首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The work presents the data indicating that the temperature of Y. pseudotuberculosis cultivation is very important in regulating the activity of pathogenicity factors, necessary for the initiation of the pathogenic process in the cells of the macroorganism. Low temperature (8-10 degrees C), necessary for the growth of Y. pseudotuberculosis, facilitates the activation of invasive and toxic pathogenicity factors. At a growth temperature of 37 degrees C the inhibition of such necessary attributes of virulence as adhesion and invasion into epithelial cells occurs in Y. pseudotuberculosis, which decreases the capacity of these bacteria for inducing the infectious process. The virulence of Y. pseudotuberculosis population, lost as the result of its cultivation in synthetic culture media at a temperature of 37 degrees C, has been found to be restored at low temperature.  相似文献   

2.
The specific activity of urease, nitrogenase, hialuronidase and neuraminidase in Y. pseudotuberculosis grown in different culture media and at different temperature has been studied. These enzymes have been found capable of functioning at both relatively low (2-8 degrees C) and high (37 degrees C) temperatures. The thermoadaptive properties of Y. pseudotuberculosis within a wide range of temperatures are ensured by the constant presence of isoenzymes, functioning only at low temperatures or only at high temperatures, in the microbial cells. Low temperature in combination with a definite culture medium triggers the activity of certain enzymatic systems, which explains, to some extent, the biochemical mechanisms of the psychrophilic properties of Y. pseudotuberculosis.  相似文献   

3.
The impact of the availability of glucose in nutrition medium and growth temperature on the composition and thermotropic behavior of lipids from Yersinia pseudotuberculosis (Enterobacteriaceae) was studied. Y. pseudotuberculosis was grown in nutrition broth (NB) with/without glucose at 8 and 37 degrees C, corresponding to the temperatures of saprophytic and parasitic phases of this bacterium life. The decrease of phosphatidylethanolamine, phosphatidylglycerol and unsaturated fatty acids and the parallel increase of lysophosphatidylethanolamine and diphosphatidylglycerol and saturated and cyclopropane acids were the most significant changes with temperature in bacterial phospholipid (PL) classes and fatty acids, respectively. Glucose did not effect the direction of temperature-induced changes in the contents of PLs, fatty acids, however it enhanced (for PLs) or diminished (for fatty acids) intensity of these changes. The thermally induced transitions of lipids were studied by differential scanning calorimetry (DSC). It was revealed that the addition of glucose to NB induced a sharp shift of DSC thermograms to lower temperatures in the "warm" variants of bacteria. The peak maximum temperature (Tmax) of thermal transitions dropped from 50 to 26 degrees C that is the optimal growth temperature of Y. pseudotuberculosis. Tmax of total lipids of the cells grown at 8 degrees C without glucose in NB was equal to growth temperature that corresponded to the classical mechanism of homeoviscous adaptation of bacteria. An addition of glucose to NB at this growth temperature caused the subsequent reduction of Tmax to -8 degrees C, while the temperature ranges of thermograms were not substantially changed. So, not only the temperature growth of bacteria, but also the presence of glucose in NB can modify the physical state of lipids from Y. pseudotuberculosis. In this case, both factors affect additively. It is suggested that glucose influences some membrane-associated proteins and then the fluidity of lipid matrix through temperature-inducible genes.  相似文献   

4.
The influence of culture conditions and plasmids on immunoglobulin (Ig)-binding activity of two isogenic strains of Yersinia pseudotuberculosis (plasmid-free strain 48(-)82(-) and strain 48(+)82(+) bearing plasmids pYV48 and pVM82) was studied. The highest activity was observed in the bacteria grown on glucose-containing liquid medium in the stationary growth phase. The Ig-binding activity of the bacteria cultured on the liquid medium at pH 6.0 was about 1.5-fold higher than that of the bacteria grown at pH 7.2. Expression of the Ig-binding proteins (IBPs) was most influenced by temperature of cultivation. The IBP biosynthesis was activated in the bacteria grown at 4 degrees C and markedly decreased in those grown at 37 degrees C. The Ig-binding activity of lysates from the bacteria was caused by proteins with molecular weights of 7-20 kD. The activities of the plasmid-free and plasmid-bearing Y. pseudotuberculosis strains (48(-)82(-) and 48(+)82(+), respectively) were analyzed, and the plasmids were shown to have no effect on the IBP expression and biosynthesis, which seemed to be determined by chromosomal genes.  相似文献   

5.
The content of lysophosphatidylethanolamine (LPE) in Y. pseudotuberculosis cells was found to increase during their growth at 8 degrees C under stationary conditions (without stirring the medium) and at 37 degrees C when the medium contained glucose. The maximum level of LPE (up to 45% of the total phospholipids) was observed in cells grown at 8 degrees C under stationary conditions. Such cells showed an enhanced growth rate, a reduced yield of biomass, an altered cell morphology, and an increased cell area. The cells contained unsaturated fatty acids, phosphatidylethanolamine (PE), and total phospholipids in small amounts, whereas neutral lipids and diphosphatidylglycerol were abundant. In addition, the cells contained an amount of methylated PE and phospholipids of unknown structure. Irrespective of whether the temperature for growth was low or high, the LPE-rich cells showed a high value (32-36 degrees C) of the maximum temperature of thermal transition of lipids (Tmax). This finding is indicative of a densification of the membrane lipid matrix of the LPE-rich cells. The suggestion is made that LPE is accumulated in glucose-fermenting bacterial cells in response to stress caused by oxygen deficiency and low pH values of the growth medium. The possible relationship between LPE accumulation and the virulence of Y. pseudotuberculosis cells grown at low temperatures is discussed.  相似文献   

6.
Y. pseudotuberculosis cells cultivated at temperatures of 37 degrees C and 8 degrees C were found to be capable of incorporating exogenic precursors into DNA, RNA and protein. The linear growth of thymidine incorporation occurred during 8 hours of cultivation at 37 degrees C, then the amount of the incorporated label decreased. At 8 degrees C the level of thymidine incorporation into DNA gradually increased for 80 hours and longer, but not reaching the level of incorporation observed at 37 degrees C. The incorporation of uridine into RNA of Y. pseudotuberculosis cells reached its maximum after 4 hours of cultivation at 37 degrees C, at a lower temperature of cultivation the incorporation of uridine into bacterial cells was almost linear, though slower, and lasted for 20 hours. The content of radioactive alanine in Y. pseudotuberculosis protein increased during 16 hours of cultivation at a high temperature, while at 8 degrees C the growth of the incorporation level lasted for at least 40 hours. For all precursors under study the incorporation rate into the cell biopolymers at the initial stages of cultivation was higher at 37 degrees C, than at a lower temperature.  相似文献   

7.
Study of the cultivation properties of 82 enterobacterial strains has revealed that the colonies of virulent Y. enterocolitica (serovars O3, O9) and Y. pseudotuberculosis (serovar I) are temperature-sensitive. This sign, closely connected with the presence and expression of the virulence plasmid with a molecular weight of 44-48 MD, is not characteristic of other strains. Virulent Yersinia grown in nutrient agar for 48 hours at 37 degrees C form colonies which are smaller in diameter than those formed during cultivation at 26 degrees C (with the significance of differences t greater than or equal to 4), their diameter at 37 degrees C not exceeding 1.0 mm. The test for the determination of the temperature-sensitive morphology of Yersinia colonies, along with the tests for other virulence markers, is probably suitable for the detection of the causative agents of yersiniosis or pseudotuberculosis.  相似文献   

8.
The object of the study was the first stage of biological oxidation: the transfer of hydrogen electrons to the components of the respiratory chain of Y. pseudotuberculosis cells by NAD and NADF, coenzymes of pyridine-dependent dehydrogenases, having labile redox properties. The study revealed that in the low-temperature cultivation of Y. pseudotuberculosis an increase in the content of NAD and NADF was 1.5- to 2.0-fold greater than that observed at 37 degrees C, which was indicative of the fact that at low environmental temperature pyridine-dependent dehydrogenases played a more important role than at high temperature (37 degrees C). This, in combination with other mechanisms, made it possible for bacterial cells to maintain the level of energy metabolism, necessary for their survival, in the environment with low and constantly changing temperature.  相似文献   

9.
The comparative study of the synthesis lipids in Y. pseudotuberculosis, depending on the conditions of their cultivation (at different temperatures in mineral media and in media, containing organic compounds), has been carried out. As demonstrated in this study, temperature in the main inducing factor, affecting the synthesis of lipids of definite classes and fatty acids, incorporated into these lipids. During the cultivation of Y. pseudotuberculosis in mineral and organic media under the conditions of low temperature their lipid composition remains unchanged, but at 6 degrees C the synthesis of unsaturated fatty acids prevails, while at 37 degrees C saturated fatty acids are mainly synthesized. On mineral media at 37 degrees C bacteria synthesize mostly nonpolar lipids in the form of reserve substances, represented by triglycerides and free fatty acids.  相似文献   

10.
The strains of Yersinia pseudotuberculosis isolated from patients in the course of outbreaks of infection (epidemic strains) were found to possess at least two plasmids with molecular masses of 45 and 82 MD. In contrast, the strains obtained in sporadic cases harbored different sets of plasmids, but never the 82 MD plasmids. These plasmids designated pVM82 and isolated from strains of different geographic regions of the country were identical. pVM82 have no homology with Y. pestis plasmids of the similar size coding for the FraI antigen. The pVM82 DNA was found to be composed of the 57 MD plasmid DNA and the 25 MD fragment of Y. pseudotuberculosis DNA. Using Western blot hybridization technique it was shown that the presence of pVM82 suppressed formation of antibody against some major antigenic determinants of Y. pseudotuberculosis. Immunosuppression took place when the animals were infected with bacteria grown below 20 but not at 37 degrees C. The 57 MD plasmid failed to produce immunosuppression. It was concluded that the 25 MD fragment of pFN82 encoded a novel pathogenic factor responsible for immunosuppression.  相似文献   

11.
Y. pestis, Y. pseudotuberculosis, Y. enterocolitica, Y. frederiksenii, Y. intermedia, Y. kristensenii and Y. ruckeri grown at 4 degrees C were characterized by fatty acid composition with a high content of C16:1 and C18:1, as well as the proportion of saturated to nonsaturated fatty acids equal to, on the average, 2.0. In Yersinia lipopolysaccharides a relatively high level of C16:1 and C12:0 was observed with the prevalence of 3-OH-C14:0. In the fatty-acid spectra of both cells and lipopolysaccharides no essential difference was noted. Thus, during growth at low temperature differences, earlier detected in the studied Yersinia species grown at 37 degrees C and making it possible to divide 7 Yersinia species into 2 groupes, were completely leveled. These results confirmed the close phylogenetic relationship between the Yersinia species under study and were indicative of more pronounced biological community of Yersinia under the conditions of growth at low temperature.  相似文献   

12.
C Barber  E Eylan 《Microbios》1977,20(81-82):145-152
Comparative agglutinations of homogeneous stable suspensions prepared with Yersinia enterocolitica growth at 37 degrees C and at 25 degrees C were performed with anti-sera prepared in rabbits with the bacteria grown at both these temperatures. Sera prepared with live Y. enterocolitica grown at 37 degrees C agglutinated both suspensions at a much lower titre than the sera prepared with formaldehyde-treated bacteria is grown at 25 degrees C. All the sera in which strongly precipitating antibodies were induced reacted, in agar-gel, against native and heated proteins. The small amounts of antipolysaccharides induced in all the sera reacted only in the ring test against the bacterial polysaccharides. The absorption of the sera prepared with live Y. enterocolitica grown at 37 degrees C, with antigens synthesized at 25 degrees C did not remove all the homologous antibodies; apparently, some determinants are specific for the bacteria grown at 37 degrees C. Morphological changes of the small rods to elongated bacilli and filamentous forms were observed in most cultures of the Y. enterocolitica grown at 37 degrees C; these changes coincided with a low yield of proteins and point to an inhibitory effect of the 37 degrees C temperature.  相似文献   

13.
The composition and structure of lipopolysaccharides (LPS) of three isogenic strains of Yersinia pseudotuberculosis serovar O:1b (without plasmids (82-) and with plasmids pVM82 (82+) or p57 (57+)) grown at 8 or 37 degrees C were studied by chemical and immunochemical methods, SDS-polyacrylamide gel electrophoresis, and 13C-NMR spectroscopy. At the lower temperature, the (82-) and (82+) strains synthesized S-form of LPS with similar structure characterized by high acylation and immunochemical activity. On the other hand, LPS of the (82+) strain had shorter carbohydrate chains than LPS of the (82-) strain. The contents of LPS were decreased in cells of the plasmid-free strain grown at the higher temperature. LPS isolated from these cells were of the R-form and had low acylation and immunochemical activity. Total LPS content in cells of the (82+) strain did not significantly depend on the growth temperature. LPS of the warm variant of these bacteria contained a polysaccharide fragment and had moderate immunochemical activity. The cells of the (57+) strain at both growth temperatures had low LPS contents and produced LPS of low acylation without O-specific chains (cold variant) or containing O-polysaccharide with low polymerization degree (bacteria grown at 37 degrees C). The data indicate that in the absence of the plasmids, LPS synthesis is encoded by the chromosomal genes in pseudotuberculosis bacteria. Expression of the genes involved in LPS synthesis is regulated by the temperature of bacterial growth. Genes responsible for temperature-dependent regulation of LPS biosynthesis are located on chromosomal DNA. The pVM82 plasmid includes two gene groups; one group is localized in a 57-mD fragment of DNA and inhibits LPS synthesis, suppressing temperature-dependent regulation of the synthesis. The genes located in a 25-mD fragment of the pVM82 plasmid are de-repressors of the 57-mD fragment, and they restore the ability of pseudotuberculosis bacteria to synthesize relatively long LPS at both growth temperatures.  相似文献   

14.
Y. pseudotuberculosis strains were grown at 6 degrees-8 degrees C and then incubated at 37 degrees C. 3-6 hours later serum resistance appeared in the strains having plasmid virulence and producing outer membrane polypeptide with a molecular weight of 120 kD, known as P1. 10-12 hours later serum resistance appeared in the strain having the virulence plasmid, but not producing P1, as well as in strains in which the plasmid was eliminated.  相似文献   

15.
Effects of cultivation temperature (8 or 37 degrees C) and plasmid profile on the lipid A fatty acids of three isogenic Yersinia pseudotuberculosis strains (plasmidless (82-) and strains containing pVM82 (82+) or p57 (57+) plasmids) obtained by alkaline hydrolysis of the whole bacterial cells and differentiated from fatty acids of other membrane lipids were investigated. On the basis of the analysis, it is concluded that lipids A of all studied samples contain 3-hydroxytetradecanoic and dodecanoic acids, a part of which exists as the 3-dodecanoyloxytetradecanoic derivative. The effect of temperature appears in the higher contents of ester- and amide-linked 3-acyloxyalkanoic residues in lipid A from the "cold" variants of the bacteria and is determined by chromosomal genes. The plasmid effect is seen as various responses of the isogenic derivatives to change of growth temperature: in cells of strains 82+ and 82- grown in the cold, the share of lipid A fatty acids in the total population of cellular fatty acids is reduced, while in strains with plasmid p57 it is increased. The temperature variants of the 57+ strain differ by the low contents of amide-linked 3-acyloxyalkanoic acids. Finally, lack of plasmid pVM82 in the "warm" variants of the bacteria results in accumulation of glycolipid molecules deprived of dodecanoic acid. Correlation between growth temperature and plasmid profiles, on one hand, and lipid A fatty acid composition and potential pathogenic properties of the Y. pseudotuberculosis, on the other hand, and also possible mechanisms of thermal adaptation of this organism are discussed.  相似文献   

16.
A decrease in the temperature of the cultivation of Yersinia pseudotuberculosis has been shown to lead to the appearance of motility and adhesive properties in these bacteria, to enhance their ability to penetrate the body of the host through mucous membranes, while a rise in the temperature of cultivation has been shown to cause the loss of these properties and, therefore, a decrease in the penetrating capacity of these bacteria. Y. pseudotuberculosis penetrates from the surface of the epithelium into the blood stream in 10 minutes. The capacity of the bacteria penetrating into the blood to induce lethal infection is determined, to a great extent, by the plasmid calcium dependence, and in oral infection, when these bacteria must overcome the barrier formed by the mucous membrane, calcium-dependent bacteria grown at 6-8 degrees C show the highest degree of virulence.  相似文献   

17.
The relationship between the multiplication of bacteria, the content of nucleic acid and the specific rate of their growth during their batch cultivation in nutrient broth and mineral medium at temperatures of 37 degrees C and 4-6 degrees C was studied in the causative agents of saprozoonotic infections with L. monocytogenes and Y. pseudotuberculosis used as typical representatives of such bacteria. The content of DNA was shown to remain practically unchanged after the alteration of cultivation temperature and the conditions of nutrition. The linear relationship between the content of RNA and specific growth rate was registered both at 37 degrees C and 4-6 degrees C. However a higher content of RNA at low temperatures was found to correspond to one and the same specific growth rate, which was linked with the additional synthesis of this nucleic acid.  相似文献   

18.
Prior studies have shown some unusual changes in the lipopolysaccharides (LPSs) from Yersinia pseudotuberculosis that occur when the microbe is grown at low temperature; the specific features of these LPSs in comparison with the LPSs from other enteropathogens may be due to unusual thermal adaptation mechanisms. To gain insight into this question, the chemical composition of Y. pseudotuberculosis LPS has been determined. The data indicate that two different S-form LPS species are produced in "cold"-grown bacteria. These have an identical set of bands after SDS-PAGE, similar elution profiles during gel-filtration on a Sephadex G-200 column in the presence of sodium deoxycholate, identical monosaccharide and fatty acid compositions, and similar polymerization degrees, but they have different acylation degree. On the whole, the macromolecularly different LPS populations, varying not only in their smooth or rough nature and hydrophobicity, but also in their localization in the outer membrane and, probably, their interactions with other cell components, are synthesized in "cold"-grown Y. pseudotuberculosis. The biological sense of the heterogeneity and its connection with psychrophilic and pathogenic properties of pseudotuberculosis organisms are discussed.  相似文献   

19.
20.
Under experimental conditions within the time limit of 21-35 days the causative agents of sapronotic infections in binary cultures, grown on a solid medium at 37 degrees C, 25-27 degrees C and 6-8 degrees C, interacted with one another transbiotically and through contact, their interactions having the character of amensalism, commensalisms-amensalism, competitive equilibrium, antibiosis. Irrespective of the initial density, a change in the species composition was observed, one of them playing the dominating role. At 37 degrees C mutual antagonism of Yersinia pseudotuberculosis and Pseudomonas aeruginosa killed both cultures. P. aeruginosa cells were also killed when cultivated at 37 degrees C jointly with Listeria monocytogenes, the most resistant species under experimental conditions. While studying the character of microorganisms interactions the method of contacting cultures on a solid medium was shown to give more information in comparison with the "cross-strip" method. Possible interspecific relationships between the causative agents of sapronotic infections under natural conditions are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号