首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The comparative effects of diet supplementation with 10% saturated fat rich in 12:0 and 14:0 fatty acids (coconut oil), without and with 1% added cholesterol, and with 10% unsaturated fat rich in n-3 polyunsaturated fatty acids (menhaden oil) on cholesterol metabolism in neonatal chicks were examined to clarify the different mechanisms of their hyper- and hypolipidemic action. Supplementation of coconut oil produced a significant hypercholesterolemia after 7 days of treatment, with a similar increase in the amount of both free and esterified cholesterol. Supplementation of coconut oil plus cholesterol produced a higher increase of plasma cholesterol levels (approximately two to three times higher than those found with standard diet). However, supplementation of menhaden oil induced a significant decrease in total cholesterol after only 2 weeks of treatment. Levels of plasma triglycerides did not change by coconut oil addition to the diet, but a significant increase was observed after coconut oil plus cholesterol feeding. Menhaden oil produced a transient decrease in plasma triglycerides. Hepatic 3-hydroxy-3-methylglutaryl-CoA reductase activity did not change with coconut oil treatment. However, both coconut oil plus cholesterol and menhaden oil supplemented diets drastically decreased reductase activity after 1 week of dietary manipulation. These results show that different nutrients with the same inhibitory effect on reductase activity produced opposite effects on plasma cholesterol content, suggesting the existence of important differences in the regulatory mechanisms implied in cholesterol biosynthesis and its accumulation in plasma.  相似文献   

2.
Various strategies have been developed to increase the cellular level of (n-3) polyunsaturated fatty acids in animals and humans. In the present study, we investigated the effect of dietary myristic acid, which represents 9% to 12% of fatty acids in milk fat, on the storage of α-linolenic acid and its conversion to highly unsaturated (n-3) fatty acid derivatives. Five isocaloric diets were designed, containing equal amounts of α-linolenic acid (1.3% of dietary fatty acids, i.e. 0.3% of dietary energy) and linoleic acid (7.0% of fatty acids, i.e. 1.5% of energy). Myristic acid was supplied from traces to high levels (0%, 5%, 10%, 20% and 30% of fatty acids, i.e. 0% to 6.6% of energy). To keep the intake of total fat and other saturated fatty acids constant, substitution was made with decreasing levels of oleic acid (76.1% to 35.5% of fatty acids, i.e. 16.7% to 7.8% of energy) that is considered to be neutral in lipid metabolism. After 8 weeks, results on physiological parameters showed that total cholesterol and low-density lipoprotein-cholesterol did not differ in the diets containing 0%, 5% and 10% myristic acid, but were significantly higher in the diet containing 30% myristic acid. In all the tissues, a significant increasing effect of the substitution of oleic acid for myristic acid was shown on the level of both α-linolenic and linoleic acids. Compared with the rats fed the diet containing no myristic acid, docosahexaenoic acid significantly increased in the brain and red blood cells of the rats fed the diet with 30% myristic acid and in the plasma of the rats fed the diet with 20% myristic acid. Arachidonic acid also increased in the brain of the rats fed the diet with 30% myristic acid. By measuring Δ6-desaturase activity, we found a significant increase in the liver of the rats fed the diet containing 10% of myristic acid but no effect at higher levels of myristic acid. These results suggest that an increase in dietary myristic acid may contribute in increasing significantly the tissue storage of α-linolenic acid and the overall bioavailability of (n-3) polyunsaturated fatty acids in the brain, red blood cells and plasma, and that mechanisms other than the single Δ6-desaturase activity are involved in this effect.  相似文献   

3.
This study was designed to investigate the effect of myristic acid on the biosynthesis and metabolism of highly unsaturated fatty acids, when it is supplied in a narrow physiological range in the diet of the rat (0.2-1.2% of total dietary energy). Three experimental diets were designed, containing 22% of total dietary energy as lipids and increasing doses of myristic acid (0.71, 3.00 and 5.57% of total fatty acids). Saturated fat did not exceed 31% of total fat and the C18:3 n-3 amount in each diet was strictly equal (1.6% of total fatty acids). After 7 weeks, the diets had no effect on plasma cholesterol level but greatly modified the liver, plasma and adipose tissue saturated, monounsaturated and polyunsaturated fatty acid profiles. Firstly, daily intakes of myristic acid resulted in a dose-dependent tissue accumulation of myristic acid itself. Palmitic acid was significantly increased in the tissues of the rats fed the higher dose of myristic acid. A dose-response accumulation of tissue C16:1 n-7 as a function of dietary C14:0 was also shown. Secondly, a main finding was that, among n-3 and n-6 polyunsaturated fatty acids, a dose-response accumulation of liver and plasma C20:5 n-3 and C20:3 n-6 (two precursors of eicosanoids) as a function of dietary C14:0 was shown. This result suggests that dietary myristic acid may participate in the regulation of highly unsaturated fatty acid biosynthesis and metabolism.  相似文献   

4.
In order to examine the qualitative effect of different fats and specific fatty acids on plasma lipids and lipoprotein metabolism, six low fat, cholesterol-free diets were fed to young male hamsters (10/group) for a 4-week period. Fat blends were formulated with coconut oil, palm oil, soybean oil, high oleic acid safflower oil, butter, corn oil, and canola oil. Diets contained 13% energy as fat and dietary polyunsaturate/saturate ratios ranged from 0.12 to 1.04, one of which incorporated the American Heart Association-recommended concentrations of saturates, monoenes, and polyenes and another reflected the current American Fat Blend. In three diets the polyunsaturate/monounsaturate/saturate ratio was held constant while only the 12:0, 14:0, and 16:0 were varied. Plasma lipoproteins and apoproteins were assessed in conjunction with the abundance of specific hepatic and intestinal mRNA for the low density lipoproteins (LDL) receptor and various apolipoproteins associated with cholesterol metabolism. The plasma cholesterol response was lowest with the American Heart Association blend and equally elevated by the more saturated, low polyene diets (polyunsaturate/saturate, 0.12-0.38). Replacing 12:0 plus 14:0 from coconut oil with 16:0 as palm oil induced a significant increase in high density lipoprotein (HDL) cholesterol with a trend toward decreased LDL. These shifts in lipoprotein cholesterol were corroborated by measures of the LDL/HDL ratio, the plasma apolipoprotein B/apolipoprotein A1 ratio, and differences in the synthesis of apolipoproteins and the LDL receptor based on estimates of the mRNA for these proteins in the liver and gut, using specific cDNA probes for apolipoprotein A1, apolipoprotein B, apolipoprotein E, and the LDL receptor. Although it has been suggested that dietary polyenes lower total plasma cholesterol, including HDL, and that saturated fat increases both these pools of cholesterol, the current data represents the first evidence that a specific saturated fatty acid, i.e., palmitic acid, may enhance HDL production.  相似文献   

5.
To determine whether diets enriched in monounsaturated or n-3 fatty acids cause a reduction in cholesterol absorption relative to those more enriched in saturated fatty acids, we measured cholesterol absorption in 18 African green monkeys fed diets enriched in lard, oleinate (oleic acid-rich safflower oil), or fish oil at two levels of dietary cholesterol (0.05 vs. 0.77 mg/kcal). All animals were initially challenged with the lard, high cholesterol diet to ascertain their responsiveness to dietary cholesterol. Based on the results of this challenge, low versus high responders were equally distributed in assignation to the low (n = 6) and high (n = 12) cholesterol regimens. Within each level of dietary cholesterol animals consumed all three dietary fats in random sequences during three experimental phases each lasting 9-12 months with a monkey chow washout period between each phase, so that each animal served as its own control. During each dietary phase measurements of plasma lipids and cholesterol absorption were performed. The animals fed the higher versus lower level of dietary cholesterol had significantly higher plasma total cholesterol and low density lipoprotein (LDL) cholesterol concentrations and lower percentage cholesterol absorption; high density lipoprotein (HDL) cholesterol levels were not affected by the level of dietary cholesterol. Dietary fish oil resulted in a 20-30% reduction (P less than 0.01) in total plasma and LDL cholesterol and a 30-40% reduction (P less than 0.01) in HDL cholesterol concentrations compared to lard and oleinate regardless of the level of dietary cholesterol. At the high level of cholesterol intake, the oleinate and fish oil diets resulted in significantly lower percentage cholesterol absorption compared to the lard fat diet (35 +/- 2%, 34 +/- 3%, 41 +/- 4%, respectively). At the lower level of dietary cholesterol, percentage cholesterol absorption values were higher than those at the high cholesterol intake (45-52% vs. 34-41%) but were not affected by the type of dietary fat. There was a significant positive correlation between plasma LDL cholesterol concentrations and percentage cholesterol absorption for the oleinate and lard diets at the high level of dietary cholesterol and a significant inverse association between plasma HDL cholesterol and percentage cholesterol absorption. We conclude that the type of dietary fat can influence cholesterol absorption in African green monkeys and that oleinate and fish oil reduce cholesterol absorption relative to lard when a high amount of cholesterol (0.77 mg/kcal) is present in the diet.  相似文献   

6.

The fatty acid composition of the stomach contents, adipose tissue, and perinephric fat of Polynesian rats (Rattus exulans Peale), from the Tokelau Is indicated that the dietary fat consisted mainly, if not exclusively, of coconut oil. Lower ratios of lauric : myristic acids were found in the depot fats of the Polynesian rats than in the dietary coconut oil. These results were consistent with chain elongation of lauric to myristic acid after ingestion, as previously reported in rats and other mammals.  相似文献   

7.
The effects of insulin sensitivity and lipid metabolism of dietary lard, eicosapentaenoic acid-rich oil (EPA oil) or arachidonic acid oil (AA oil) in Otsuka Long-Evans Tokushima Fatty (OLETF) rats were examined. Blood glucose was not different in each group at 30, 60, 120 min on an oral glucose tolerance test. Fasting blood glucose levels were lower in lard and AA oil groups than in controls. Hepatic triglyceride concentration and liver histochemistry revealed that the fat content was higher in the lard group and the AA oil group than in controls. The EPA oil group showed TG levels as high as the control group. Serum total cholesterol in the EPA oil group was lower, while the level in the AA oil group was higher than in the lard and control groups. HDL cholesterol was 1.5-fold higher in the AA oil group than in controls. Dietary EPA oil or AA oil supplementation showed different effects on lipid metabolism in this model.  相似文献   

8.
For a better understanding of the hyperlipidemic function of saturated fat, we have studied the comparative effects of diet supplementation with 10 and 20% coconut oil on the main lipid classes of chick plasma. Changes in fatty acid composition of free fatty acid and triglyceride fractions were parallel to that of the experimental diet. Thus, the increase in the percentages of 12:0 and 14:0 acids may contribute to the hypercholesterolemic effects of coconut oil feeding. Plasma phospholipids incorporated low levels of 12:0 and 14:0 acids whereas 18:0, the main saturated fatty acid of this fraction, also increased after coconut oil feeding. The percentage of 20:4 n-6 was higher in plasma phospholipids than in the other fractions and was significantly decreased by our dietary manipulations. Likewise, minor increases were found in the percentages of 12:0 and 14:0 acids in plasma cholesterol esters. However, the percentage of 18:2 acid significantly increased after coconut oil feeding. Our results show a relationship between fatty acid composition of diets and those of plasma free fatty acid and triglyceride fractions, whereas phospholipids and cholesterol esters are less sensitive to dietary changes.  相似文献   

9.
Cholesterol and lipoprotein metabolism were investigated in a group of rats fed a fish oil-supplemented diet, a rich source of n-3 fatty acids. For comparison purposes, other groups of rats were fed either safflower oil (n-6 fatty acids) or coconut oil (saturated fatty acids). Diets were isocaloric and contained identical amounts of cholesterol. Rats fed fish oils for 2 weeks showed a 35% lower plasma cholesterol level than rats fed safflower oil, who in turn showed a 14% lower plasma cholesterol level than those fed coconut oil. The fall in plasma cholesterol level with fish oils was associated with significant falls in low density and high density lipoprotein cholesterol levels, but with no significant change in the ratio of low density to high density lipoprotein cholesterol. The fatty acid compositions of plasma, hepatic, and biliary lipids showed relative enrichment with n-3 fatty acids, reflecting the composition of the diet. The fish oil diet increased the basal secretion rate of cholesterol into bile, but the bile acid secretion rate remained unchanged. It is suggested that n-3 fatty acids reduce the plasma cholesterol level in rats by increasing the transfer of cholesterol into bile.  相似文献   

10.
These studies describe the influence of membrane fatty acid composition on peroxidation processes in rat-liver S9 fractions. Lipid peroxidation may be expected to affect enzyme activity and cofactors of importance for the performance of the Salmonella Mutagenicity Test, as well as to contribute to the formation of chemically reactive degradation products that are mutagenic. Lipid peroxidation products were measured as derivatives of 2-thiobarbituric acid (TBA). The amount of TBA-reactive compounds (TBA-C), formed during incubation of S9 fractions from rats fed a diet containing sunflower-seed oil, was 8 times higher than that produced in S9 fractions prepared from rats fed diets containing coconut oil or hydrogenated lard as their only sources of fat. S9 fractions from livers of Aroclor 1254 treated rats showed a marked increase in peroxidation yields for all 3 dietary groups investigated as compared to S9 fractions from non-induced animals. The coconut oil and hydrogenated lard dietary groups showed a 13-fold increase in the yield of TBA-reactive material, while a 2-fold increase was found for the sunflower-seed oil group. The variations in the glutathione (GSH) levels and the degradation of unsaturated fatty acids were also studied in response to Aroclor 1254 treatment, fatty acid composition of the diets and incubation at 37 degrees C. Pronounced variations in the GSH levels were observed in response to Aroclor 1254 treatment and incubation conditions. A positive correlation between production of TBA-reactive material and degradation of unsaturated fatty acids was verified for S9 fractions from the coconut oil and hydrogenated lard dietary groups. Furthermore, the effect of Fe2+ on lipid peroxidation was studied in all 3 dietary groups. The rate of lipid peroxidation was increased in all groups but only the coconut oil and hydrogenated lard dietary groups showed increased total yields of TBA-C upon administration of Aroclor 1254 to rats. Lipid peroxidation processes cause chemical alterations in liver homogenates. Therefore, these effects ought to be considered both in the preparation and in the use of the S9 fraction in different test systems.  相似文献   

11.
We previously demonstrated that hyperglycemic-obese (obob) mice fed a 1% corn oil diet accumulated 10 times as much hepatic cholesterol as did their non-obese (+/?) littermates fed this diet because of difficulty in removal of cholesterol from the liver rather than from increased synthesis. Furthermore, feeding the bile acid analog Delta(22)-5beta-taurocholenic acid completely prevented the accumulation of hepatic cholesterol in obob mice fed the 1% corn oil diet. The hypothesis to be tested in the current study is that these aspects of cholesterol metabolism in the obob mouse do not occur in the hyperinsulinemic and insulin-resistant gold thioglucose obese mouse. Gold thioglucose obese (gtgo) and non-obese (ngtgo) mice were fed diets containing either 1% corn oil or 40% lard each with or without added taurocholenic acid for 6 weeks and then given a 250 mg meal of [U-(14)C]-glucose with incorporation of label into hepatic cholesterol and fatty acid measured 2 hours later. Consistent with earlier results in the obob model, incorporation of labeled glucose was significantly increased in obese compared with non-obese mice fed 1% corn oil and significantly reduced either by feeding 40% lard or by adding taurocholenic acid to the diet. In addition, taurocholenic acid greatly increased incorporation of labeled glucose into hepatic cholesterol in obese or non-obese mice fed either diet. In contrast to obob mice, the percentage of fat in the liver of gtgo mice was increased only 50% compared with ngtgo mice. The comparable increase in obob mice was 480%. Hepatic cholesterol did not increase significantly in the liver of gtgo mice fed 1% corn oil when compared with the ngtgo controls. The comparable increase in obob mice fed 1% corn oil was 350%. Also in marked contrast to obob mice, feeding taurocholenic acid increased hepatic cholesterol compared with non-obese controls fed either diet. The results are discussed in the light of the presence of circulating leptin in gtgo but not in obob mice.  相似文献   

12.
The purpose of the present study was to compare the influence of adding no or 8% fat of varying sources (coconut oil, fish oil, rapeseed oil and sunflower oil) to diets for sows 1 week prior to farrowing and during lactation on the composition of fatty acids in plasma and tissues of the progeny while sucking and 3 weeks after weaning from the sow. A control diet without supplemental fat and four diets supplemented with 8% of coconut oil, rapeseed oil, fish oil or sunflower oil were provided to lactating sows (n = 15), and during the post-weaning period the same weaner diet was provided to all piglets (n = 15 litters), which were housed litterwise. The dietary ratio of n-6:n-3 fatty acids of the maternal diets largely influenced the progeny, as the ratio varying from 1.2 (fish oil) to 12.2 (sunflower oil) in the sow milk was reflected in plasma and adipose tissues of the sucking progeny. The liver showed similar variations according to dietary treatments, but a lower n-6:n-3 fatty acids ratio. From day 4 to later on during the suckling period, the concentration of C14:0, C16:0 and C18:1 in the liver of the piglets decreased, irrespective of the dietary treatments of sows. In plasma and liver, the total concentration of saturated fatty acids (SAFA), monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) did not differ markedly in piglets sucking sows fed different dietary fatty acids, whereas the adipose tissue of piglets sucking sows fed sunflower oil and coconut oil showed the highest proportion of PUFA and SAFA, respectively. Weaning lowered the concentration of lipid-soluble extracts in plasma and the concentration of fatty acids in the liver of the piglets. Within the post-weaning period, dietary treatments of sows, rather than age of piglets, influenced the fatty acid composition of plasma and adipose tissue of the piglets, whereas the hepatic fatty acid profile was more affected by the age of the piglets during the post-weaning period. This study shows that the fatty acid profile of plasma and tissues of the progeny is highly dependent on the maternal dietary composition, and that the dietary impact persists for up to 3 weeks after the suckling period.  相似文献   

13.
The aims of this study were to compare the cholesterol-lowering properties of corn fiber oil (CFO) to corn oil (CO), whether the addition of soy stanols or soy sterols to CO at similar levels in CFO would increase CO's cholesterol-lowering properties, and the mechanism(s) of action of these dietary ingredients. Fifty male Golden Syrian hamsters were divided into 5 groups of 10 hamsters each, based on similar plasma total cholesterol (TC) levels. The first group of hamsters was fed a chow-based hypercholesterolemic diet containing either 5% coconut oil + 0.24% cholesterol (coconut oil), 5% CO, 5% CFO, 5% CO + 0.6% soy sterols (sterol), or 5% CO + 0.6% soy stanols (stanol) in place of the coconut oil for 4 weeks. The stanol diet significantly inhibited the elevation of plasma TC compared to all other dietary treatments. Also, the CFO and sterol diets significantly inhibited the elevation of plasma TC compared to the CO and coconut oil diets. The CFO, sterol, and stanol diets significantly inhibited the elevation of plasma non-high density lipoprotein cholesterol compared to the CO and coconut oil diets. The stanol diet significantly inhibited the elevation of plasma high density lipoprotein cholesterol (HDL-C) compared to all other dietary treatments. The sterol diet significantly inhibited the elevation of plasma HDL-C compared to the CO and coconut oil diets, whereas the CFO diet significantly inhibited the elevation of plasma HDL-C compared to the coconut oil diet only. No differences were observed between the CFO and CO for plasma HDL-C. There were no differences observed between groups for plasma triglycerides. The CO and CFO diets had significantly less hepatic TC compared to the coconut oil, sterol, and stanol diets. The CO and CFO diets had significantly less hepatic free cholesterol compared to the sterol and stanol diets but not compared to the coconut oil diet; whereas the coconut oil and sterol diets had significantly less hepatic free cholesterol compared to the stanol diet. The CFO, sterol, and stanol diets excreted significantly more fecal cholesterol compared to the coconut oil and CO diets. In summary, CFO reduces plasma and hepatic cholesterol concentrations and increases fecal cholesterol excretion greater than CO through some other mechanism(s) in addition to increase dietary sterols and stanols-possibly oryzanols.  相似文献   

14.
Rats were fed diets containing a high level of saturated fatty acids (hydrogenated beef tallow) versus a high level of linoleic acid (safflower oil) at both low and high levels of fish oil containing 7.5% (w/w) eicosapentaenoic and 2.5% (w/w) docosahexaenoic acids for a period of 28 days. The effect of feeding these diets on the cholesterol content and fatty acid composition of serum and liver lipids was examined. Feeding diets high in fish oil with safflower oil decreased the cholesterol content of rat serum, whereas feeding fish oil had no significant effect on the cholesterol content of serum when fed in combination with saturated fatty acids. The serum cholesterol level was higher in animals fed safflower oil compared to animals fed saturated fat without fish oil. Consumption of fish oil lowered the cholesterol content of liver tissue regardless of the dietary fat fed. Feeding diets containing fish oil reduced the arachidonic acid content of rat serum and liver lipid fractions, the decrease being more pronounced when fish oil was fed in combination with hydrogenated beef tallow than with safflower oil. These results suggest that dietary n-3 fatty acids of fish oil interact with dietary linoleic acid and saturated fatty acids differently to modulate enzymes of cholesterol and fatty acid metabolism.  相似文献   

15.
The effect of the degree of dietary fat saturation on the hepatic expression of apolipoprotein A-I mRNA was studied in male rats. Animals were maintained for two months on a high fat diet (40% w/w) containing 0.1% cholesterol. Two groups of control animals received either chow diet or chow plus 0.1% cholesterol, while experimental groups received their fat supplement as coconut, corn or olive oil respectively. Dietary cholesterol did not affect apolipoprotein A-I mRNA levels as compared to control animals. Corn oil fed animals had significantly higher levels of hepatic apolipoprotein A-I mRNA than those receiving cholesterol, or coconut oil plus cholesterol. Olive oil fed animals had significantly higher levels of hepatic apolipoprotein A-I mRNA when compared to all other dietary groups. Our data indicate that monounsaturated fatty acids supplied as olive oil play a major role in regulating the hepatic expression of apolipoprotein A-I in male rats.  相似文献   

16.
Among the saturated fatty acids (SFA), myristic acid is known to be one of the most atherogenic when consumed at high levels. Our purpose was to compare the effects of two moderate intakes of myristic acid on plasma lipids in an interventional study. Twenty-five male monks without dyslipidemia were given two isocaloric diets for 5 weeks each. In diet 1, 30% of the calories came from fat (8% SFA, 0.6% myristic acid) and provided 200 mg cholesterol/day. Calories of diet 2 were 34% fat (11% SFA, 1.2% myristic acid) with the same levels of oleate, linoleate, alpha-linolenate and cholesterol. A baseline diet was provided before each diet. In comparison with baseline, diets 1 and 2 induced a decrease in total cholesterol, LDL-cholesterol and triglycerides (P<.001); HDL-cholesterol was not modified and the apo A-I/apo B ratio increased (P<.001). Plasma triglycerides were lower after diet 2 than after diet 1 whereas HDL-cholesterol was higher (P<.05). In phospholipids, myristic acid, oleic acid, linoleic acid, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) increased after diet 2 vs. baseline (P<.01) and diet 1 (P<.05). Both diets were associated with an increase in alpha-linolenate of cholesteryl esters (P<.05), but only diet 2 was associated with an increase in DHA of cholesteryl esters (P<.05). In diet 2, myristic acid intake was positively correlated with myristic acid of phospholipids, and alpha-linolenic acid intake was correlated with alpha-linolenic acid of cholesteryl esters. Moderate intake (1.2% of total calories) of myristic acid has beneficial lipidic effects and enhances DHA of cholesteryl esters.  相似文献   

17.
The comparative effects of 10-20% coconut oil feeding on fatty acid composition of the main lipid classes of chick plasma have been studied with and without simultaneous treatment with dipyridamole in order to clarify the hypolipidemic role of this drug. Coconut oil drastically increased the percentages of lauric and myristic acids in free fatty acid and triacylglycerol fractions, whereas these changes were less pronounced in phospholipids and cholesterol esters. The percentage of arachidonic acid was higher in plasma phospholipids than in the other fractions and was significantly decreased by coconut oil feeding. Linoleic acid, the main fatty acid of cholesterol esters, was drastically increased by coconut oil feeding. Changes induced by the simultaneous administration of dipyridamole were more pronounced in the phospholipids and cholesterol esters than in the other fractions. The fall observed in linoleic acid levels after dipyridamole treatment may be of interest for a lower production of its derived eicosanoids, especially in plasma phospholipids and cholesterol esters.  相似文献   

18.
An ethanol extract of fucoxanthin-rich seaweed was examined for its effectiveness as a nutraceutical for body fat-lowering agent and for an antiobese effect based on mode of actions in C57BL/6J mice. Animals were randomized to receive a semi-purified high-fat diet (20% dietary fat, 10% corn oil and 10% lard) supplemented with 0.2% conjugated linoleic acid (CLA) as the positive control, 1.43% or 5.72% fucoxanthin-rich seaweed ethanol extract (Fx-SEE), equivalent to 0.05% or 0.2% dietary fucoxanthin for six weeks. Results showed that supplementation with both doses of Fx-SEE significantly reduced body and abdominal white adipose tissue (WAT) weights, plasma and hepatic triglyceride (TG), and/or cholesterol concentrations compared to the high-fat control group. Activities of adipocytic fatty acid (FA) synthesis, hepatic FA and TG synthesis, and cholesterol–regulating enzyme were also lowered by Fx-SEE supplement. Concentrations of plasma high-density lipoprotein-cholesterol, fecal TG and cholesterol, as well as FA oxidation enzyme activity and UCP1 mRNA expression in epididymal WAT were significantly higher in the Fx-SEE groups than in the high-fat control group. CLA treatment reduced the body weight gain and plasma TG concentration. Overall, these results indicate that Fx-SEE affects the plasma and hepatic lipid profile, fecal lipids and body fat mass, and alters hepatic cholesterol metabolism, FA synthesis and lipid absorption.  相似文献   

19.
Previous studies using cynomolgus monkeys have shown that isocaloric substitution of dietary fish oil for lard reduced the in vitro binding of plasma low density lipoproteins (LDL) to arterial proteoglycans (PG) (Edwards, I.J., A.K. Gebre, W. D. Wagner, and J. S. Parks. 1991. Arterioscler. Thromb., 11: 1778-1785). The purpose of the present study was to determine whether all LDL subfractions were equally affected by the type of dietary fat with regard to PG binding and to identify compositional changes in LDL subfractions that might relate to the differential in PG binding. Two groups of cynomolgus monkeys (n = 5 each) were fed atherogenic diets (40% calories as fat; 0.26 mg cholesterol/kcal) containing 20% of calories as egg yolk and 20% as either lard or menhaden fish oil. LDL were isolated from plasma by ultracentrifugation and size exclusion chromatography and subfractionated by density gradient centrifugation. Three density ranges of LDL subfractions were collected from the gradients for determination of chemical composition, apoE and apoB content by ELISA, and binding to arterial PG in vitro. The d 1.015-1.025 g/ml subfraction contained 39 +/- 8% of the LDL cholesterol in the lard group but only 7 +/- 3% for the fish oil group. Values for cholesterol distribution were opposite for the d 1.035-1.045 g/ml subfraction, 8 +/- 1% versus 41 +/- 8%, respectively. Similar trends were noted for the distribution of apoB. For the lard group, LDL binding to arterial PG increased with decreasing density (i.e., increasing size) of the subfractions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
A 90-day feeding study with gerbils was conducted to evaluate the influence of dietary vitamin E levels (25 mg/kg diet, 75 mg/kg, 300 mg/kg, and 900 mg/kg), two levels of dietary methionione (casein or casein+L-methionine (1% w/w)) and two sources of lipid (soybean oil [20%] or soybean oil [4%]+coconut oil [16%, 1:4 w/w]) upon serum lipids (total cholesterol, HDL-cholesterol, LDL-cholesterol). In addition, this study examined the effects of diet-induced hyperhomocysteinemia and supplemental dietary vitamin E on the oxidation of low density lipoproteins. Tissue vitamin E (heart, liver, and plasma) demonstrated a dose response (P≤0.001) following the supplementation with increasing dietary vitamin E (25, 75, 300, and 900 mg/kg). In addition, tissue vitamin E levels were found to be higher (P≤0.001) in those animals receiving a combination of coconut oil+soybean oil as compared to the group receiving soybean oil solely. Blood cholesterol profiles indicated an increase (P≤0.001) in total cholesterol and LDL cholesterol by the influence of saturated fat and supplemental methionine. Low-density lipoprotein cholesterol profile demonstrated a reduction (P≤0.001) at the higher dietary vitamin E levels (300 and 900 mg/kg) as compared to the 25 mg/kg and 75 mg/kg dietary vitamin E. Plasma protein carbonyls were not influenced by dietary vitamin E nor by supplemental methionine intake. In vitro oxidation of LDL showed that vitamin E delayed the lag time of the oxidation phase (P≤0.001) and reduced total diene production (P≤0.001). On the contrary, supplemental methionine decreased (P≤0.001) the delay time of the lag phase, whereas total diene production was increased (P≤0.001). Plasma lipid hydroperoxides were significantly reduced (P≤0.05) with supplemental dietary vitamin E, whereas supplemental L-methionine (1%) resulted in a significant (P≤0.05) increase in lipid plasma hydroperoxide formation. Plasma homocysteine was elevated (P≤0.001) with supplemental dietary L-methionine (1%) as well as the inclusion of dietary saturated fat. The present data showed that 1) a combination of dietary lipids (saturated and unsaturated fatty acids) as well as vitamin E and methionine supplementation altered blood cholesterol lipoprotein profiles; 2) in vitro oxidation parameters including LDL (lag time and diene production) and plasma hydroperoxide formations were affected by vitamin E and methionine supplementation; and 3) plasma homocysteine concentrations were influenced by supplemental methionine and the inclusion of dietary saturated fat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号