mice following Ag stimulation may explain their lymphoproliferative dysregulation.  相似文献   

3.
CTLA-4 is not required for induction of CD8(+) T cell anergy in vivo.   总被引:2,自引:0,他引:2  
Recent studies of T cell anergy induction have produced conflicting conclusions as to the role of the negative regulatory receptor, CTLA-4. Several in vivo models of tolerance have implicated the interaction of CTLA-4 and its ligands, B7.1 and B7.2, as an essential step in induction of anergy, while results from a number of other systems have indicated that signals from the TCR/CD3 complex alone are sufficient to induce T cell unresponsiveness. One explanation for this disparity is that the requirements for anergy induction depend closely on the details of the system: in vivo vs in vitro, route of stimulus administration, naive vs memory cells, CD4(+) vs CD8(+) cells, etc. To test this possibility, we established an in vivo anergy model using mice transgenic for the 2C TCR on a recombination-activating gene-2-deficient background, that either express or lack the CTLA-4 molecule. This system provides us with a very homogeneous pool of naive Ag-specific CD8(+) T cells, allowing us to control some of the conditions mentioned above. We found that T cells from CTLA-4-deficient mice were anergized by injections of soluble antigenic peptide as efficiently as were CTLA-4-expressing cells. These results indicate that CTLA-4 is not universally required for in vivo T cell anergy induction and may point to distinctions between regulation of peripheral tolerance in CD4(+) and CD8(+) T cells.  相似文献   

4.
Cutting edge: transplantation tolerance through enhanced CTLA-4 expression   总被引:11,自引:0,他引:11  
Knockout and blocking studies have shown a critical role for CTLA-4 in peripheral tolerance, however, it is unknown whether augmenting CTLA-4 expression actually promotes tolerance. Here we demonstrate a specific and requisite role for CTLA-4 and its up-regulation in tolerance through anti-CD45RB. First, long-term murine islet allograft survival induced by anti-CD45RB is prevented by CTLA4-Ig, which interferes with B7:CTLA-4 interactions. Second, anti-CD45RB is ineffective in recipients lacking CTLA-4, B7-1, and B7-2. In contrast, CTLA4-Ig, which targets B7 on allogeneic cells, promotes long-term engraftment in these mice. Moreover, anti-CD45RB was effective in B7-deficient controls expressing CTLA-4. Finally, in wild-type mice, CTLA-4 expression returned to baseline 17 days after receiving anti-CD45RB, and was refractory to further increase. Transplantation and anti-CD45RB therapy at this time could neither augment CTLA-4 nor prolong engraftment. These data demonstrate a specific role for CTLA-4 in anti-CD45RB-mediated tolerance and indicate that CTLA-4 up-regulation can directly promote allograft survival.  相似文献   

5.
To examine the role of CTLA-4 in controlling Ag-specific CD8(+) T cell activation, TCR-transgenic/CTLA-4 wild-type or -deficient mice were generated in a recombination-activating gene 2-deficient background. Naive T cells from these mice responded comparably whether or not CTLA-4 was expressed. In contrast, primed T cells responded more vigorously if they lacked CTLA-4 expression. We took advantage of the difference between naive and primed T cell responses to approach the mechanism of CTLA-4 function. Single-cell analyses demonstrated that a greater fraction of CTLA-4-deficient cells responded to a fixed dose of Ag compared with CTLA-4-expressing cells, whereas the magnitude of response per cell was comparable. A shift in the dose-response curve to APCs was also observed such that fewer APCs were required to activate CTLA-4-deficient T cells to produce intracellular IFN-gamma and to proliferate. These results suggest that CTLA-4 controls the threshold of productive TCR signaling. Biochemical analysis comparing stimulated naive and primed TCR-transgenic cells revealed no obvious differences in expression of total CTLA-4, tyrosine-phosphorylated CTLA-4, and associated Src homology domain 2-containing protein tyrosine phosphatase. Thus, the biochemical mechanism explaining the differential inhibitory effect of CTLA-4 on naive and primed CD8(+) T cells remains unclear.  相似文献   

6.
B7-independent inhibition of T cells by CTLA-4   总被引:4,自引:0,他引:4  
CTLA-4 is an inhibitory molecule that regulates T cell expansion and differentiation. CTLA-4 binding to B7-1/B7-2 is believed to be crucial for its inhibitory signal both by competing for CD28 binding to the same ligands and aggregating CTLA-4 to deliver negative signals. In this study, we demonstrate that B7 binding is not essential for CTLA-4 activity. CTLA-4 knockout T cells are hyperresponsive compared with wild-type T cells in B7-free settings. Expression of a B7-nonbinding CTLA-4 mutant inhibited T cell proliferation, cytokine production, and TCR-mediated ERK activation in otherwise CTLA-4-deficient T cells. Finally, transgenic expression of the ligand-nonbinding CTLA-4 mutant delayed the lethal lymphoproliferation observed in CTLA-4-deficient mice. These results suggest that ligand binding is not essential for the CTLA-4 function and supports an essential role for CTLA-4 signaling during T cell activation.  相似文献   

7.
CTLA-4.Fas ligand (CTLA-4.FasL), a paradigmatic 'trans signal converter protein (TSCP)', can attach to APC (via CTLA-4 binding to B7) and direct intercellular inhibitory signals to responding T cells (via FasL binding to Fas receptor), converting an activating APC-to-T cell signal into an inhibitory one. Our previous studies established that CTLA-4.FasL inhibits human primary mixed lymphocyte reactions (MLR) and induces alloantigen-specific hyporesponsiveness ex vivo. The present study extends this to an in vivo context. Using splenocytes from MHC-mismatched C57BL/6 and Balb/c mice, we demonstrated that his(6)CTLA-4.FasL, effectively inhibits murine MLR. Moving in vivo, we demonstrated that subcutaneously administered his(6)CTLA-4.FasL modulates the in vivo response of infused allogeneic splenocytes. his(6)CTLA-4.FasL reduces the number of cells in each cell division, and increases the percentage of dead cells in each division. These findings are consistent with an antigen-induced cell death of the alloreactive cells, and bolsters recombinant TCSP promise as a therapeutic for transplantation diseases.  相似文献   

8.
CTLA-4 (CD152) is actively involved in down-regulating T cell activation and maintaining lymphocyte homeostasis. Our earlier studies showed that targeted engagement of CTLA-4 can down-modulate T cell response and suppress allo- and autoimmune responses. In this study, we report that targeted CTLA-4 engagement can induce immune tolerance to a specific target through selective induction of an Ag-specific CD4(+)CD25(+)CTLA-4(high) regulatory T cell (Treg cell) population. Allogeneic cells coated with anti-CTLA-4 Ab induced immune hyporesponsiveness through suppression of proinflammatory cytokines IFN-gamma and IL-2, and up-regulation of the regulatory cytokines IL-10, TGF-beta1, and IL-4, presumably through the engagement of CTLA-4 on activated T cells. Although rechallenge with alloantigen failed to break the unresponsiveness, a transient recovery from tolerance was observed in the presence of high concentrations of exogenous IL-2, saturating concentrations of neutralizing anti-TGF-beta1 and anti-IL-10 Abs, and blocking anti-CTLA-4 Ab, and upon depletion of CD4(+)CD25(+) Treg cells. The CD4(+)CD25(+)CTLA-4(high) Treg cells from tolerant mice suppressed the effector function of CD25(-) T cells from Ag-primed mice. Adoptive transfer of these Treg cells into Ag-primed mice resulted in a significantly reduced alloantigen-specific response. Further characterization demonstrated that the Treg cells with memory phenotype (CD62L(-)) were more potent in suppressing the alloantigen-specific T cell response. These results strongly support that the targeted engagement of CTLA-4 has therapeutic potential for the prevention of transplant rejection.  相似文献   

9.
The role of CTLA-4 in regulating Th2 differentiation.   总被引:13,自引:0,他引:13  
To examine the role of CTLA-4 in Th cell differentiation, we used two newly generated CTLA-4-deficient (CTLA-4-/-) mouse strains: DO11. 10 CTLA-4-/- mice carrying a class II restricted transgenic TCR specific for OVA, and mice lacking CTLA-4, B7.1 and B7.2 (CTLA-4-/- B7.1/B7.2-/- ). When purified naive CD4+ DO11.10 T cells from CTLA-4-/- and wild-type mice were primed and restimulated in vitro with peptide Ag, CTLA-4-/- DO11.10 T cells developed into Th2 cells, whereas wild-type DO11.10 T cells developed into Th1 cells. Similarly, when CTLA-4-/- CD4+ T cells from mice lacking CTLA-4, B7. 1, and B7.2 were stimulated in vitro with anti-CD3 Ab and wild-type APC, these CTLA-4-/- CD4+ T cells produced IL-4 even during the primary stimulation, whereas CD4+ cells from B7.1/B7.2-/- mice did not produce IL-4. Upon secondary stimulation, CD4+ T cells from CTLA-4-/- B7.1/B7.2-/- mice secreted high levels of IL-4, whereas CD4+ T cells from B7.1/B7.2-/- mice produced IFN-gamma. In contrast to the effects on CD4+ Th differentiation, the absence of CTLA-4 resulted in only a modest effect on T cell proliferation, and increased proliferation of CTLA-4-/- CD4+ T cells was seen only during secondary stimulation in vitro. Administration of a stimulatory anti-CD28 Ab in vivo induced IL-4 production in CTLA-4-/- B7.1/B7.2-/- but not wild-type mice. These studies demonstrate that CTLA-4 is a critical and potent inhibitor of Th2 differentiation. Thus, the B7-CD28/CTLA-4 pathway plays a critical role in regulating Th2 differentiation in two ways: CD28 promotes Th2 differentiation while CTLA-4 limits Th2 differentiation.  相似文献   

10.
CD28-B7 interaction plays a critical costimulatory role in inducing T cell activation, while CTLA-4-B7 interaction provides a negative signal that is essential in immune homeostasis. Transfer of CD45RB(high)CD4(+) T cells from syngeneic mice induces transmural colon inflammation in SCID recipients. This adoptive transfer model was used to investigate the contribution of B7-CD28/CTLA-4 interactions to the control of intestinal inflammation. CD45RB(high)CD4(+) cells from CD28(-/-) mice failed to induce mucosal inflammation in SCID recipients. Administration of anti-B7.1 (but not anti-B7.2) after transfer of wild-type CD45RB(high)CD4(+) cells also prevented wasting disease with colitis, abrogated leukocyte infiltration, and reduced production of proinflammatory cytokines IL-2 and IFN-gamma by lamina propria CD4(+) cells. In contrast, anti-CTLA-4 treatment led to deterioration of disease, to more severe inflammation, and to enhanced production of proinflammatory cytokines. Of note, CD25(+)CD4(+) cells from CD28(-/-) mice similar to those from the wild-type mice were efficient to prevent intestinal mucosal inflammation induced by the wild-type CD45RB(high) cells. The inhibitory functions of these regulatory T cells were effectively blocked by anti-CTLA-4. These data show that the B7-CD28 costimulatory pathway is required for induction of effector T cells and for intestinal mucosal inflammation, while the regulatory T cells function in a CD28-independent way. CTLA-4 signaling plays a key role in maintaining mucosal lymphocyte tolerance, most likely by activating the regulatory T cells.  相似文献   

11.
Structural analysis of CTLA-4 function in vivo   总被引:17,自引:0,他引:17  
CTLA-4-mediated inhibition of T cell activation may be accomplished by competition for ligands and/or by signals mediated through the intracellular domain. Studies have implicated Tyr201 in the cytoplasmic domain of CTLA-4 in regulating CTLA-4 signal transduction and intracellular trafficking. To investigate the mechanism of CTLA-4 function in vivo, transgenes encoding wild-type CTLA-4 (FL), a mutant lacking the cytoplasmic domain of CTLA-4 (DeltaCTLA-4 tail), or a CTLA-4 Tyr201 mutant (Y201V) were introduced into CTLA-4-deficient mice. CTLA-4-/- mice display an autoimmune lymphoproliferative disorder resulting in tissue destruction and early death. When either the FL or the Y201V transgene was bred into CTLA-4-/- animals, a complete rescue from lymphoproliferation and autoimmunity was observed. In contrast, CTLA-4-/- mice expressing the DeltaCTLA-4 tail transgene were long lived with no evidence of multiorgan lymphocytic infiltration, but exhibited lymphadenopathy and accumulated large numbers of activated T cells. Furthermore, these animals displayed a Th2-biased phenotype which conferred susceptibility to Leishmania infection. These results indicate that the inhibitory effect of CTLA-4 is mediated in part through the ability of the extracellular domain to compete for ligands. The cytoplasmic domain of CTLA-4, however, is required for complete inhibitory function of the receptor and for regulation of Th cell differentiation in vivo.  相似文献   

12.
Mice lacking CTLA-4 die at an age of 2-3 wk due to massive lymphoproliferation, leading to lymphocytic infiltration and destruction of major organs. The onset of the lymphoproliferative disease can be delayed by treatment with murine CTLA4Ig (mCTLA4Ig), starting day 12 after birth. In this study, we have characterized the T cells present in CTLA-4-deficient mice before and after mCTLA4Ig treatment. The T cells present in CTLA-4-deficient mice express the activation markers, CD69 and IL-2R; down-regulate the lymphoid homing receptor, CD62L; proliferate spontaneously in vitro and cannot be costimulated with anti-CD28 mAb consistent with a hyperactivated state. The T cells from CTLA-4-deficient mice survive longer in culture correlating with higher expression of the survival factor, Bcl-xL, in these cells. Most significantly, the CD4+ T cell subset present in CTLA-4-deficient mice secretes high levels of IL-4 and IL-5 upon TCR activation. Treatment of CTLA-4-deficient mice treated with mCTLA4Ig reverses the activation and hyperproliferative phenotype of the CTLA-4-deficient T cells and restores the costimulatory activity of anti-CD28 mAb. Furthermore, T cells from mCTLA4Ig-treated mice are not skewed toward a Th2 cytokine phenotype. Thus, CTLA-4 regulates CD28-dependent peripheral activation of CD4+ T cells. This process results in apoptosis-resistant, CD4+ T cells with a predominantly Th2 phenotype that may be involved in the lethal phenotype in these animals.  相似文献   

13.
Cytokine receptor signaling and costimulatory receptor signaling play distinct roles in T cell activation. Nonetheless, deficiencies in either of these pathways lead to seemingly similar phenotypes of impaired T cell homeostasis. A dramatic expansion of CD4(+) peripheral T cells with an activated phenotype has been observed in both Janus kinase (Jak) 3-deficient and CTLA-4-deficient mice. Despite these similarities, the mechanisms driving T cell expansion may be distinct. To address this possibility, we examined the TCR repertoire of peripheral T cells in Jak3(-/-) and CTLA-4(-/-) mice using complementarity-determining region 3 spectratype analysis. Interestingly, a restricted and highly biased TCR repertoire was observed in the Jak3(-/-) T cells, strongly supporting a role for foreign Ag in the activation and expansion of these cells. In contrast, CTLA-4(-/-) T cells had a diverse and unbiased TCR repertoire, suggestive of a universal, Ag-independent mechanism of activation and expansion. These findings provide insight into the diverse mechanisms controlling T cell homeostasis.  相似文献   

14.
Induction of T cell anergy in the absence of CTLA-4/B7 interaction   总被引:11,自引:0,他引:11  
Immunologic tolerance in T lymphocytes is maintained through both thymic and peripheral contributions. One peripheral tolerance mechanism is the induction of T cell anergy, a form of nonresponsiveness resulting from incomplete T cell activation, such as stimulation through the TCR in the absence of costimulation. Recent reports have suggested that engagement of the inhibitory receptor CTLA-4 by its B7 ligand is critical for the initiation of anergy. We tested the importance of CTLA-4 in anergy induction in primary T cells with an in vitro anergy system. Using both CTLA-4/B7-blocking agents and CTLA-4-deficient T cells, we found that T cell anergy can be established in the absence of CTLA-4 expression and/or function. Even in the absence of CTLA-4 signal transduction, T cells activated solely through TCR ligation lose the ability to proliferate as a result of autocrine IL-2 production upon subsequent receptor engagement. Thus, CTLA-4 signaling is not required for the development of T cell anergy.  相似文献   

15.
CTLA-4 is known as a central inhibitor of T cell responses. It terminates T cell activation and proliferation and induces resistance against activation induced cell death. However, its impact on memory formation of adaptive immune responses is still unknown. In this study, we demonstrate that although anti-CTLA-4 mAb treatment during primary immunization of mice initially enhances the number of IFN-γ-producing CD4(+) T cells, it does not affect the size of the memory pool. Interestingly, we find that the CTLA-4 blockade modulates the quality of the memory pool: it decreases the amount of specialized "multifunctional" memory CD4(+) T cells coproducing IFN-γ, TNF-α, and IL-2 in response to Ag. The reduction of these cells causes an immense decrease of IFN-γ-producing T cells after in vivo antigenic rechallenge. Chimeric mice expressing CTLA-4-competent and -deficient cells unmask, which these CTLA-4-driven mechanisms are mediated CD4(+) T cell nonautonomously. In addition, the depletion of CD25(+) T cells prior to the generation of Ag-specific memory cells reveals that the constitutively CTLA-4-expressing natural regulatory T cells determine the quality of memory CD4(+) T cells. Taken together, these results indicate that although the inhibitory molecule CTLA-4 damps the primary immune response, its engagement positively regulates the formation of a high-quality memory pool equipped with multifunctional CD4(+) T cells capable of mounting a robust response to Ag rechallenge.  相似文献   

16.
IL-2-deficient mice develop a lymphoproliferative and autoimmune disease characterized by autoimmune hemolytic anemia (AHA) and inflammatory bowel disease. We have previously reported that IL-2 is necessary for optimal up-regulation of CTLA-4, an inducible negative regulator of T cell activation. In this study, we have tested the hypothesis that reduced expression of CTLA-4 in IL-2-deficient T cells contributes to the pathogenesis of disease in IL-2-deficient mice. Expression of CTLA-4 as a transgene completely prevented lymphoaccumulation and AHA in IL-2-deficient mice. The normalization of T cell numbers was due to inhibition of expansion of conventional CD4+CD25- T cells rather than to rescue of the numbers or function of CD4+CD25+ regulatory T cells, suggesting that CTLA-4 expression on conventional T cells plays a role in maintaining normal T cell homeostasis. In addition, the inhibitory effect of the CTLA-4 transgene on T cell expansion was at least in part independent of CD28 expression. Our results suggest that deficient CTLA-4 expression on conventional T cells contributes to the pathophysiology of the lymphoproliferative disease and AHA in IL-2-deficient mice. Thus, restoring CTLA-4 expression in T cells may be an attractive strategy to control clinical autoimmune diseases in which CTLA-4 expression is reduced.  相似文献   

17.
Primary murine Th1 and Th2 cells differ in the organization of the immunological synapse, with Th1 cells, but not Th2 cells, clustering signaling molecules at the T cell/B cell synapse site. We sought to determine whether differential costimulatory signals could account for the differences observed. We found that Th2 cells express higher levels of CTLA-4 than Th1 cells, and demonstrated that Th2 cells lacking CTLA-4 are now able to cluster the TCR with the same frequency as Th1 cells. Furthermore, reconstitution of CTLA-4 into CTLA-4-deficient Th2 cells, or into Th1 cells, inhibits the clustering of the TCR. We have also shown that Th2 cells, but not Th1 cells, show variations in the organization of the immunological synapse depending on levels of expression of CD80/CD86 on the APC. These studies demonstrate a unique role for CTLA-4 as a critical regulator of Th2 cells and the immunological synapse.  相似文献   

18.
CTLA-4 is expressed on the surface of activated T cells and negatively regulates T cell activation. Because a low-level expression of CTLA-4 on the cell surface is sufficient to induce negative signals in T cells, the surface expression of CTLA-4 is strictly regulated. We previously demonstrated that the association of CTLA-4 with the clathrin-associated adaptor complex AP-2 induces internalization of CTLA-4 and keeps the surface expression low. However, the mechanism to induce high expression on the cell surface upon stimulation has not yet been clarified. To address this, we investigated the intracellular dynamics of CTLA-4 by analyzing its localization and trafficking in wild-type and mutant CTLA-4-transfected Th1 clones. CTLA-4 is accumulated in intracellular granules, which we identified as lysosomes. CTLA-4 is degraded in lysosomes in a short period, and the degradation process may serve as one of the mechanisms to regulate CTLA-4 expression. Upon TCR stimulation, CTLA-4-containing lysosomes are secreted as proven by the secretion of cathepsin D and beta-hexosaminidase in parallel with the increase of surface expression of CTLA-4 and lysosomal glycoprotein 85, a lysosomal marker. These results suggest that the cell surface expression of CTLA-4 is up-regulated upon stimulation by utilizing a mechanism of secretory lysosomes in CD4(+)T cells.  相似文献   

19.
Hapten sensitization through UV-exposed skin induces hapten-specific tolerance that can be adoptively transferred by injecting T lymphocytes into naive recipients. The exact phenotype of T cells responsible for inhibiting the immune response and their mode of action remain unclear. Evidence exists that CTLA-4 negatively regulates T cell activation. We addressed whether CTLA-4 is involved in the transfer of UV-induced tolerance. Injection of lymph node cells from mice that were sensitized with dinitrofluorobenzene (DNFB) through UV-irradiated skin inhibited induction of contact hypersensitivity against DNFB in the recipient animals. When CTLA-4+ cells were depleted, transfer of suppression was lost. Likewise, significantly fewer lymphocytes enriched for CTLA-4+ cells were necessary to transfer suppression than unfractionated cells. Expression of CTLA-4 appears to be functionally relevant, since in vivo injection of a blocking anti-CTLA-4 Ab was able to break UV-induced tolerance and inhibited transfer of suppression. Upon stimulation with dendritic cells in the presence of the water-soluble DNFB analogue, DNBS, CTLA-4+ T cells from DNFB-tolerized mice secreted high levels of IL-10, TGF-beta, and IFN-gamma; low levels of IL-2; and no IL-4, resembling the cytokine pattern of T regulatory 1 cells. Ab blocking of CTLA-4 resulted in inhibition of IL-10 release. Accordingly, transfer of tolerance was not observed when recipients were treated with an anti-IL-10 Ab. Hence we propose that T cells, possibly of the T regulatory 1 type, transfer UV-mediated suppression through the release of IL-10. Activation of CTLA-4 appears to be important in this process.  相似文献   

20.
Cytolytic T lymphocyte-associated Ag-4 (CD152) is a negatively regulating molecule, which is primarily expressed on T cells following their activation. In this study, we have examined the role of CTLA-4 expression in experimental blood-stage malaria. Similar to human malaria, CTLA-4 is expressed on CD4(+) T cells of C57BL/6 mice after infection with Plasmodium berghei. A kinetic analysis revealed that CTLA-4 expression was increased on day 5 postinfection and reached a peak on day 9 postinfection, when almost 10% of splenic CD4(+) T cells expressed CTLA-4. Blockade of CTLA-4 in vivo by a specific mAb and subsequent challenge with P. berghei caused neurological signs reminiscent of murine cerebral malaria and earlier death. Histologic examination of brain sections from anti-CTLA-4-treated mice revealed pathologic changes such as hemorrhages and edema, which were absent in control mice. Furthermore, treatment with anti-CTLA-4 also reversed the extensive loss of CD4(+) T cells and the suppressed T cell response occurring during blood-stage malaria. Our data suggest that CTLA-4 expression prevents immune pathology by restricting T cell activation during malaria. They also indicate that the development of cerebral malaria is mediated by a failure to down-regulate T cell activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号