首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Joining peptide is the major alpha-amidated product of pro-ACTH/endorphin (PAE) in AtT-20 corticotropic tumor cells. To study intracellular joining peptide synthesis, affinity purified antibodies directed against gamma-MSH, joining peptide, and ACTH were used to immunoprecipitate extracts from biosynthetically labeled AtT-20 cells. Immunoprecipitates were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by tryptic peptide mapping on HPLC. In steady labeling experiments, radioactivity in amidated joining peptide (JP) increased roughly linearly with time, in the manner of a final product, whereas radioactivity associated with PAE (1-94)NH2 reached a constant value after 2-4 h, indicating that PAE(1-94)NH2 is an intermediate in the biosynthesis of JP. Radioactivity appeared in ACTH(1-39) well before JP, consistent with a cleavage order in which ACTH is cleaved from PAE(1-95) before JP sequences are cleaved from PAE(1-74). This conclusion was supported by tryptic peptide analyses of immunoprecipitates, which indicated that less than 5% of JP-related material is cleaved from PAE(1-74) before being cleaved from ACTH-related sequences. After a pulse label, radioactivity in PAE(1-94)NH2 reached a peak value after 1 h of chase and declined with a half-life of less than 1 h. Amidated JP increased to a constant level after 2 h of chase. Enough radiolabeled PAE(1-94)NH2 was detected to account for about half of the radioactivity found in amidated JP, indicating that about half of JP-related material is first cleaved from PAE(1-95) before being amidated. This result was corroborated using HPLC purification to determine both amidated and glycine-extended forms of JP.  相似文献   

2.
Based on sequence data, rat and mouse pro-adrenocorticotropin (ACTH)/endorphin could give rise to joining peptide, a short acidic peptide that could terminate with a glutamic acid alpha-amide. Rat and mouse pituitary cells were found to cleave the pro-ACTH/endorphin precursor at an -Arg-Arg- site to produce primarily joining peptide-sized material. The amounts of joining peptide were approximately equimolar to the other major pro-ACTH/endorphin-derived products. Using antisera specific for the COOH-terminal modifications of joining peptide and three analytical approaches which separate amidated from glycine-extended forms of joining peptide, it was found that most of the joining peptide in murine anterior and intermediate pituitary was amidated. Identification of the amidated and glycine-extended forms of joining peptide was confirmed by amino acid analysis of the purified molecules. When anterior pituitary corticotrope tumor cells were grown in culture medium lacking ascorbate, there was no detectable ascorbate in the cells; nevertheless, a significant fraction of the joining peptide produced was alpha-amidated, indicating that production of alpha-amidated product was not totally dependent on ascorbate. The amidation state of the joining peptide produced by mouse corticotrope tumor cells was responsive to added ascorbate. Cells grown in medium containing ascorbic acid at the levels found in plasma concentrated the ascorbate to the levels normally found in pituitary tissue, and nearly all of the joining peptide produced was alpha-amidated. The amidation state of secreted joining peptide mirrored the amidation state of the joining peptide in the cells.  相似文献   

3.
Inhibition of peptide amidation by disulfiram and diethyldithiocarbamate   总被引:1,自引:0,他引:1  
Peptidylglycine alpha-amidating monooxygenase is a copper- and ascorbate-dependent enzyme that converts peptides with COOH-terminal glycine residues into the corresponding alpha-amidated product peptides. The relatively selective copper chelator N,N-diethyldithiocarbamate (DDC) and its disulfide dimer, disulfiram (Antabuse), were used to determine whether the availability of copper affects the production of two alpha-amidated pro-ACTH/endorphin-derived peptides, alpha-melanotropin (alpha MSH) and joining peptide. When mouse pituitary corticotropic tumor cells (AtT-20) were grown in medium containing micromolar concentrations of disulfiram or DDC, alpha-amidation of newly synthesized joining peptide was specifically inhibited in a dose-dependent manner. In rats injected twice with disulfiram or DDC, the ability of the intermediate pituitary to alpha-amidate newly synthesized alpha MSH and joining peptide was inhibited in a dose-dependent manner; at disulfiram doses equivalent to those used in alcohol abuse therapy (4 mg/kg/day), only about 10% of the newly synthesized peptides were correctly alpha-amidated. Chronic treatment of rats with DDC or disulfiram produced a dose-dependent increase in the pituitary content of glycine-extended alpha MSH and joining peptide; the total amount of pro-ACTH/endorphin-related material was unaltered. After 11 days of treatment with 4 mg/kg/day disulfiram, about one-third of the pituitary alpha MSH and joining peptide were present in the glycine-extended rather than the alpha-amidated form; pituitary extracts normally contain almost entirely alpha-amidated peptides.  相似文献   

4.
The biosynthesis of neuroendocrine peptides is typically examined by following the rate of appearance of a radioactive amino acid into mature forms of peptides. In the present study, we labeled cell lines with L-leucine containing 10 deuterium residues (d(10)-Leu) and used mass spectrometry to measure the biosynthetic rate of gamma-lipotropin in the AtT-20 cell line and insulin in the INS-1 cell line. After 3 h of labeling, both peptides show detectable levels of the d-labeled form in the cells and media. The relative levels of the d-labeled forms are greater in the media than in the cells, consistent with previous studies that found that newly synthesized peptides are secreted at a higher rate than older peptides under basal conditions. When AtT-20 cells were stimulated with KCl or forskolin, the ratio of d- to H-labeled gamma-lipotropin in the medium decreased, suggesting that the older peptide was in a compartment that could be released upon the appropriate stimulation. Overexpression of proSAAS in AtT-20 cells reduced the ratio of d- to H-labeled gamma-lipotropin, consistent with the proposed role of proSAAS as an endogenous inhibitor of prohormone convertase-1. Labeling with d10-Leu was also used to test whether altering the pH of the secretory pathway with chloroquine affected the rate of peptide biosynthesis. In AtT-20 cells, 30 microm chloroquine for 3 or 6 h significantly reduced the rate of formation of gamma-lipotropin in both cells and media. Similarly, INS-1 cells treated with 10, 30, or 60 microm chloroquine for 6 h showed a significant decrease in the rate of formation of insulin in both cells and media. These results are consistent with the acidic pH optima for peptide processing enzymes. Stable isotopic labeling with d10-Leu provides a sensitive method to examine the rate of peptide formation in neuroendocrine cell lines.  相似文献   

5.
An expression vector was constructed that placed the cDNA for human neuropeptide Y (NPY) under the control of the mouse metallothionein promoter and was used to transfect the AtT-20 mouse anterior pituitary corticotrope cell line. AtT-20 cells normally process the pro-ACTH/endorphin precursor but do not produce detectable levels of NPY. The resulting AtT-20/NPY cell line (Mt.NPY1a) was used to study the ability of the corticotrope cells to synthesize, process, and secrete the foreign proNPY-related peptide products. The stable cell line created contains approximately 40 copies of proNPY cDNA per cell. NPY mRNA levels and proNPY synthesis were increased at least 35-fold when maximally induced with cadmium; proNPY synthesis was also induced by glucocorticoids. Upon induction the NPY secretion rate was equimolar to that of the endogenous peptides. ProNPY, NPY, and the COOH-terminal peptide produced by this cell line had molecular weight and amino acid-labeling pattern predicted from cDNA sequence data and from previous isolation of NPY-related molecules from NPY-producing cells. The structures of secreted proNPY, NPY, and COOH-terminal peptide, as well as determination of the site of proteolytic cleavage between NPY and the COOH-terminal peptide, were determined by tryptic mapping and Edman degradation of secreted biosynthetically labeled peptide products. The proNPY molecule appears to be processed in the same pathway responsible for cleavage of the endogenous pro-ACTH/endorphin precursor. Secretion of proNPY-derived peptides paralleled secretion of endogenous pro-ACTH/endorphin-derived products, under both basal and stimulated conditions. With induction proNPY expression there is a dose-dependent inhibition of both proNPY and pro-ACTH/endorphin proteolytic processing.  相似文献   

6.
Peptidylglycine alpha-amidating monooxygenase (PAM: EC 1.14.17.3) is a bifunctional protein which catalyzes the COOH-terminal amidation of bioactive peptides; the NH2-terminal monooxygenase and mid-region lyase act in sequence to perform the peptide alpha-amidation reaction. Alternative splicing of the single PAM gene gives rise to mRNAs generating PAM proteins with and without a putative transmembrane domain, with and without a linker region between the two enzymes, and forms containing only the monooxygenase domain. The expression, endoproteolytic processing, storage, and secretion of this secretory granule-associated protein were examined after stable transfection of AtT-20 mouse pituitary cells with naturally occurring and truncated PAM proteins. The transfected proteins were examined using enzyme assays, subcellular fractionation, Western blotting, and immunocytochemistry. Western blots of crude membrane and soluble fractions of transfected cells demonstrated that all PAM proteins were endoproteolytically processed. When the linker region was present between the monooxygenase and lyase domains, monofunctional soluble enzymes were generated from bifunctional PAM proteins; without the linker region, bifunctional enzymes were generated. Soluble forms of PAM expressed in AtT-20 cells and soluble proteins generated through selective endoproteolysis of membrane-associated PAM were secreted in an active form into the medium; secretion of the transfected proteins and endogenous hormone were stimulated in parallel by secretagogues. PAM proteins were localized by immunocytochemistry in the perinuclear region near the Golgi apparatus and in secretory granules, with the greatest intensity of staining in the perinuclear region in cell lines expressing integral membrane forms of PAM. Monofunctional and bifunctional PAM proteins that were soluble or membrane-associated were all packaged into regulated secretory granules in AtT-20 cells.  相似文献   

7.
Abstract: The contribution of the prohormone-processing enzyme PC2 to the proteolytic maturation of proenkephalin was examined in three sets of studies. In the first, the processing of this precursor was compared in PC2-rich (Rin5f) and PC2-lacking (AtT-20) cell lines expressing proenkephalin by virtue of stable transfection. These studies showed that the time frame for processing of this precursor is cell line specific, with AtT-20 cells processing proenkephalin to peptide B much more rapidly than Rin cells. However, the latter cell line processed proenkephalin much more extensively, i.e., produced a greater proportion of the penta- to octapeptide enkephalins. The involvement of PC2 in these later processing events was analyzed by examining the processing of proenkephalin in PC2-overexpressing AtT-20 cell lines. These experiments yielded a processing profile similar to that observed for Rin cells, although the time frame of initial processing was similar to that found in AtT-20 cells. To confirm the physiological involvement of proenkephalin in the production of the small opioid peptides, we generated a Rin cell line in which the production of PC2 was impaired due to stable expression of antisense mRNA to this enzyme. These experiments provided conclusive evidence that the generation of Met-enkephalin-Arg-Phe and Met-enkephalin-Arg-Gly-Leu, but not the larger enkephalin-containing peptides, is mediated by PC2. Taken together, our data support the idea that PC2 is physiologically capable of mediating only the later processing steps of neuropeptide precursors. PC2 thus appears to be the primary enzyme responsible for the generation of bioactive opioid peptide species from proenkephalin.  相似文献   

8.
Variants of the carboxyl-terminal KDEL sequence direct intracellular retention   总被引:13,自引:0,他引:13  
Soluble proteins which reside in the lumen of the endoplasmic reticulum share a common carboxyl-terminal tetrapeptide Lys-Asp-Glu-Leu (KDEL). Addition of the tetrapeptide to a normally secreted protein is both necessary and sufficient to cause retention in the endoplasmic reticulum. In order to characterize the critical residues in the KDEL signal, cDNAs encoding proneuropeptide Y (pro-NPY) with the 4-amino acid carboxyl-terminal extension KDEL or a series of KDEL variants were expressed in the AtT-20 cell line. AtT-20 cells, a mouse anterior pituitary corticotrope cell line, synthesize, process, and secrete the pro-ACTH/endorphin precursor. Since post-translational processing in AtT-20 cells has been extensively characterized, it provides a model system in which the processing of a foreign peptide precursor (pro-NPY) and the endogenous precursor (pro-ACTH/endorphin) can be compared. Altered cDNAs encoding pro-NPY with KDEL, DKEL, RDEL, KNEL, KDQL, or KDEA at the COOH terminus were used to generate stable AtT-20 cell lines. The processing of pro-NPY to neuropeptide Y and the carboxyl-terminal peptide was studied using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, tryptic peptide mapping, and radiosequencing. Addition of the tetrapeptides KDEL, DKEL, RDEL, or KNEL to the COOH terminus of the neuropeptide Y precursor, a peptide hormone normally processed and secreted from neuronal cells, caused complete intracellular retention of the unprocessed prohormone in AtT-20 cells. However, KDQL and KDEA-extended pro-NPY molecules were processed and secreted like wild-type pro-NPY when expressed in AtT-20 cells. The secretion of proNPY-derived peptides in these cell lines paralleled secretion of endogenous pro-ACTH/endorphin-derived products under both basal and stimulated conditions. These mutagenesis studies demonstrate that variants of the KDEL retention signal can direct intracellular retention.  相似文献   

9.
The intermediate lobe of the pituitary contains the alpha-amidated peptide alpha-melanotropin and high levels of a copper and ascorbate-dependent peptidylglycine alpha-amidating monooxygenase (PAM) capable of converting peptides terminating in -X-Gly into amidated products (-X-NH2). As reported previously, the ability of cultured intermediate pituitary cells to produce alpha-amidated alpha-melanotropin declined rapidly. A decline in PAM activity assayed in vitro under optimized conditions failed to account quantitatively for the lack of production of alpha-amidated product, while a 100-fold decline in cellular levels of ascorbate could account for the lack of production of alpha-amidated product. Incubation of intermediate pituitary cultures with ascorbate partially restored the ability of the cells to produce alpha-amidated product without significantly increasing the level of PAM activity. In intermediate pituitary cultures made competent to produce alpha-melanotropin by addition of ascorbate, the actual extent of amidation occurring was modulated by the presence of specific secretagogues (bromocriptine or corticotropin-releasing factor). Cultured anterior pituitary cells showed a similar rapid 3-fold decline in PAM activity assayed in vitro under optimized conditions. Cellular levels of ascorbate also declined rapidly to levels 100-fold below those in the intact anterior pituitary. The addition of ascorbate to the anterior pituitary cultures rapidly restored the enzyme activity assayed in vitro to the levels in the initial cell suspension. Thus, production of amidated product peptide may be regulated by cellular levels of ascorbate, by cellular levels of PAM activity, and by the concentration of specific secretagogues to which the cells are exposed.  相似文献   

10.
To determine whether a low pH intracellular "sorting" step is required to route peptides into secretory granules, the effects of pH altering drugs on the biosynthesis and secretion of peptides by AtT-20 mouse corticotrope tumor cells and rat intermediate pituitary cells were examined. Doses of each drug maintaining normal protein synthesis and cell morphology, while obliterating the intracellular pH gradients detected by acridine orange fluorescence, were experimentally determined. Regions of the cell rich in secretory granules were localized by immunocytochemistry and were found to coincide with organelles with a low internal pH. Biosynthetic labeling experiments were coupled with immunoprecipitation and sodium dodecyl sulfate polyacrylamide gel analyses to examine the biosynthesis and secretion of corticotropin (ACTH(1-39], alpha-melanotropin, ACTH(18-39), beta-endorphin, gamma-melanotropin, alpha-amidated joining peptide, and the NH2-terminal region of pro-ACTH/endorphin. Chloroquine (20-40 microM) and a mixture of NH4Cl and methylamine (2-5 mM each) dissipated pH gradients but had no effect on the synthetic rate of pro-ACTH/endorphin, the extent and rate of precursor processing to smaller peptides, the rate of basal secretion of the various peptides, or the extent to which secretion of each of the peptides could be stimulated by secretagogues. Monensin (0.1-1 microM) had no discernible effect on intracellular pH gradients yet totally blocked proteolytic processing of pro-ACTH/endorphin. Thus, a monensin-blockable step occurs in peptide processing, presumably in the trans Golgi region; however, a low pH chloroquine-sensitive sorting step is not required for processing or for routing peptides to a stable storage form which can be released in response to secretagogues.  相似文献   

11.
The amidation of a synthetic peptide D-Tyr-Pro-Gly-Gly by sheep hypothalamic and pituitary preparations was measured. This substrate was designed as a glycine-extended C-terminal peptide analogue of gonadotropin-releasing hormone (GnRH) to test the ability of these tissues to convert the product produced by cleavage of the GnRH prohormone into the active amidated decapeptide. An alpha-amidating activity capable of converting D-125I-Tyr-Pro-Gly-Gly into D-125I-Try-Pro-Gly-NH2 was identified in crude synaptosomal and neurosecretory-granule fractions from hypothalamus and anterior-pituitary secretory-granule preparations. This activity was stimulated by the addition of Cu2+ and reduced ascorbate, and was maximal at neutral pH in sulphonic acid buffers. Highest activity was measured in synaptosomes from the median eminence and medial basal hypothalamus and in pituitary granules. Lower activity was found in synaptosomes prepared from anterior hypothalamic tissue. Negligible activity was measurable in cerebral cortex and none in pineal synaptosomes. Direct comparison of alpha-amidation with D-125I-Try-Pro-Gly-Gly and a previously reported substrate D-125I-Tyr-Val-Gly showed that, although the latter was 15-20-fold more reactive, the optimal concentration of Cu2+ for amidation was similar with both substrates in medial-basal-hypothalamic synaptosomes and pituitary granules. Activity measured with 1 microM-D-125I-Tyr-Val-Gly was inhibited by increasing concentrations of D-Tyr-Pro-Gly-Gly, with 50% inhibition at 25 microM-D-Tyr-Pro-Gly-Gly, whereas activity with 3.3 microM-D-125I-Tyr-Pro-Gly-Gly was abolished by addition of 1 microM-D-Tyr-Val-Gly, evidence that the two substrates were competing for the same enzyme activity. Synaptosomal preparations demonstrated Michaelis-Menten kinetics for D-Tyr-Pro-Gly-Gly as substrate, with values of Km and V decreasing upon removal of ascorbate. We conclude that D-Tyr-Pro-Gly-Gly-directed alpha-amidation in sheep hypothalamic synaptosomes resembles the activity with D-Tyr-Val-Gly as substrate, as well as that demonstrated by others with D-Tyr-Val-Gly as substrate in rat hypothalamic and pituitary tissue. Although reactivity towards D-Tyr-Pro-Gly-Gly cannot be assumed to assess amidation solely of GnRH, the negligible D-Tyr-Pro-Gly-Gly-directed activity in the pineal gland and cerebral cortex, areas that are known to synthesize other alpha-amidated peptides, suggests some substrate specificity in alpha-amidating enzymes from different tissues.  相似文献   

12.
Dopamine beta-monooxygenase (DBM) and peptidylglycine alpha-hydroxylating monooxygenase (PHM) are essential for the biosynthesis of catecholamines and amidated peptides, respectively. The enzymes share a conserved catalytic core. We studied the role of the DBM signal sequence by appending it to soluble PHM (PHMs) and expressing the DBMsignal/PHMs chimera in AtT-20 and Chinese hamster ovary cells. PHMs produced as part of DBMsignal/PHMs was active. In vitro translated and cellular DBMsignal/PHMs had similar masses, indicating that the DBM signal was not removed. DBMsignal/PHMs was membrane-associated and had the properties of an intrinsic membrane protein. After in vitro translation in the presence of microsomal membranes, trypsin treatment removed 2 kDa from DBMsignal/PHMs while PHMs was entirely protected. In addition, a Cys residue in DBMsignal/PHMs was accessible to Cys-directed biotinylation. Thus the chimera adopts the topology of a type II membrane protein. Pulse-chase experiments indicate that DBMsignal/PHMs turns over rapidly after exiting the trans-Golgi network. Although PHMs is efficiently localized to secretory granules, DBMsignal/PHMs is largely localized to the endoplasmic reticulum in AtT-20 cells. On the basis of stimulated secretion, the small amount of PHMs generated is stored in secretory granules. In contrast, the expression of DBMsignal/PHMs in PC12 cells yields protein that is localized to secretory granules.  相似文献   

13.
Atrial natriuretic factor (ANF) is stored within atrial myocyte secretory granules as pro-ANF (ANF-(1-126] and is proteolytically processed co-secretionally C-terminal to a single basic amino acid to form ANF-(1-98) and the bioactive product ANF-(99-126). Pro-ANF is also expressed in certain non-cardiac neuroendocrine cell types (e.g. brain, adrenal). Although the relatively low levels of the peptide in these cell types have precluded detailed processing and secretion studies using cultured cells, some work with tissue extracts suggests that pro-ANF is pre-secretionally processed between or C-terminal to Arg101-Arg102 in such cells. In order to assess whether cultured non-cardiac endocrine cells process pro-ANF pre- or co-secretionally, and to establish whether both paired and single basic amino acids can serve as cleavage sites, transfection studies were carried out using the adrenocorticotropic hormone (ACTH)-producing pituitary tumor cell line AtT-20/D-16v. These cells normally cleave pro-ACTH/endorphin pre-secretionally at selected, but not all, pairs of basic amino acids to a variety of product peptides. A prepro-ANF expression plasmid was constructed and transfected into the AtT-20 cells. The resulting ANF/AtT-20 cell clone selected for this study expressed ACTH at levels similar to the untransfected wild type cells and secreted immunoreactive ANF-related material at a rate of approximately 1 fmol/min/10(5) cells, which was about 10% the rate of ACTH secretion. The rates of secretion of both ANF and ACTH could be increased 3-5-fold with a variety of known AtT-20 cell secretagogues including phorbol esters and the beta-adrenergic agonist, isoproterenol, thus indicating that both peptides were routed through regulated secretory pathways. Utilizing a combination of specific antisera directed against various regions of pro-ANF, size exclusion and reversed phase high performance liquid chromatography, and peptide mapping, it was shown that the ANF/AtT-20 cells contained and secreted the bioactive peptide ANF-(103-126) and -(1-97). These results indicate that the ANF/AtT-20 cells specifically cleave pro-ANF pre-secretionally at the same single basic site used by cardiac tissue; this single basic cleavage is apparently followed by removal of Arg98 by carboxypeptidase H. It is also apparent that the cells can cleave at the sole paired basic site in pro-ANF, which is the probable cleavage site used by neurons and some other endocrine cells that express low levels of the prohormone.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
A recombinant plasmid containing the rat prodynorphin cDNA was introduced into the mouse anterior pituitary corticotroph cell line AtT-20. These cells normally express and posttranslationally process proopiomelanocortin, but not prodynorphin. Stable transformants were isolated and analyzed for the expression and processing of prodynorphin. The stably transformed AtT-20 cells that expressed a 1.3-kilobase prodynorphin mRNA also expressed prodynorphin protein and processed it to dynorphin peptides. The peptides included leucine-enkephalin, beta-neoendorphin, dynorphin-A8, and dynorphin-B, as identified by gel filtration and reverse phase HPLC followed by RIA using peptide-specific antisera. These results demonstrate that AtT-20 cells efficiently and accurately process prodynorphin at both dibasic sites and monobasic cleavage sites, indicating that the AtT-20 cells contain enzymes capable of cleaving the precursor not only at dibasic residues but also at monobasic residues. The release of prodynorphin-derived peptides paralleled secretion of endogenous proopiomelanocortin-derived peptides when stimulated by CRF, a natural secretagogue for ACTH.  相似文献   

15.
16.
L-Ascorbic acid potentiates nitric oxide synthesis in endothelial cells   总被引:14,自引:0,他引:14  
Ascorbic acid has been shown to enhance impaired endothelium-dependent vasodilation in patients with atherosclerosis by a mechanism that is thought to involve protection of nitric oxide (NO) from inactivation by free oxygen radicals. The present study in human endothelial cells from umbilical veins and coronary arteries investigates whether L-ascorbic acid additionally affects cellular NO synthesis. Endothelial cells were incubated for 24 h with 0.1-100 microM ascorbic acid and were subsequently stimulated for 15 min with ionomycin (2 microM) or thrombin (1 unit/ml) in the absence of extracellular ascorbate. Ascorbate pretreatment led to a 3-fold increase of the cellular production of NO measured as the formation of its co-product citrulline and as the accumulation of its effector molecule cGMP. The effect was saturated at 100 microM and followed a similar kinetics as seen for the uptake of ascorbate into the cells. The investigation of the precursor molecule L-gulonolactone and of different ascorbic acid derivatives suggests that the enediol structure of ascorbate is essential for its effect on NO synthesis. Ascorbic acid did not induce the expression of the NO synthase (NOS) protein nor enhance the uptake of the NOS substrate L-arginine into endothelial cells. The ascorbic acid effect was minimal when the citrulline formation was measured in cell lysates from ascorbate-pretreated cells in the presence of known cofactors for NOS activity. However, when the cofactor tetrahydrobiopterin was omitted from the assay, a similar potentiating effect of ascorbate pretreatment as seen in intact cells was demonstrated, suggesting that ascorbic acid may either enhance the availability of tetrahydrobiopterin or increase its affinity for the endothelial NOS. Our data suggest that intracellular ascorbic acid enhances NO synthesis in endothelial cells and that this may explain, in part, the beneficial vascular effects of ascorbic acid.  相似文献   

17.
The ability of purified bovine neurointermediate pituitary peptidyl glycine alpha-amidating monooxygenase to catalyze the conversion of peptide substrates (D-Tyr-X-Gly) into amidated product peptides (D-Tyr-X-NH2) was evaluated. The pH optimum of the reaction was pH 8.5 when X was Val, Trp, or Pro, but 5.5 to 6.0 when X was Glu. Similar maximum velocity (Vmax) values were obtained for the Val, Trp, and Pro substrates while the Glu substrate had a substantially higher Vmax. The Michaelis-Menten constant (Km) of the enzyme for the peptide substrate increased in the order Trp less than Val less than Pro much less than Glu. Increasing levels of ascorbate brought about parallel increases in Km and Vmax, suggesting the presence of an irreversible step separating the interaction of the enzyme with the two substrates. The effect of copper on enzyme activity was dependent on the peptide substrate and the reaction pH. With the Val substrate, exogenous copper was required for optimal activity; no other metal ion tested could substitute for copper. With the Glu substrate, exogenous copper was not required for optimal activity; however, diethyldithiocarbamate, a copper chelator, inhibited activity and only copper could reverse this inhibitory effect. The ability of various cofactors to stimulate alpha-amidating monooxygenase activity was also dependent on assay conditions. With the Val or Glu substrate in the presence of exogenous copper, a variety of cofactors in addition to ascorbate were capable of supporting activity. With the Glu substrate in the absence of exogenous copper, the requirement of the enzyme for ascorbate was more strict. In keeping with the proposed reaction mechanism, nearly 1 mol ascorbate was consumed for each mole of D-Tyr-Glu-NH2 produced.  相似文献   

18.
Cultured astrocytes have recently been shown to produce certain neuropeptides, as well as neuropeptide processing enzymes. To characterize the secretory pathway in cultured astrocytes, we used the neuropeptide processing enzyme carboxypeptidase E (CPE) as a marker for neuropeptide secretion. Cultured astrocytes and AtT-20 cells, a mouse pituitary-derived neuroendocrine cell line, were labeled with [35S]Met for 15 min and then chased with unlabeled Met. CPE was isolated from either medium or cell extracts using a substrate affinity column. The time course of secretion of radiolabeled CPE was significantly different for cultured astrocytes as compared with AtT-20 cells. CPE was rapidly secreted from the astrocytes after a 30-min lag time, presumably reflecting transport through the endoplasmic reticulum and Golgi apparatus, followed by constitutive secretion. The secretion of radiolabeled CPE was essentially complete by 2 h. In contrast, only a portion of the radiolabeled CPE was secreted from AtT-20 cells over a 2-3-h period, indicating that the majority of newly synthesized CPE is stored, presumably in secretory granules within the AtT-20 cells. The regulation of CPE secretion from astrocytes was also examined. CPE secretion is stimulated two- to threefold by prolonged treatment (3-48 h) with the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) but not by treatment with other secretagogues that stimulate CPE secretion from AtT-20 cells (forskolin, isoproterenol, A23187, and vasoactive intestinal peptide) or short (less than 3 h) exposure to TPA. Taken together, these results indicate that the secretory pathway for CPE, and presumably neuropeptides, is substantially different in astrocytes than the secretory pathway for CPE in neuroendocrine cells.  相似文献   

19.
The biosynthesis of gastrin involves a complex series of post-translational processing reactions that result in the formation of a biologically active secretory product. To study the mechanisms for two specific reactions in gastrin processing, namely dibasic cleavage and amidation, we infected AtT-20, GH3, and Rin5-f cells with the retroviral expression vector, pZip-NeoSV(X), containing human gastrin cDNA. We detected gastrin and its glycine extended post-translational processing intermediates (G-gly) in the media and cell extracts of successfully infected cells. Characterization of the molecular forms of gastrin in these cell lines revealed that GH3 and Rin5-f processed gastrin in a manner similar to antral G-cells but the cleavage of the Lys74-Lys75 bond that converts G34 to G17 appeared to be suppressed in AtT-20 cells. Even after conversion of this site to Arg74-Arg75 via site-directed mutagenesis, the At-20 cells synthesized G34 predominantly. All of the infected cells amidated gastrin but the gastrin/G-gly ratio, a reflection of amidation within the cells, was enhanced in GH3 and Rin5-f cells but diminished in AtT-20 cells upon treatment with dexamethasone (10(-4) M) for 3 days. The dibasic cleavage of gastrin was uneffected by dexamethasone. Our data suggest that the activities of post-translational processing reactions responsible for the synthesis of biologically active gastrin exhibit considerable tissue and substrate specificity.  相似文献   

20.
The intracellular sites where proteolytic processing of pro-ACTH/endorphin or POMC take place have not yet been reliably identified. We have used affinity-purified antisera that recognize only the products of POMC processing and immunoelectron microscopy to identify the compartments of rat pituitary corticotropes and mouse AtT-20 cells in which cleavage occurs. Immunoperoxidase labeling of cryostat sections and immunogold labeling of ultrathin frozen sections were used for localization of the processing sites. By both procedures we detected processed peptides in Golgi cisternae and secretion granules. Within the Golgi, labeling was limited to the last or transmost cisterna and was most concentrated in its dilated rims which contain condensing secretory protein. No labeling of other Golgi cisternae was seen. All Golgi cisternae were labeled, however, when antisera that recognize unprocessed POMC were used for immunolabeling. We conclude that in AtT-20 and rat pituitary cells: 1) processing of POMC through at least two endo- and exoproteolytic cleavage steps and alpha-amidation of joining peptide begin in the trans Golgi subcompartment; 2) no detectable processing takes place before POMC reaches the trans Golgi cisterna; and 3) this Golgi cisterna as well as secretion granules contain the active enzymes necessary for proteolytic processing and alpha-amidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号