首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to show that the newly developed K-string composition distance method, based on counting oligopeptide frequencies, for inferring phylogenetic relations of prokaryotes works equally well without requiring the whole proteome data, we used all ribosomal proteins and the set of aminoacyl tRNA synthetases for each species. The latter group has been known to yield inconsistent trees if used individually. Our trees are obtained without making any sequence alignment. Altogether 16 Archaea, 105 Bacteria and 2 Eucarya are represented on the tree. Most of the lower branchings agree well with the latest, 2003, Outline of the second edition of the Bergey’s Manual of Systematic Bacteriology and the trees also suggest some relationships among higher taxa.  相似文献   

2.
The data on 31–37 allozyme loci in 21 species of nine salmonid genera are used for phylogenetic analysis by seven distance methods and several variants of cladistic analysis. Monophyletic origin for all genera and three sub-families of the Salmonidae is corroborated. The closest phylogenetic relationships are characteristic of Parasalmo and Oncorhynchus (bootstrap support is 88–99%), Brachymystax and Hucho (68–97%), and the clade ( Brachymystax + Hucho )+ Salmo (up to 85%). The patterns of phylogenetic relationships in the group Salmo-Parasalmo-Oncorhynchus are analogous to those in the group Parahucho-Hucho-Brachymystax. The position of Parahucho in phylogenetic trees of the Salmoninae is extremely unstable, although it is most likely associated with the clade ( Brachymystax + Hucho)+Salmo ) or Salvelinus. When using the out group analysis, Salvelinus appears as the earliest branch of the Salmoninae tree, whereas if the molecular clock is assumed, the basal position is occupied by Oncorhynchus. However, the latter genus is probably characterized by a substantially increased rate of molecular evolution.  相似文献   

3.
DNA studies of 23 taxa (20 platyhelminths, 1 nemertean, Homo and Artemia) and electron-microscopic studies of the protonephridia of many platyhelminths (supported by some additional ultrastructural data) have led to the following conclusions: the Neodermata are monophyletic; Temnocephalida and Dalyelliida form one clade and are not the primitive sister group of the Neodermata; Gyrocotylidea, Amphilinidea and Eucestoda form one monophylum; Pterastericolidae and Umagillidae are dalyelliids and not the sister group of the Neodermata; and Proseriata are unlikely to be closely related with the Tricladida. A large taxon consisting of the Proseriata and some other turbellarians may represent the sister group of the Neodermata.  相似文献   

4.
真核生物系统发育和多样性概观   总被引:1,自引:0,他引:1  
Our understanding of eukaryote biology is dominated by the study of land plants, animals and fungi. However, these are only three isolated fragments of the full diversity of extant eukaryotes. The majority of eukaryotes, in terms of major taxa and probably also sheer numbers of cells, consists of exclusively or predominantly unicellular lineages. A surprising number of these lineages are poorly characterized. Nonetheless, they are fundamental to our understanding of eukaryote biology and the underlying forces that shaped it. This article consists of an overview of the current state of our understanding of the eukaryote tree. This includes the identity of the major groups of eukaryotes, some of their important, defining or simply interesting features and the proposed relationships of these groups to each other.  相似文献   

5.
The existing taxonomy of Euryalida, one of the two orders of the Ophiuroidea (Echinodermata), is uncertain and characterized by controversial delimitation of taxonomic ranks from genus to family-level. Their phylogeny was not studied in detail until now. We investigated a dataset of sequence from a mitochondrial gene (16S rRNA) and two nucleic genes (18S rRNA and 28S rRNA) for 49 euryalid ophiuroids and four outgroup species from the order Ophiurida.The monophyly of the order Euryalida was supported as was the monophyly of Asteronychidae, Gorgonocephalidae and an Asteroschematidae + Euryalidae clade. However, the group currently known as the Asteroschematidae was paraphyletic with respect to the Euryalidae. The Asteroschematidae + Euryalidae clade, which we recognise as an enlarged Euryalidae, contains three natural groups: the Asteroschematinae (Asteroschema and Ophiocreas), a new subfamily Astrocharinae (Astrocharis) and the Euryalinae with remaining genera. These subfamilies can be distinguished by internal ossicle morphology.  相似文献   

6.
The first comprehensive cladistic analysis of Reduviidae, the assassin bugs, based on molecular data is presented and discussed in the context of a recently-published morphological analysis. Assassin bugs are essential components of ecosystems, but also important in agriculture and medicine. Sampling included 94 taxa (89 Reduviidae, 5 outgroups) in 15 subfamilies and 24 tribes of Reduviidae and is based on 3300 base pairs of mitochondrial (16S) and nuclear (18S, 28SD2, 28SD3-5) ribosomal DNA. Partitions of the dataset were aligned using different algorithms implemented in MAFFT and the combined dataset was analyzed using parsimony, partitioned maximum likelihood and partitioned Bayesian criteria. Clades recovered in all analyses, independent of alignment and analytical method, comprise: Cimicomorpha and Reduviidae; Hammacerinae; Harpactorinae; Apiomerini; Peiratinae; Phymatinae; Salyavatinae; Triatominae; Phymatinae + Holoptilinae; the higher Reduviidae (Reduviidae excluding Hammacerinae and the Phymatine Complex); Ectrichodiinae + Tribelocephalinae; (Triatominae + Zelurus) + Stenopodainae. Hammacerinae are rejected as sister group to all remaining Reduviidae in all analyses, as is the monophyly of Reduviinae, Emesinae and Harpactorini. High support values for Triatominae imply that blood-feeding has evolved only once within Reduviidae. Stenopodainae and part of Reduviinae are discussed as close relatives to Triatominae.  相似文献   

7.
The phylogenetic relationships of Osmanthus Lour.were investigated using the nuclear ribosomal internal transcribed spacer(ITS)regions and non-coding chloroplast regions(psbA-trnH,trnL-F).The two datasets support the conclusion that Osmanthus is polyphyletic.with some species of the subtribe Oleinae nested within Osmanthus.Osmanthus didymopetalus P S.Green is nested within the clade formed by species of section Osmanthus in two trees.Osmanthus attenuatus P.S.Green.O.Funnanensis P.S.Green,and O gracilinervis R.L.Lu of traditional section Osmanthus are clearly divergent from other accessions,and do not form a monophyletic group with other Osmanthus accessions.Osmanthus marginatus Hemsl.is embedded in the clade formed by species of section Osmanthus in the ITS tree.In cpDNA trees all species of section Osmanthus are placed in the large clade and all species of section Leiolea formed a group.The taxonomic incongruence among trees for ITS and cpDNA indicate hybridization.as introgression may have occurred among some species of sections Osmanthus and Leiolea.Phylogeny of Osmanthus is discussed in light of molecular and morphological data,and a revised infrageneric classification with three sections(Leiolea,Siphosmanthu,and Osmanthus)is presented.The section Linocieroides is abandoned and united with section Osmanthus.  相似文献   

8.
The internal transcribed spacer (ITS1, 5.8S rDNA, and ITS2) region of nuclear ribosomal DNA (nrDNA) was sequenced from 53 species, which represent most of the living species diversity in the genus Phalaenopsis (Orchidaceae). A phylogeny was developed for the genus based on the neighbor-joining and maximum parsimony analyses of molecular data. Results of these analyses provided support for the monophyly of the genus Phalaenopsis and concurred in that the genera Doritis and Kingidium should be treated as being parts of the genus Phalaenopsis as suggested by Christenson (2001). Within the genus Phalaenopsis, neither subgenera Aphyllae nor Parishianae were monophyletic, and they were highly clustered with subgenus Proboscidioides plus sections Esmeralda and Deliciosae of subgenus Phalaenopsis based on ITS data. Those species also have the same characters of morphology of four pollinia and similar biogeographies. Furthermore, neither subgenus Phalaenopsis nor Polychilos was monophyletic. Within the subgenus Phalaenopsis, only section Phalaenopsis was highly supported as being monophyletic. As for the subgenus Polychilos, only section Polychilos was moderately supported as being monophyletic. In conclusion, the present molecular data obtained from the ITS sequence of nrDNA of the genus Phalaenopsis provide valuable information for elucidating the phylogeny of this genus.  相似文献   

9.
使用杂鳞库蚊复组COI部分序列和ITS序列构建分子发育树,并基于COI序列计算该复组种内和种间的Kimura-two-Parameter(K2P)距离,探讨环带库蚊的分类地位和杂鳞库蚊复组内各亲缘种的系统发育关系。环带库蚊和杂鳞库蚊的种间K2P距离为0.24%-0.72%,支持"环带库蚊是杂鳞库蚊的同物异名"这一观点;杂鳞库蚊(环带库蚊)和伪杂鳞库蚊、三带喙库蚊的种间K2P距离为4.41%-9.68%,同时分子系统树显示各个种分别聚类,互为姐妹群,再次证明三者互为独立的种;环带库蚊和杂鳞库蚊聚类的分支最接近树的端部,三带喙库蚊分支最接近树的基部,提示三带喙库蚊最早发生分化,而杂鳞库蚊(环带库蚊)最晚发生分化;采集自日本的三带喙库蚊种内K2P距离为0.48%-2.68%,而它们与采集自中国、印度的该种K2P距离为4.17%-6.76%,日本产三带喙库蚊聚集成一支,并与中印产地的聚类分支互为姐妹群,这些结果提示日本的三带喙库蚊有种下,甚至种级分化的趋势。  相似文献   

10.
It has become evident that the process of protein synthesis is performed by many cellular polypeptides acting in concert within the structural confines of protein complexes. In multicellular eukaryotes, one of these assemblies is a multienzyme complex composed of eight proteins that have aminoacyl-tRNA synthetase activities as well as three non-synthetase proteins (p43, p38, and p18) with diverse functions. This study uses electron microscopy and three-dimensional reconstruction to explore the arrangement of proteins and tRNA substrates within this "core" multisynthetase complex. Binding of unfractionated tRNA establishes that these molecules are widely distributed on the exterior of the structure. Binding of gold-labeled tRNA(Leu) places leucyl-tRNA synthetase and the bifunctional glutamyl-/prolyl-tRNA synthetase at the base of this asymmetric "V"-shaped particle. A stable cell line has been produced that incorporates hexahistidine-labeled p43 into the multisynthetase complex. Using a gold-labeled nickel-nitrilotriacetic acid probe, the polypeptides of the p43 dimer have been located along one face of the particle. The results of this and previous studies are combined into an initial three-dimensional working model of the multisynthetase complex. This is the first conceptualization of how the protein constituents and tRNA substrates are arrayed within the structural confines of this multiprotein assembly.  相似文献   

11.
大蚊属Tipula Linnaeus,1758是大蚊科中种类最多的属,目前其单系性尚未得到全面验证.此外,长角大蚊亚属Tipula (Sivatipula) Alexander,1964因其极长的触角以及独有的精子泵结构,明显不同于大蚊属其他亚属,使其亚属的分类地位存在争议.本研究基于COI序列对19个大蚊属物种及5个其他属物种进行了系统发育分析,并计算了物种间的遗传距离.研究结果表明:(1)邻接树(NJ)和最大似然树(ML)均显示长角大蚊亚属与大蚊属其他亚属未形成单系,大蚊属的单系性没有得到支持;(2)基于遗传距离和系统发育分析并结合形态信息,结果显示长角大蚊亚属独立于大蚊属内其他亚属,应将其提升为属级分类单元.  相似文献   

12.
Summary Available sequences that correspond to the E. coli ribosomal proteins L11, L1, L10, and L12 from eubacteria, archaebacteria, and eukaryotes have been aligned. The alignments were analyzed qualitatively for shared structural features and for conservation of deletions or insertions. The alignments were further subjected to quantitative phylogenetic analysis, and the amino acid identity between selected pairs of sequences was calculated. In general, eubacteria, archaebacteria, and eukaryotes each form coherent and well-resolved nonoverlapping phylogenetic domains. The degree of diversity of the four proteins between the three groups is not uniform. For L11, the eubacterial and archaebacterial proteins are very similar whereas the eukaryotic L11 is clearly less similar. In contrast, in the case of the L12 proteins and to a lesser extent the L10 proteins, the archaebacterial and eukaryotic proteins are similar whereas the eubacterial proteins are different. The eukaryotic L1 equivalent protein has yet to be identified. If the root of the universal tree is near or within the eubacterial domain, our ribosomal protein-based phylogenies indicate that archaebacteria are monophyletic. The eukaryotic lineage appears to originate either near or within the archaebacterial domain. Correspondence to: P. Dennis  相似文献   

13.
利用叶绿体DNA trnL-F序列初步探讨菊科风毛菊属的系统发育   总被引:14,自引:0,他引:14  
风毛菊属Saussurea DC.是菊科物种分化十分剧烈和分类处理十分困难的一个属。该属的单系起源性质、属下分类系统以及一些独特形态物种的系统位置尚不清楚,有待进一步验证。本文测定了代表该属5个亚属37种植物43个样品和川木香属Dolomiaea DC.的1种样品的叶绿体DNA trnL-F序列,并调取菜蓟族Cardueae Cass.与风毛菊属具有一定亲缘关系的13属的该序列,一起进行了分支分析,重点验证该属的属下形态分类系统以及形态特殊、青藏高原地区特有的雪兔子亚属subgen. Eriocoryne  相似文献   

14.
Labyrinthulids and thraustochytrids are unicellular heterotrophs, formerly considered as fungi, but presently are recognized as members in the stramenopiles of the kingdom Protista sensu lato. We determined the 18S ribosomal RNA gene sequences of 14 strains from different species of the six genera and analyzed the molecular phylogenetic relationships. The results conflict with the current classification based on morphology, at the genus and species levels. These organisms are separated, based on signature sequences and unique inserted sequences, into two major groups, which were named the labyrinthulid phylogenetic group and the thraustochytrid phylogenetic group. Although these groupings are in disagreement with many conventional taxonomic characters, they correlated better with the sugar composition of the cell wall. Thus, the currently used taxonomic criteria need serious reconsideration.  相似文献   

15.
Ecologists are increasingly making use of molecular phylogenies, especially in the fields of community ecology and conservation. However, these phylogenies are often used without full appreciation of their underlying assumptions and uncertainties. A frequent practice in ecological studies is inferring a phylogeny with molecular data from taxa only within the community of interest. These “inferred community phylogenies” are inherently biased in their taxon sampling. Despite the importance of comprehensive sampling in constructing phylogenies, the implications of using inferred community phylogenies in ecological studies have not been examined. Here, we evaluate how taxon sampling affects the quantification and comparison of community phylogenetic diversity using both simulated and empirical data sets. We demonstrate that inferred community trees greatly underestimate phylogenetic diversity and that the probability of incorrectly ranking community diversity can reach up to 25%, depending on the dating methods employed. We argue that to reach reliable conclusions, ecological studies must improve their taxon sampling and generate the best phylogeny possible.  相似文献   

16.
Abstract The phylogenetic relationships of Osmanthus Lour. were investigated using the nuclear ribosomal internal transcribed spacer (ITS) regions and non‐coding chloroplast regions (psbA‐trnH, trnL‐F). The two datasets support the conclusion that Osmanthus is polyphyletic, with some species of the subtribe Oleinae nested within Osmanthus. Osmanthus didymopetalus P. S. Green is nested within the clade formed by species of section Osmanthus in two trees. Osmanthus attenuatus P. S. Green, O. yunnanensis P. S. Green, and O. gracilinervis R. L. Lu of traditional section Osmanthus are clearly divergent from other accessions, and do not form a monophyletic group with other Osmanthus accessions. Osmanthus marginatus Hemsl. is embedded in the clade formed by species of section Osmanthus in the ITS tree. In cpDNA trees all species of section Osmanthus are placed in the large clade and all species of section Leiolea formed a group. The taxonomic incongruence among trees for ITS and cpDNA indicate hybridization, as introgression may have occurred among some species of sections Osmanthus and Leiolea. Phylogeny of Osmanthus is discussed in light of molecular and morphological data, and a revised infrageneric classification with three sections (Leiolea, Siphosmanthu, and Osmanthus) is presented. The section Linocieroides is abandoned and united with section Osmanthus.  相似文献   

17.
Using our BLAST-based procedure RiPE (Retrieval-induced Phylogeny Environment), which automates the evolutionary analysis of a protein family, we assembled a set of 1138 ABC protein components [adenosine triphosphate (ATP)-binding cassette and transmembrane domain] from the protein data sets of 20 model organisms and subjected them to phylogenetic and functional analysis. For maximum speed, we based the alignment directly on a homology search with a profile of all known human ABC proteins and used neighbor-joining tree estimation. All but 11 sequences from Homo sapiens, Arabidopsis thaliana, Drosophila melanogaster, and Saccharomyces cerevisiae were placed into the correct subtree/subfamily, reproducing published classifications of the individual organisms. By following a simple "function transfer rule", our comparative phylogenetic analysis successfully predicted the known function of human ABC proteins in 19 of 22 cases. Three functional predictions did not correspond, and 10 were novel. Predictions based on BLAST alone were inferior in five cases and superior in two. Bacterial sequences were placed close to the root of most subtrees. This placement coincides with domain architecture, suggesting an early diversification of the ABC family before the kingdoms split apart. Our approach can, in principle, be used to annotate any protein family of any organism included in the study.  相似文献   

18.
Phylogenetic profiles have been widely applied in functional genomics research, especially in the prediction of protein-protein interactions (PPIs). A key issue in phylogenetic profiling is how to effectively select reference organisms from the available hundreds of genomes. In this study, we performed an assessment of reference organism selection based on the genetic distance between the target organism and 167 reference organisms. We found that inclusion of reference organisms from all distance levels had better performance in the prediction of PPIs than that at each distance level. The PPI prediction reached an optimal level when 70% of the reference organisms at all distance levels were selected; and this performance was similar to that in the optimal condition based on the taxonomy tree in our previous study. Because measurement of genetic distance is direct and simple compared to the topology of the taxonomy tree, we suggest selecting reference organisms based on genetic distance in the construction of phylogenetic profiles.  相似文献   

19.
基于28S rRNA D2序列的内茧蜂亚科的分子系统发育   总被引:4,自引:0,他引:4  
首次利用同源28S rRNA D2基因序列对内茧蜂亚科Rogadinae (昆虫纲Insecta:膜翅目Hymenoptera:茧蜂科Braconidae)进行了分子系统学研究。本研究从95%~100%乙醇浸渍保存的标本中提取基因组DNA并扩增了10种内群种类和5种外群种类的28S rDNA D2片段并测序(GenBank序列号AY167645-AY167659),利用BLAST搜索相关的同源序列, 采用了GenBank中13个种类的28S rRNA D2同源序列,然后据此进行分子分析。利用3个外群(共8个种类)和3种建树方法 (距离邻近法distance based neighbor joining, NJ; 最大俭约法maximum parsimony, MP; 和最大似然法maximum likelihood, ML)分析了内茧蜂亚科内的分子系统发育关系。结果表明,由分子数据产生的不同的分子系统树均显示内茧蜂亚科是一个单系群。内茧蜂亚科内依据形态和生物学特征的分群(族和亚族)及其系统发育关系得到部分支持。NJ、MP和ML分析结果均表明内茧蜂族Rogadini不是一个单系,而是一个并系,其余3族则得到不同程度的支持。内茧蜂族可分成2个分支:“脊茧蜂属Aleiodes+弓脉茧蜂属Arcaleiodes”和“沟内茧蜂属Canalirogas+锥齿茧蜂属Conspinaria+刺茧蜂属Spinaria+内茧蜂属Rogas”,二者不是姐妹群。脊茧蜂属Aleiodes和弓脉茧蜂属Arcaleiodes始终是姐妹群。脊茧蜂属Aleiodes是一个单系,并可分成2个姐妹分支,这与依据形态和生物学特征的亚属分群相一致。弓脉茧蜂属Arcaleiodes Chen et He,1991是一个独立的属。分支“沟内茧蜂属Canalirogas+锥齿茧蜂属Conspinaria+刺茧蜂属Spinaria+内茧蜂属Rogas”的单系性仅得到部分分子数据的支持;因形态特异(腹部成甲壳状)而列为亚族级的刺茧蜂属Spinaria,分子分析没有证实这一点。横纹茧蜂族Clinocentrini是个单系,并在内茧蜂亚科的系统发育中处于基部(原始)的位置。我们研究结果还表明,阔跗茧蜂属Yelicones和潜蛾茧蜂属Stiropius相对应的阔跗茧蜂族Yeliconini和潜蛾茧蜂族Stiropiini为2个独立的分支, 与形态和生物学的结果一致,但它们在内茧蜂亚科的系统发育的位置不明,有待今后进一步研究。  相似文献   

20.
基于ITS序列的栓菌属部分种的分子分类初步研究   总被引:2,自引:0,他引:2  
栓菌属 Trametes 的一些近缘种宏观和微观形态学非常相近,传统分类学方法难于对其进行准确分类定位。测定了 34 个分类单元的 ITS(包括 5.8SrDNA)序列,并对得到的 43 个分类单元的 ITS 序列进行系统发生分析,构建了聚类分析树状图。该树状图显示,栓菌属类群与其他属类群明显分开,Trametes versicolor 聚类到一个高支持率的独立分支。形态学上定名为 T. hirsuta 和 T. pubescens 物种聚类到同一高支持率的独立分支,试验分析表明这两个种应视为同一物种。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号