首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphorolysis of α,α-trehalose catalyzed by trehalose phosphorylase from the basidiomycete Schizophyllum commune proceeds via net retention of anomeric configuration and yields α- -glucose 1-phosphate and α- -glucose as the products. In reverse reaction, only the α-anomers of -glucose 1-phosphate and -glucose are utilized as glucosyl donor and acceptor, respectively, and give exclusively the α,α-product. Trehalose phosphorylase converts α- -glucose 1-fluoride and phosphate into α- -glucose 1-phosphate, a reaction requiring the stereospecific protonation of the glucosyl fluoride by a Brønsted acid. The results are discussed with regard to a plausible reaction mechanism of fungal trehalose phosphorylase.  相似文献   

2.
α,α-Trehalose, a sugar previously regarded as a product characteristic of certain lower plants, has been identified as a major blood sugar of insects. Trehalose has been isolated in pure form from the blood of pupae of the silk moth, Telea polyphemus, and has been recognized chromatographically in all the insects examined, which comprise 10 species belonging to 5 different orders. Trehalose has been determined quantitatively with anthrone after either chromatographic separation or chemical degradation of other sugars. In larvae and pupae of 4 species of Lepidoptera it ranges from 0.2 to 1.5 gm. per 100 ml. of blood and makes up over 90 per cent of the blood sugar; in larvae of a sawfly, about 80 per cent of the blood sugar is trehalose. In Bombyx mori and Platysamia cecropia, the pupal blood trehalose level is about half that in the mature larva, suggesting utilization of trehalose for glycogen synthesis during pupation. Small amounts of glucose and apparent glycogen are also present in the plasma of these insects. In Bombyx larval plasma there is also 0.04 to 0.12 gm. per 100 ml. of glucose-6-phosphate and smaller amounts of an apparent ketose phosphate.  相似文献   

3.
A toxic effect of α,α-trehalose in an angiospermic plant, Cuscuta reflexa (dodder), is described. This disaccharide and its analogs, 2-aminotrehalose and 4-aminotrehalose, induced a rapid blackening of the terminal region of the vine which is involved in elongation growth. From the results of in vitro growth of several angiospermic plants and determination of trehalase activity in them, it is concluded that the toxic effect of trehalose in Cuscuta is because of the very low trehalase activity in the vine. As a result, trehalose accumulates in the vine and interferes with some process closely associated with growth. The growth potential of Lemna (a duckweed) in a medium containing trehalose as the carbon source was irreversibly lost upon addition of trehalosamine, an inhibitor of trehalase activity. It is concluded that, if allowed to accumulate within the tissue, trehalose may be potentially toxic or inhibitory to higher plants in general. The presence of trehalase activity in plants, where its substrate has not been found to occur, is envisaged to relieve the plant from the toxic effects of trehalose which it may encounter in soil or during association with fungi or insects.  相似文献   

4.
A trehalose synthase (TSase) that catalyzes the synthesis of trehalose from d-glucose and α-d-glucose 1-phosphate (α-d-glucose 1-P) was detected in a basidiomycete, Grifola frondosa. TSase was purified 106-fold to homogeneity with 36% recovery by ammonium sulfate precipitation and several steps of column chromatography. The native enzyme appears to be a dimer since it has apparent molecular masses of 120 kDa, as determined by gel filtration column chromatography, and 60 kDa, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Although TSase catalyzed the phosphorolysis of trehalose to d-glucose and α-d-glucose 1-P, in addition to the synthesis of trehalose from the two substrates, the TSase equilibrium strongly favors trehalose synthesis. The optimum temperatures for phosphorolysis and synthesis of trehalose were 32.5 to 35°C and 35 to 37.5°C, respectively. The optimum pHs for these reactions were 6.5 and 6.5 to 6.8, respectively. The substrate specificity of TSase was very strict: among eight disaccharides examined, only trehalose was phosphorolyzed, and only α-d-glucose 1-P served as a donor substrate with d-glucose as the acceptor in trehalose synthesis. Two efficient enzymatic systems for the synthesis of trehalose from sucrose were identified. In system I, the α-d-glucose 1-P liberated by 1.05 U of sucrose phosphorylase was linked with d-glucose by 1.05 U of TSase, generating trehalose at the initial synthesis rate of 18 mmol/h in a final yield of 90 mol% under optimum conditions (300 mM each sucrose and glucose, 20 mM inorganic phosphate, 37.5°C, and pH 6.5). In system II, we added 1.05 U of glucose isomerase and 20 mM MgSO4 to the reaction mixture of system I to convert fructose, a by-product of the sucrose phosphorylase reaction, into glucose. This system generated trehalose at the synthesis rate of 4.5 mmol/h in the same final yield.Trehalose (1-α-d-glucopyranosyl-α-d-glucopyranoside) is a nonreducing disaccharide with an α,α-1,1 glycosidic linkage and is widely distributed in plants, insects, fungi, yeast, and bacteria (7). Due to the absence of reducing ends in trehalose, it is highly resistant to heat, pH, and Maillard’s reaction (24). In trehalose-producing organisms, this compound may serve as an energy reserve, a buffer against stresses such as desiccation and freezing, and a protein stabilizer (5, 7, 26, 31, 32). If trehalose can be produced economically, then it has potential commercial applications as a sweetener, a food stabilizer, and an additive in cosmetics and pharmaceuticals (6, 25). Recently, trehalose production through fermentation of yeast (17) and Corynebacterium (30), enzymatic processes from starch (18, 34) and maltose (19, 22, 23, 33), and extraction from transformed plants (10) has been reported.Our approach to trehalose production is to use an enzymatic process to produce trehalose from sucrose, one of the least expensive sugars. Since sucrose is efficiently converted to α-d-glucose 1-phosphate (α-d-glucose 1-P) and fructose by sucrose phosphorylase (SPase), we screened microorganisms for an enzyme that converts α-d-glucose 1-P to trehalose on the assumption that the combination of the putative trehalose synthase (TSase) and SPase would convert sucrose into trehalose. Although similar enzyme activities have been reported in the basidiomycete Flammulina velutipes (11) and in the yeast Pichia fermentans (27), these enzymes have not been well characterized.Our objectives were (i) to screen microorganisms, primarily fungi, for TSase activity; (ii) to purify and characterize the TSase; (iii) to identify the enzymatic process by which trehalose is produced from sucrose; and (iv) to identify an enzymatic process for production of trehalose from sucrose in which the fructose component is also converted to trehalose.  相似文献   

5.
A β-phosphoglucomutase (β-PGM) mutant of Lactococcus lactis subsp. lactis ATCC 19435 was constructed using a minimal integration vector and double-crossover recombination. The mutant and the wild-type strain were grown under controlled conditions with different sugars to elucidate the role of β-PGM in carbohydrate catabolism and anabolism. The mutation did not significantly affect growth, product formation, or cell composition when glucose or lactose was used as the carbon source. With maltose or trehalose as the carbon source the wild-type strain had a maximum specific growth rate of 0.5 h−1, while the deletion of β-PGM resulted in a maximum specific growth rate of 0.05 h−1 on maltose and no growth at all on trehalose. Growth of the mutant strain on maltose resulted in smaller amounts of lactate but more formate, acetate, and ethanol, and approximately 1/10 of the maltose was found as β-glucose 1-phosphate in the medium. Furthermore, the β-PGM mutant cells grown on maltose were considerably larger and accumulated polysaccharides which consisted of α-1,4-bound glucose units. When the cells were grown at a low dilution rate in a glucose and maltose mixture, the wild-type strain exhibited a higher carbohydrate content than when grown at higher growth rates, but still this content was lower than that in the β-PGM mutant. In addition, significant differences in the initial metabolism of maltose and trehalose were found, and cell extracts did not digest free trehalose but only trehalose 6-phosphate, which yielded β-glucose 1-phosphate and glucose 6-phosphate. This demonstrates the presence of a novel enzymatic pathway for trehalose different from that of maltose metabolism in L. lactis.  相似文献   

6.
Thirty-two strains of Eubacterium lentum and phenotypically similar anaerobic gram-positive bacilli were screened for intracellular bile salt 3α- and 12α-hydroxysteroid dehydrogenase (HSDHase) activities. These organisms were categorized into four groups: (A) those containing 12α-HSDHase only (10 strains), (B) those containing 3α- and 12α-HSDHase (13 strains), (C) those containing 3α-HSDHase only (2 strains), and (D) those devoid of any measurable HSDHase activity (7 strains). Of the respective four groups, 9/10, 13/13, 0/2, and 0/7 were like the neotype strain of E. lentum (ATCC 25559) in that they produced H2S in a triple sugar iron agar butt, reduced nitrate to nitrite, and weakly decomposed hydrogen peroxide. The other strains were variable for nitrate reduction and activity on hydrogen peroxide, but all the organisms in the first three categories (with one exception) were H2S producers (triple sugar iron agar butt) and all (with one exception) were designated E. lentum, whereas the organisms of category B were non-H2S producers (triple sugar iron agar butt). Five of these seven were not stimulated by arginine and are designated “phenotypically similar organisms.” Thin-layer chromatography of extracted spent bacterial medium of four representative strains from each group grown in the presence of cholate revealed the presence of (A) 12-oxo product, (B) 12-oxo and 3-oxo products, (C) 3-oxo product, and (D) the absence of any of these products. The 12α-HSDHase of category B organisms was unstable unless 10−3 M dithioerythritol was added to the buffer. With the exception of 3 out of 32 strains, there was a positive correlation between the production of measurable amounts of 12α-HSDHase and H2S production. Growth curves and the effect of arginine on growth and the production of 3α- and 12α-HSDHase were examined in representative strains of categories A, B, and C. Both enzymes were shown to bind onto a nicotinamide adenine dinucleotide-Sepharose column and could be eluted by high-ionic-strength buffer, resulting in approximately 25-fold and 18-fold purification, respectively. Molecular weight estimations by Sephadex G-200 gave values of 205,000 and 125,000 for the 3α- and 12α-HSDHase, respectively. Purified 12α-HSDHase was investigated with respect to pH requirement, substrate specificity, and enzyme kinetics.  相似文献   

7.
Trehalose, an α,α-diglucoside, induced a rapid blackening and death of shoot tips of Cuscuta reflexa (dodder) cultured in vitro. The onset of toxic symptom was delayed if any of the several sugars which support the in vitro growth of Cuscuta was supplied with trehalose. The rate of trehalose uptake or its accumulation in the tissue was not affected by sugar cofeeding. The levels of total and reducing sugars declined appreciably in the trehalose-fed shoot tip explants compared to control tissue cultured in absence of a carbon source. This was not due to an increased rate of respiration of the trehalose-treated tissue. In shoot tips cultured in presence of both trehalose and sucrose, the decline in total and reducing sugars was curtailed. There was a marked fall in the level of sucrose; and invertase activity was higher in trehalose-fed shoot tips. The incorporation of label from [14C]glucose into sucrose in the shoot tip explant was reduced as early as 12 h of trehalose feeding. The results suggest that increased utilization of sucrose as well as an inhibition of its synthesis contribute to the drastic fall in the sucrose content upon trehalose feeding.  相似文献   

8.
The influence of genetic variations in Drosophila alcohol dehydrogenase (ADH) on steady-state metabolic fluxes was studied by means of (13)C NMR spectroscopy. Four pathways were found to be operative during 8 hr of ethanol degradation in third instar larvae of Drosophila. Seven strains differed by 18-25% in the ratio between two major pathway fluxes, i.e., into glutamate-glutamine-proline vs. lactate-alanine-trehalose. In general, Adh genotypes with higher ADH activity exhibit a twofold difference in relative carbon flux from malate into lactate and alanine vs. α,α-trehalose compared to low ADH activity genotypes. Trehalose was degraded by the pentose-phosphate shunt. The pentose-phosphate shunt and malic enzyme could supply NADPH necessary for lipid synthesis from ethanol. Lactate and/or proline synthesis may maintain the NADH/NAD(+) balance during ethanol degradation. After 24 hr the flux into trehalose is increased, while the flux into lipids declines in Adh(F) larvae. In Adh(S) larvae the flux into lipids remains high. This co-ordinated nature of metabolism and the genotype-dependent differences in metabolic fluxes may form the basis for various epistatic interactions and ultimately for variations in organismal fitness.  相似文献   

9.
The drought-resistant cyanobacteria Phormidium autumnale, strain LPP4, and a Chroococcidiopsis sp. accumulated trehalose, sucrose, and both trehalose and sucrose, respectively, in response to matric water stress. Accumulated sugar concentrations reached values of up to 6.2 μg of trehalose per μg of chlorophyll in P. autumnale, 6.9 μg of sucrose per μg of chlorophyll in LPP4, and 4.1 μg of sucrose and 3.2 μg of trehalose per μg of chlorophyll in the Chroococcidiopsis sp. The same sugars were accumulated by these cyanobacteria in similar concentrations under osmotic water stress. Cyanobacteria that did not show drought resistance (Plectonema boryanum and Synechococcus strain PCC 7942) did not accumulate significant amounts of sugars when matric water stress was applied.  相似文献   

10.
Laminins, the main components of basement membranes, are heterotrimers consisting of α, β, and γ polypeptide chains linked together by disulfide bonds. Laminins-1 and -2 are both composed of β1 and γ1 chains and differ from each other on their α chain, which is α1 and α2 for laminin-1 and -2, respectively. The present study shows that whereas laminins-1 and -2 are synthesized in the mouse developing lung and in epithelial–mesenchymal cocultures derived from it, epithelial and mesenchymal monocultures lose their ability to synthesize the laminin α1 chain. Synthesis of laminin α1 chain however returns upon re-establishment of epithelial–mesenchymal contact. Cell–cell contact is critical, since laminin α1 chain is not detected in monocultures exposed to coculture-conditioned medium or in epithelial–mesenchymal cocultures in which heterotypic cell–cell contact is prevented by an interposing filter. Immunohistochemical studies on cocultures treated with brefeldin A, an inhibitor of protein secretion, indicated both epithelial and mesenchymal cells synthesize laminin α1 chain upon heterotypic cell– cell contact. In a set of functional studies, embryonic lung explants were cultured in the presence of monoclonal antibodies to laminin α1, α2, and β/γ chains. Lung explants exposed to monoclonal antibodies to laminin α1 chain exhibited alterations in peribronchial cell shape and decreased smooth muscle development, as indicated by low levels of smooth muscle α actin and desmin. Taken together, our studies suggest that laminin α1 chain synthesis is regulated by epithelial–mesenchymal interaction and may play a role in airway smooth muscle development.  相似文献   

11.
The growth of rhizobia under 1% O2 induced the accumulation of α,α-trehalose, and the effect of low O2 was independent of medium composition and Rhizobium species. Trehalose concentration in cells declined rapidly when microaerobic cultures were supplied with 21% O2. Trehalose formation in nodules may be induced by the microaerobic environment.  相似文献   

12.
Abortive ligation during base excision repair (BER) leads to blocked repair intermediates containing a 5′-adenylated-deoxyribose phosphate (5′-AMP-dRP) group. Aprataxin (APTX) is able to remove the AMP group allowing repair to proceed. Earlier results had indicated that purified DNA polymerase β (pol β) removes the entire 5′-AMP-dRP group through its lyase activity and flap endonuclease 1 (FEN1) excises the 5′-AMP-dRP group along with one or two nucleotides. Here, using cell extracts from APTX-deficient cell lines, human Ataxia with Oculomotor Apraxia Type 1 (AOA1) and DT40 chicken B cell, we found that pol β and FEN1 enzymatic activities were prominent and strong enough to complement APTX deficiency. In addition, pol β, APTX and FEN1 coordinate with each other in processing of the 5′-adenylated dRP-containing BER intermediate. Finally, other DNA polymerases and a repair factor with dRP lyase activity (pol λ, pol ι, pol θ and Ku70) were found to remove the 5′-adenylated-dRP group from the BER intermediate. However, the activities of these enzymes were weak compared with those of pol β and FEN1.  相似文献   

13.
To better understand the functions and fidelity of DNA polymerase ε (Pol ε), we report here on the fidelity of yeast Pol ε mutants with leucine, tryptophan or phenylalanine replacing Met644. The Met644 side chain interacts with an invariant tyrosine that contacts the sugar of the incoming dNTP. M644W and M644L Pol ε synthesize DNA with high fidelity, but M644F Pol ε has reduced fidelity resulting from strongly increased misinsertion rates. When Msh6-dependent repair of replication errors is defective, the mutation rate of a pol2-M644F strain is 16-fold higher than that of a strain with wild-type Pol ε. In conjunction with earlier studies of low-fidelity mutants with replacements for the homologous amino acid in yeast Pol α (L868M/F) and Pol δ (L612M), these data indicate that the active site location occupied by Met644 in Pol ε is a key determinant of replication fidelity by all three B family replicative polymerases. Interestingly, error specificity of M644F Pol ε is distinct from that of L868M/F Pol α or L612M Pol δ, implying that each polymerase has different active site geometry, and suggesting that these polymerase alleles may generate distinctive mutational signatures for probing functions in vivo.  相似文献   

14.
The metabolism of translocated photosynthate by soybean (Glycine max L. Merr.) nodules was investigated by 14CO2-labeling studies and analysis of nodule enzymes. Plants were exposed to 14CO2 for 30 minutes, followed by 12CO2 for up to 5 hours. The largest amount of radioactivity in nodules was recovered in neutral sugars at all sampling times. The organic acid fraction of the cytosol was labeled rapidly. Although cyclitols and malonate were found in high concentrations in the nodules, they accumulated less than 10% of the radioactivity in the neutral and acidic fractions, respectively. Phosphate esters were found to contain very low levels of total label, which prohibited analysis of the radioactivity in individual compounds. The whole nodule-labeling patterns suggested the utilization of photosynthate for the generation of organic acids (principally malate) and amino acids (principally glutamate).

The radioactivity in bacteroids as a percentage of total nodule label increased slightly with time, while the percentage in the cytosol fraction declined. The labeling patterns for the cytosol were essentially the same as whole nodule-labeling patterns, and they suggest a degradation of carbohydrates for the production of organic acids and amino acids. When it was found that most of the radioactivity in bacteroids was in sugars, the enzymes of glucose metabolism were surveyed. Bacteroids from nodules formed by Rhizobium japonicum strain 110 or strain 138 lacked activity for phosphofructokinase and NADP-dependent 6-phosphogluconate dehydrogenase, key enzymes of glycolysis and the oxidative pentose-phosphate pathways. Enzymes of the glycolytic and pentose phosphate pathways were found in the cytosol fraction.

In three experiments, bacteroids contained about 10 to 30% of the total radioactivity in nodules 2 to 5 hours after pulse-labeling of plants, and 60 to 65% of the radioactivity in bacteroids was in the neutral sugar fraction at all sampling times. This strongly suggests some absorption and metabolism of sugars by bacteroids in spite of the lack of key enzymes. Bacteroids did possess enzymes for the formation of hexose phosphates from glucose or fructose. Radioactivity in α,α-trehalose in bacteroids increased until, after 5 hours, trehalose was a major labeled compound in bacteroids. Thus, trehalose synthesis may be a major fate of sugars entering bacteroids.

  相似文献   

15.
Purified trehalose synthase from Thermus caldophilus GK24 produced 18–86% trehalose from 10 mM–1 M maltose. The enzyme also catalyzed the conversion of ,-trehalose into maltose but did not act on other disaccharides. The yield of trehalose from maltose by this enzyme increased 30% more at 40°C than at 80°C and was independent of the substrate concentration. The maximum yield of ,-trehalose from 10 mM maltose reached 86% at 40°C. In addition, ,-trehalose was also formed from maltose or ,-trehalose at 3.5% yield at 80°C. © Rapid Science Ltd. 1998  相似文献   

16.
Trehalose uptake at 65°C in Rhodothermus marinus was characterized. The profile of trehalose uptake as a function of concentration showed two distinct types of saturation kinetics, and the analysis of the data was complicated by the activity of a periplasmic trehalase. The kinetic parameters of this enzyme determined in whole cells were as follows: Km = 156 ± 11 μM and Vmax = 21.2 ± 0.4 nmol/min/mg of total protein. Therefore, trehalose could be acted upon by this periplasmic activity, yielding glucose that subsequently entered the cell via the glucose uptake system, which was also characterized. To distinguish the several contributions in this intricate system, a mathematical model was developed that took into account the experimental kinetic parameters for trehalase, trehalose transport, glucose transport, competition data with trehalose, glucose, and palatinose, and measurements of glucose diffusion out of the periplasm. It was concluded that R. marinus has distinct transport systems for trehalose and glucose; moreover, the experimental data fit perfectly with a model considering a high-affinity, low-capacity transport system for trehalose (Km = 0.11 ± 0.03 μM and Vmax = 0.39 ± 0.02 nmol/min/mg of protein) and a glucose transporter with moderate affinity and capacity (Km = 46 ± 3 μM and Vmax = 48 ± 1 nmol/min/mg of protein). The contribution of the trehalose transporter is important only in trehalose-poor environments (trehalose concentrations up to 6 μM); at higher concentrations trehalose is assimilated primarily via trehalase and the glucose transport system. Trehalose uptake was constitutive, but the activity decreased 60% in response to osmotic stress. The nature of the trehalose transporter and the physiological relevance of these findings are discussed.  相似文献   

17.
The depolymerization of complex glycans is an important biological process that is of considerable interest to environmentally relevant industries. β-Mannose is a major component of plant structural polysaccharides and eukaryotic N-glycans. These linkages are primarily cleaved by glycoside hydrolases, although recently, a family of glycoside phosphorylases, GH130, have also been shown to target β-1,2- and β-1,4-mannosidic linkages. In these phosphorylases, bond cleavage was mediated by a single displacement reaction in which phosphate functions as the catalytic nucleophile. A cohort of GH130 enzymes, however, lack the conserved basic residues that bind the phosphate nucleophile, and it was proposed that these enzymes function as glycoside hydrolases. Here we show that two Bacteroides enzymes, BT3780 and BACOVA_03624, which lack the phosphate binding residues, are indeed β-mannosidases that hydrolyze β-1,2-mannosidic linkages through an inverting mechanism. Because the genes encoding these enzymes are located in genetic loci that orchestrate the depolymerization of yeast α-mannans, it is likely that the two enzymes target the β-1,2-mannose residues that cap the glycan produced by Candida albicans. The crystal structure of BT3780 in complex with mannose bound in the −1 and +1 subsites showed that a pair of glutamates, Glu227 and Glu268, hydrogen bond to O1 of α-mannose, and either of these residues may function as the catalytic base. The candidate catalytic acid and the other residues that interact with the active site mannose are conserved in both GH130 mannoside phosphorylases and β-1,2-mannosidases. Functional phylogeny identified a conserved lysine, Lys199 in BT3780, as a key specificity determinant for β-1,2-mannosidic linkages.  相似文献   

18.
Carbonic anhydrases (CAs, EC 4.2.1.1) have been studied for decades and have been classified as a superfamily of enzymes which includes, up to date, eight gene families or classes indicated with the Greek letters α, β, γ, δ, ζ, η, θ, ι. This versatile enzyme superfamily is involved in multiple physiological processes, catalysing a fundamental reaction for all living organisms, the reversible hydration of carbon dioxide to bicarbonate and a proton. Recently, the ι-CA (LCIP63) from the diatom Thalassiosira pseudonana and a bacterial ι-CA (BteCAι) identified in the genome of Burkholderia territorii were characterised. The recombinant BteCAι was observed to act as an excellent catalyst for the physiologic reaction. Very recently, the discovery of a novel ι-CAs (COG4337) in the eukaryotic microalga Bigelowiella natans and the cyanobacterium Anabaena sp. PCC7120 has brought to light an unexpected feature for this ancient superfamily: this ι-CAs was catalytically active without a metal ion cofactor, unlike the previous reported ι-CAs as well as all known CAs investigated so far. This review reports recent investigations on ι-CAs obtained in these last three years, highlighting their peculiar features, and hypothesising that possibly this new CA family shows catalytic activity without the need of metal ions.  相似文献   

19.
A 6-(γ,γ-dimethylallylamino) purine-like compound was found in the culture medium of Rhizopogon roseolus, which had been shown earlier to synthesize zeatin. The role of 6-(γ,γ-dimethylallylamino) purine as a precursor of zeatin was studied. Rhizopogon was furnished with 6-(γ,γ-dimethylallylamino) purine-8-14C. Cochromatography, oxidation studies with potassium permanganate, and bromination indicated that labeled zeatin ribonucleoside was isolated from the medium. The fungus also incorporated labeled adenine, hypoxanthine, and 4-amino-5-imidazole carboxamide into zeatin ribonucleoside.  相似文献   

20.
Analysis of the expression of genes encoding the β-conglycinin seed storage proteins in soybean has been used to extend our understanding of developmental gene expression in plants. The α, α′, and β subunits of β-conglycinin are encoded by a multigene family which is organ-specific in its expression. In this study we report the differentially programmed accumulation of the α, α′, and β subunits of β-conglycinin. Multiple isomeric forms of each subunit are present in the dry seed, but the timing of their accumulation is unique for each subunit. The previously reported variation in amount of α′ and α subunits in axis and cotyledons is also reflected in the amount of subunit specific mRNA which is present in each tissue. The β subunit, previously undetected in soybean axes, is found to be synthesized but rapidly degraded. These differences in β-conglycinin protein accumulation may be reflected by the morphological differences observed in protein bodies between these two tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号