首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bai H  Lu AL 《Journal of bacteriology》2007,189(3):902-910
Escherichia coli MutY and MutS increase replication fidelity by removing adenines that were misincorporated opposite 7,8-dihydro-8-oxo-deoxyguanines (8-oxoG), G, or C. MutY DNA glycosylase removes adenines from these mismatches through a short-patch base excision repair pathway and thus prevents G:C-to-T:A and A:T-to-G:C mutations. MutS binds to the mismatches and initiates the long-patch mismatch repair on daughter DNA strands. We have previously reported that the human MutY homolog (hMYH) physically and functionally interacts with the human MutS homolog, hMutSalpha (Y. Gu et al., J. Biol. Chem. 277:11135-11142, 2002). Here, we show that a similar relationship between MutY and MutS exists in E. coli. The interaction of MutY and MutS involves the Fe-S domain of MutY and the ATPase domain of MutS. MutS, in eightfold molar excess over MutY, can enhance the binding activity of MutY with an A/8-oxoG mismatch by eightfold. The MutY expression level and activity in mutS mutant strains are sixfold and twofold greater, respectively, than those for the wild-type cells. The frequency of A:T-to-G:C mutations is reduced by two- to threefold in a mutS mutY mutant compared to a mutS mutant. Our results suggest that MutY base excision repair and mismatch repair defend against the mutagenic effect of 8-oxoG lesions in a cooperative manner.  相似文献   

2.
The main consequence of oxidative stress is the formation of DNA lesions, which can result in genomic instability and lead to cell death. Guanine is the base that is most susceptible to oxidation, due to its low redox potential, and 8-oxoguanine (8-oxoG) is the most common lesion. These characteristics make 8-oxoG a good cellular biomarker to indicate the extent of oxidative stress. If not repaired, 8-oxoG can pair with adenine and cause a G:C to T:A transversion. When 8-oxoG is inserted during DNA replication, it could generate double-strand breaks, which makes this lesion particularly deleterious. Trypanosoma cruzi needs to address various oxidative stress situations, such as the mammalian intracellular environment and the triatomine insect gut where it replicates. We focused on the MutT enzyme, which is responsible for removing 8-oxoG from the nucleotide pool. To investigate the importance of 8-oxoG during parasite infection of mammalian cells, we characterized the MutT gene in T. cruzi (TcMTH) and generated T. cruzi parasites heterologously expressing Escherichia coli MutT or overexpressing the TcMTH enzyme. In the epimastigote form, the recombinant and wild-type parasites displayed similar growth in normal conditions, but the MutT-expressing cells were more resistant to hydrogen peroxide treatment. The recombinant parasite also displayed significantly increased growth after 48 hours of infection in fibroblasts and macrophages when compared to wild-type cells, as well as increased parasitemia in Swiss mice. In addition, we demonstrated, using western blotting experiments, that MutT heterologous expression can influence the parasite antioxidant enzyme protein levels. These results indicate the importance of the 8-oxoG repair system for cell viability.  相似文献   

3.
Li L  Lu AL 《Nucleic acids research》2003,31(12):3038-3049
Escherichia coli MutY is an adenine and a weak guanine DNA glycosylase involved in reducing mutagenic effects of 7,8-dihydro-8-oxo-guanine (8-oxoG). The C-terminal domain of MutY is required for 8-oxoG recognition and is critical for mutation avoidance of oxidative damage. To determine which residues of this domain are involved in 8-oxoG recognition, we constructed four MutY mutants based on similarities to MutT, which hydrolyzes specifically 8-oxo-dGTP to 8-oxo-dGMP. F294A-MutY has a slightly reduced binding affinity to A/G mismatch but has a severe defect in A/8-oxoG binding at 20°C. The catalytic activity of F294A-MutY is much weaker than that of the wild-type MutY. The DNA binding activity of R249A-MutY is comparable to that of the wild-type enzyme but the catalytic activity is reduced with both A/G and A/8-oxoG mismatches. The biochemical activities of F261A-MutY are nearly similar to those of the wild-type enzyme. The solubility of P262A-MutY was improved as a fusion protein containing streptococcal protein G (GB1 domain) at its N-terminus. The binding of GB1-P262A-MutY with both A/G and A/8-oxoG mismatches are slightly weaker than those of the wild-type protein. The catalytic activity of GB1-P262A-MutY is weaker than that of the wild-type enzyme at lower enzyme concentrations. Importantly, all four mutants can complement mutY mutants in vivo when expressed at high levels; however, F294A, R249A and P262A, but not F261A, are partially defective in vivo when they are expressed at low levels. These results strongly support that the C-terminal domain of MutY is involved not only in 8-oxoG recognition, but also affects the binding and catalytic activities toward A/G mismatches.  相似文献   

4.
Oxidative DNA damage is caused by reactive oxygen species formed in cells as by products of aerobic metabolism or of oxidative stress. The 8-oxoguanine (8-oxoG) DNA glycosylase from Archaeoglobus fulgidus (Afogg), which excises an oxidatively-damaged form of guanine, was overproduced in Escherichia coli, purified and characterized. A. fulgidus is a sulfate-reducing archaeon, which grows at between 60 and 95 degrees C, with an optimum growth at 83 degrees C. The Afogg enzyme has both DNA glycosylase and apurinic/apyrimidinic (AP) lyase activities, with the latter proceeding through a Schiff base intermediate. As expected for a protein from a hyperthermophilic organism, the enzyme activity is optimal near pH 8.5 and 60 degrees C, denaturing at 80 degrees C, and is thermally stable at high levels of salt (500mM). The Afogg protein efficiently cleaves oligomers containing 8-oxoG:C and 8-oxoG:G base pairs, and is less effective on oligomers containing 8-oxoG:T and 8-oxoG:A mispairs. While the catalytic action mechanism of Afogg protein is likely similar to the human Ogg1 (hOgg1), the DNA recognition mechanism and the basis for 8-oxoG substrate specificity of Afogg differ from that of hOgg.  相似文献   

5.
Conlon KA  Zharkov DO  Berrios M 《DNA Repair》2003,2(12):1337-1352
OGG1 is a major DNA glycosylase in mammalian cells, participating in the repair of 7,8-dihydro-8-oxoguanine (8-oxoguanine, 8-oxoG), the most abundant known DNA lesion induced by endogenous reactive oxygen species in aerobic organisms. 8-oxoG is therefore often used as a marker for oxidative DNA damage. In this study, polyclonal and monoclonal antibodies were raised against the purified wild-type recombinant murine 8-oxoG DNA glycosylase (mOGG1) protein and their specificity against the native enzyme and the SDS-denatured mOGG1 polypeptide were characterized. Specific antibodies directed against the purified wild-type recombinant mOGG1 were used to localize in situ this DNA repair enzyme in established cell lines (HeLa cells, NIH3T3 fibroblasts) as well as in primary culture mouse embryo fibroblasts growing under either normal or oxidative stress conditions. Results from these studies showed that mOGG1 is localized to the nucleus and the cytoplasm of mammalian cells in culture. However, mOGG1 levels increase and primarily redistribute to the nucleus and its peripheral cytoplasm in cells exposed to oxidative stress conditions. Immunofluorescent localization results reported in this study suggest that susceptibility to oxidative DNA damage varies among mammalian tissue culture cells and that mOGG1 appears to redistribute once mOGG1 cell copy number increases in response to oxidative DNA damage.  相似文献   

6.
Human 8-oxoguanine DNA glycosylase (OGG1) is a key enzyme involved in removing 7,8-dihydro-8-oxoguanine (8-oxoG), a highly mutagenic DNA lesion generated by oxidative stress. The removal of 8-oxoG by OGG1 is affected by the local DNA sequence, and this feature most likely contributes to observed mutational hot spots in genomic DNA. To elucidate the influence of local DNA sequence on 8-oxoG excision activity of OGG1, we conducted steady-state, pre-steady-state, and single turnover kinetic evaluation of OGG1 in alternate DNA sequence contexts. The sequence context effect was studied for a mutational hot spot at a CpG dinucleotide. Altering either the global DNA sequence or the 5′-flanking unmodified base pair failed to influence the excision of 8-oxoG. Methylation of the cytosine 5′ to 8-oxoG also did not affect 8-oxoG excision. In contrast, a 5′-neighboring mismatch strongly decreased the rate of 8-oxoG base removal. Substituting the 5′-C in the CpG dinucleotide with T, A, or tetrahydrofuran (i.e. T:G, A:G, and tetrahydrofuran:G mispairs) resulted in a 10-, 13-, and 4-fold decrease in the rate constant for 8-oxoG excision, respectively. A greater loss in activity was observed when T:C or A:C was positioned 5′ of 8-oxoG (59- and 108-fold, respectively). These results indicate that neighboring structural abnormalities 5′ to 8-oxoG deter its repair thereby enhancing its mutagenic potential.  相似文献   

7.
Oxidative DNA damage contributes to aging and the pathogenesis of numerous human diseases including cancer. 8-hydroxyguanine (8-oxoG) is the major product of oxidative DNA lesions. Although OGG1-mediated base excision repair is the primary mechanism for 8-oxoG removal, DNA mismatch repair has also been implicated in processing oxidative DNA damage. However, the mechanism of the latter is not fully understood. Here, we treated human cells defective in various 8-oxoG repair factors with H2O2 and performed biochemical, live cell imaging, and chromatin immunoprecipitation sequencing analyses to determine their response to the treatment. We show that the mismatch repair processing of oxidative DNA damage involves cohesive interactions between mismatch recognition protein MutSα, histone mark H3K36me3, and H3K36 trimethyltransferase SETD2, which activates the ATM DNA damage signaling pathway. We found that cells depleted of MutSα or SETD2 accumulate 8-oxoG adducts and fail to trigger H2O2-induced ATM activation. Furthermore, we show that SETD2 physically interacts with both MutSα and ATM, which suggests a role for SETD2 in transducing DNA damage signals from lesion-bound MutSα to ATM. Consistently, MutSα and SETD2 are highly coenriched at oxidative damage sites. The data presented here support a model wherein MutSα, SETD2, ATM, and H3K36me3 constitute a positive feedback loop to help cells cope with oxidative DNA damage.  相似文献   

8.
We had shown previously that DNA polymerase beta (beta-pol) null mouse fibroblasts, deficient in base excision repair (BER), are hypersensitive to monofunctional methylating agents but not to hydrogen peroxide (H2O2). This is surprising because beta-pol is thought to be involved in BER of oxidative as well as methylated DNA damage. We confirm these findings here in early-passage cells. However, with time in culture, beta-pol null cells become hypersensitive to H2O2 and other reactive oxygen species-generating agents. Analysis of in vitro BER reveals a strong deficiency in single-nucleotide BER of 8-oxoguanine (8-oxoG) by both early- and late-passage beta-pol null cell extracts. Therefore, in early-passage wild-type and beta-pol null cells, the capacity for single-nucleotide BER of 8-oxoG does not correlate with cellular sensitivity to H2O2. Expression of beta-pol protein in the late-passage null cells almost completely reverses the H2O2-hypersensitivity phenotype. Methoxyamine (MX) treatment sensitizes late-passage wild-type cells to H2O2 as expected for beta-pol-mediated single-nucleotide BER; however in beta-pol null cells, MX has no effect. The data indicate a role(s) of beta-pol-dependent repair in protection against the cytotoxicity of oxidative DNA damage in wild-type cells.  相似文献   

9.
The modified base 7,8-dihydro-8-oxo-guanine (8-oxoG) is one of the most stable deleterious products of oxidative DNA damage because it mispairs with adenine during DNA replication. In the fission yeast Schizosaccharomyces pombe, the MutY homolog (SpMYH) is responsible for removing misincorporated adenines from A/8-oxoG or A/G mismatches and thus preventing G:C to T:A mutations. In order to study the functional role of SpMYH, an SpMYH knockout strain was constructed. The SpMYH knockout strain, which does not express SpMYH and has no A/8-oxoG glycosylase activity, displays a 36-fold higher frequency of spontaneous mutations than the wild type strain. Disruption of SpMYH causes increased sensitivity to H2O2 but not to UV-irradiation. Expression of SpMYH in the mutant cells restores the adenine glycosylase activity, reduces the mutation frequency, and elevates the resistance to H2O2. Asp172 of SpMYH is conserved in a helix-hairpin-helix superfamily of glycosylases. The SpMYHA strain expressing D172N SpMYH retained the mutator phenotype. Moreover, when D172N mutant SpMYH was expressed in the wild-type cells, the mutation frequency observed was even higher than that of the parental strains. Thus, a mutant SpMYH that retains substrate-binding activity but is defective in glycosylase activity exhibits a dominant negative effect. This is the first demonstration that a MutY homolog plays an important role in protecting cells against oxidative DNA damage in eukaryotes.  相似文献   

10.
Liu X  Wu J  Zhang W  Ping S  Lu W  Chen M  Lin M 《Current microbiology》2008,57(1):66-71
MutS1 is a key protein involved in mismatch repair system for ensuring fidelity of replication and recombination in Deinococcus radiodurans. The zwf gene encodes glucose-6-phosphate dehydrogenase (G6PD) in the pentose phosphate (PP) pathway, which provides adequate metabolites as precursors of DNA repair. In this study, mutS1 and zwf were disrupted by homologous recombination. The zwf mutant (Deltazwf) and the zwf/mutS1 double mutant (Deltazwf/mutS1) were sensitive to ultraviolet (UV) light, H(2)O(2), and DNA cross-linking agent mitomycin C (MMC), whereas the mutS1 mutant (DeltamutS1) showed resistance to UV light, H(2)O(2) and MMC as the wild-type strain. Inactivation of mutS1 resulted in a 3.3-fold increase in frequency of spontaneous rifampicin-resistant mutagenesis and a 4.9-fold increment in integration efficiency of a donor point-mutation marker during bacterial transformation. Although inactivation of zwf had no obvious effect compared with the wild-type strain, dual disruption of zwf and mutS1 resulted in a 4.7-fold increase in mutation frequency and a 7.4-fold increase in integration efficiency. These results suggest that inactivation of the PP pathway decreases the resistance of D. radiodurans cells to DNA damaging agents and increases mutation frequency and integration efficiency in the mutS1 mutant background.  相似文献   

11.
The presence of 8-oxoguanine (8-oxoG) in DNA is considered a marker of oxidative stress and DNA damage. We describe a multifluorescence technique to detect the localization of 8-oxoG in both nuclear and mitochondrial DNA using a mouse recombinant Fab 166. The Fab was generated by repertoire cloning and combinatorial phage display, and specifically recognized 8-oxoG in DNA, as determined by competitive enzyme-linked immunosorbent assays (ELISAs). In situ detection of 8-oxoG was accomplished using rat lung epithelial (RLE) cells and human B lymphoblastoid (TK6) cells treated with hydrogen peroxide (H(2)O(2)) or ionizing radiation, respectively. Using confocal scanning laser microscopy, we observed nuclear and perinuclear immunoreactivity of 8-oxoG in control cultures. The simultaneous use of a nuclear DNA stain, propidium iodide, or the mitochondrial dye, MitoTracker (Molecular Probes, Eugene, OR, USA), confirmed that 8-oxoG immunofluorescence occurred in nuclear and mitochondrial DNA. Marked increases in the presence of 8-oxoG in nuclear DNA were apparent after treatment with H(2)O(2) or ionizing radiation. In control experiments, Fab 166 was incubated with 200 microM purified 8-oxodG or with formamidopyrimidine DNA-glycosylase (Fpg) to remove 8-oxoG lesions in DNA. These protocols attenuated both nuclear and mitochondrial staining. We conclude that both nuclear and mitochondrial oxidative DNA damages can be simultaneously detected in situ using immunofluorescence labeling with Fab 166 and confocal microscopy.  相似文献   

12.
Li X  Lu AL 《Nucleic acids research》2000,28(23):4593-4603
Escherichia coli MutY is an adenine and a weak guanine DNA glycosylase active on DNA substrates containing A/G, A/8-oxoG, A/C or G/8-oxoG mismatches. A truncated form of MutY (M25, residues 1–226) retains catalytic activity; however, the C-terminal domain of MutY is required for specific binding to the 8-oxoG and is critical for mutation avoidance of oxidative damage. Using alkylation interference experiments, the determinants of the truncated and intact MutY were compared on A/8-oxoG-containing DNA. Several purines within the proximity of mismatched A/8-oxoG show differential contact by the truncated and intact MutY. Most importantly, methylation at the N7 position of the mismatched 8-oxoG and the N3 position of mismatched A interfere with intact MutY but not with M25 binding. The electrostatic contacts of MutY and M25 with the A/8-oxoG-containing DNA substrates are drastically different as shown by ethylation interference experiments. Five consecutive phosphate groups surrounding the 8-oxoG (one on the 3′ side and four on the 5′ side) interact with MutY but not with M25. The activities of the truncated and intact MutY are modulated differently by two minor groove-binding drugs, distamycin A and Hoechst 33258. Both distamycin A and Hoechst 33258 can inhibit, to a similar extent, the binding and glycosylase activities of MutY and M25 on A/G mismatch. However, binding and glycosylase activities on A/8-oxoG mismatch of intact MutY are inhibited to a lesser degree than those of M25. Overall, these results suggest that the C-terminal domain of MutY specifies additional contact sites on A/GO-containing DNA that are not found in MutY–A/G and M25–A/8-oxoG interactions.  相似文献   

13.
A consequence of oxidative stress is DNA damage. The survival of Porphyromonas gingivalis in the inflammatory microenvironment of the periodontal pocket requires an ability to overcome oxidative stress caused by reactive oxygen species (ROS). 8-oxo-7,8-dihydroguanine (8-oxoG) is typical of oxidative damage induced by ROS. There is no information on the presence of 8-oxoG in P. gingivalis under oxidative stress conditions or on a putative mechanism for its repair. High-pressure liquid chromatography with electrochemical detection analysis of chromosomal DNA revealed higher levels of 8-oxoG in P. gingivalis FLL92, a nonpigmented isogenic mutant, than in the wild-type strain. 8-oxoG repair activity was also increased in cell extracts from P. gingivalis FLL92 compared to those from the parent strain. Enzymatic removal of 8-oxoG was catalyzed by a nucleotide excision repair (NER)-like mechanism rather than the base excision repair (BER) observed in Escherichia coli. In addition, in comparison with other anaerobic periodontal pathogens, the removal of 8-oxoG was unique to P. gingivalis. Taken together, the increased 8-oxoG levels in P. gingivalis FLL92 could further support a role for the hemin layer as a unique mechanism in oxidative stress resistance in this organism. In addition, this is the first observation of an NER-like mechanism as the major mechanism for removal of 8-oxoG in P. gingivalis.  相似文献   

14.
DNA polymerases insert dATP opposite the oxidative damage product 7,8-dihydro-8-oxodeoxyguanosine (8-oxoG) instead of dCTP, to the extent of >90% with some polymerases. Steady-state kinetics with the Y-family Sulfolobus solfataricus DNA polymerase IV (Dpo4) showed 90-fold higher incorporation efficiency of dCTP > dATP opposite 8-oxoG and 4-fold higher efficiency of extension beyond an 8-oxoG:C pair than an 8-oxoG:A pair. The catalytic efficiency for these events (with dCTP or C) was similar for G and 8-oxoG templates. Mass spectral analysis of extended DNA primers showed >/=95% incorporation of dCTP > dATP opposite 8-oxoG. Pre-steady-state kinetics showed faster rates of dCTP incorporation opposite 8-oxoG than G. The measured K(d)(,dCTP) was 15-fold lower for an oligonucleotide containing 8-oxoG than with G. Extension beyond an 8-oxoG:C pair was similar to G:C and faster than for an 8-oxoG:A pair, in contrast to other polymerases. The E(a) for dCTP insertion opposite 8-oxoG was lower than for opposite G. Crystal structures of Dpo4 complexes with oligonucleotides were solved with C, A, and G nucleoside triphosphates placed opposite 8-oxoG. With ddCTP, dCTP, and dATP the phosphodiester bonds were formed even in the presence of Ca(2+). The 8-oxoG:C pair showed classic Watson-Crick geometry; the 8-oxoG:A pair was in the syn:anti configuration, with the A hybridized in a Hoogsteen pair with 8-oxoG. With dGTP placed opposite 8-oxoG, pairing was not to the 8-oxoG but to the 5' C (and in classic Watson-Crick geometry), consistent with the low frequency of this frameshift event observed in the catalytic assays.  相似文献   

15.
Chlorambucil (CLB) is a bifunctional alkylating drug widely used as an anticancer agent and as an immunosuppressant. It is known to be mutagenic, teratogenic and carcinogenic. The cellular actions of CLB have remained poorly investigated. It is very likely that DNA damage and its repair are the key elements determining the destiny of CLB-exposed cells. We investigated the role of two specific DNA repair pathways involved in CLB-induced mutagenicity and gene expression changes by using Escherichia coli strains lacking either (i) two DNA methyltransferase functions (O(6)-methylguanine-DNA methyltransferase I (ada) and II (ogt)), or (ii) mismatch repair (MutS (mutS)). Mutagenicity was determined as the development of ciproxin and rifampicin resistance and the gene expression changes were assessed using expression profiling of all E. coli 4290 open reading frames (ORFs) by cDNA array. Chlorambucil-induced mutants in mutS cells, implying the importance of mismatch repair in preventing CLB-induced mutations. It also induced mutants in the ada, ogt strain, but to a lesser extent than in the wild-type strain. The simultaneous upregulation of several genes of the SOS response, cellular efflux and oxidative stress response, was demonstrated in both of the DNA repair-deficient strains but not in the wild-type cells. These and our previous results show that single-gene knock-out cells use specific gene regulation strategies to avoid mutations and cell death induced by agents such as chlorambucil.  相似文献   

16.
Eutsey R  Wang G  Maier RJ 《DNA Repair》2007,6(1):19-26
MutY is an adenine glycosylase that has the ability to efficiently remove adenines from adenine/7,8-dihydro-8-oxoguanine (8-oxo-G) or adenine/guanine mismatches, and plays an important role in oxidative DNA damage repair. The human gastric pathogen Helicobacter pylori has a homolog of the MutY enzyme. To investigate the physiological roles of MutY in H. pylori, we constructed and characterized a mutY mutant. H. pylori mutY mutants incubated at 5% O2 have a 325-fold higher spontaneous mutation rate than its parent. The mutation rate is further increased by exposing the mutant to atmospheric levels of oxygen, an effect that is not seen in an E. coli mutY mutant. Most of the mutations that occurred in H. pylori mutY mutants, as examined by rpoB sequence changes that confer rifampicin resistance, are GC to TA transversions. The H. pylori enzyme has the ability to complement an E. coli mutY mutant, restoring its mutation frequency to the wild-type level. Pure H. pylori MutY has the ability to remove adenines from A/8-oxo-G mismatches, but strikingly no ability to cleave A/G mismatches. This is surprising because E. coli MutY can more rapidly turnover A/G than A/8-oxo-G. Thus, H. pylori MutY is an adenine glycosylase involved in the repair of oxidative DNA damage with a specificity for detecting 8-oxo-G. In addition, H. pylori mutY mutants are only 30% as efficient as wild-type in colonizing the stomach of mice, indicating that H. pylori MutY plays a significant role in oxidative DNA damage repair in vivo.  相似文献   

17.
The DNA damage product 7,8-dihydro-8-oxo-2'-deoxyguanine (8-oxoG) is a commonly used biomarker of oxidative stress. The mutagenic potential of this DNA lesion is mitigated in Escherichia coli by multiple enzymes. One of these enzymes, MutY, excises an A mispaired with 8-oxoG as part of the process to restore the original G:C base pair. However, numerous studies have shown that 8-oxoG is chemically labile toward further oxidation. Here, we examine the activity of MutY on the 8-oxoG oxidation products guanidinohydantoin (Gh), two diastereomers of spiroiminodihydantoin (Sp1 and Sp2), oxaluric acid (Oa), and urea (Ur). Single-stranded viral genomes containing a site-specific lesion were constructed and replicated in E. coli that are either proficient in DNA repair or that lack MutY. These lesions were found previously to be potently mutagenic in repair competent bacteria, and we report here that these 8-oxoG-derived lesions are equally miscoding when replicated in E. coli lacking MutY; no significant change in mutation identity or frequency is observed. Interestingly, however, in the presence of MutY, Sp1 and Sp2 are more toxic than in cells lacking this repair enzyme.  相似文献   

18.
8-Oxoguanine DNA glycosylase (Ogg1) repairs 8-oxo-7,8-dihydroxyguanine (8-oxoG), one of the most abundant DNA adducts caused by oxidative stress. In the mitochondria, Ogg1 is thought to prevent activation of the intrinsic apoptotic pathway in response to oxidative stress by augmenting DNA repair. However, the predominance of the β-Ogg1 isoform, which lacks 8-oxoG DNA glycosylase activity, suggests that mitochondrial Ogg1 functions in a role independent of DNA repair. We report here that overexpression of mitochondria-targeted human α-hOgg1 (mt-hOgg1) in human lung adenocarcinoma cells with some alveolar epithelial cell characteristics (A549 cells) prevents oxidant-induced mitochondrial dysfunction and apoptosis by preserving mitochondrial aconitase. Importantly, mitochondrial α-hOgg1 mutants lacking 8-oxoG DNA repair activity were as effective as wild-type mt-hOgg1 in preventing oxidant-induced caspase-9 activation, reductions in mitochondrial aconitase, and apoptosis, suggesting that the protective effects of mt-hOgg1 occur independent of DNA repair. Notably, wild-type and mutant mt-hOgg1 coprecipitate with mitochondrial aconitase. Furthermore, overexpression of mitochondrial aconitase abolishes oxidant-induced apoptosis whereas hOgg1 silencing using shRNA reduces mitochondrial aconitase and augments apoptosis. These findings suggest a novel mechanism that mt-hOgg1 acts as a mitochondrial aconitase chaperone protein to prevent oxidant-mediated mitochondrial dysfunction and apoptosis that might be important in the molecular events underlying oxidant-induced toxicity.  相似文献   

19.
Irradiation of mammalian cells with solar light is associated with the generation of reactive oxygen species (ROS) and oxidative stress, which is mediated in part by endogenous photosensitizers absorbing in the visible range of the solar spectrum. Accordingly, oxidative DNA base modifications such as 7,8-dihydro-8-oxoguanine (8-oxoG) are the predominant types of DNA damage in cells irradiated at wavelengths >400 nm. We have analysed the repair of oxidative purine modifications in human skin fibroblasts and melanoma cells using an alkaline elution technique, both under normal conditions and after depletion of glutathione. Similar repair rates were observed in fibroblasts and melanoma cells from three different patients (t1/2 approximately 4h). In both cell types, glutathione depletion (increased oxidative stress) caused a pronounced repair retardation even under non-toxic irradiation conditions. Furthermore, the cleavage activity at 8-oxoG residues measured in protein extracts of the cells dropped transiently after irradiation. An addition of dithiothreitol restored normal repair rates. Interestingly, the repair rates of cyclobutane pyrimidine dimers (t1/2 approximately 18 h), AP sites (t1/2 approximately 1h) and single-strand breaks (t1/2 <30 min) were not affected by the light-induced oxidative stress. We conclude that the base excision repair of oxidative purine modifications is surprisingly vulnerable to oxidative stress, while the nucleotide excision repair of pyrimidine dimers is not.  相似文献   

20.
A major role of the methyl-directed mismatch repair (MMR) system of Escherichia coli is to repair postreplicative errors. In this report, we provide evidence that MMR also acts on oxidized DNA, preventing mutagenesis. When cells deficient in MMR are grown anaerobically, spontaneous mutation frequencies are reduced compared with those of the same cells grown aerobically. In addition, we show that a dam mutant has an increased sensitivity to hydrogen peroxide treatment that can be suppressed by mutations that inactivate MMR. In a dam mutant, MMR is not targeted to newly replicated DNA strands and therefore mismatches are converted to single- and double-strand DNA breaks. Thus, base pairs containing oxidized bases will be converted to strand breaks if they are repaired by MMR. This is demonstrated by the increased peroxide sensitivity of a dam mutant and the finding that the sensitivity can be suppressed by mutations inactivating MMR. We demonstrate further that this repair activity results from MMR recognition of base pairs containing 8-oxoguanine (8-oxoG) based on the finding that overexpression of the MutM oxidative repair protein, which repairs 8-oxoG, can suppress the mutH-dependent increase in transversion mutations. These findings demonstrate that MMR has the ability to prevent oxidative mutagenesis either by removing 8-oxoG directly or by removing adenine misincorporated opposite 8-oxoG or both.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号