首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liposomes loaded with ketorolac tromethamine salt were prepared by using a thin layer evaporation method. The physical properties of liposomes were studied by using atomic force microscopy (AFM) and transmission electron microscopy (TEM). The relationship between lipid composition, encapsulation efficiency, vesicle size, and the release of ketorolac tromethamine-loaded liposomes was studied. The drug content was found to be dependent on the lipidic composition used in the preparations and, in particular, vesicles containing both cationic lipids (dimethyldioctadecylammonium bromide and N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride), and phosphatidylcholine had a higher entrapped efficiency than liposomes with phosphatidylcholine alone or in the presence of cholesterol. Finally, the cationic liposomes appear to be useful as carriers for ketorolac tromethamine to control its in vitro release.  相似文献   

2.
In the present study, 2 alternative strategies to optimize ketorolac transdermal delivery, namely, prodrugs (polyoxyethylene glycol ester derivatives, I–IV) and nanostructured lipid carriers (NLC) were investigated. The synthesized prodrugs were chemically stable and easily degraded to the parent drug in human plasma. Ketorolac-loaded NLC with high drug content could be successfully prepared. The obtained products formulated into gels showed a different trend of drug permeation through human stratum corneum and epidermis. Particularly, skin permeation of ester prodrugs was significantly enhanced, apart from ester IV, compared with ketorolac, while the results of drug release from NLC outlined that these carriers were ineffective in increasing ketorolac percutaneous absorption owing to a higher degree of mutual interaction between the drug and carrier lipid matrix. Polyoxyethylene glycol esterification confirmed to be a suitable approach to enhance ketorolac transdermal delivery, while NLC seemed more appropriate for sustained release owing to the possible formation of a drug reservoir into the skin. Published: August 4, 2006  相似文献   

3.
Liposomes loaded with ketorolac tromethamine salt were prepared by using a thin layer evaporation method. The physical properties of liposomes were studied by using atomic force microscopy (AFM) and transmission electron microscopy (TEM). The relationship between lipid composition, encapsulation efficiency, vesicle size, and the release of ketorolac tromethamine-loaded liposomes was studied. The drug content was found to be dependent on the lipidic composition used in the preparations and, in particular, vesicles containing both cationic lipids (dimethyldioctadecylammonium bromide and N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride), and phosphatidylcholine had a higher entrapped efficiency than liposomes with phosphatidylcholine alone or in the presence of cholesterol. Finally, the cationic liposomes appear to be useful as carriers for ketorolac tromethamine to control its in vitro release.  相似文献   

4.
Rao Y  Zheng F  Zhang X  Gao J  Liang W 《AAPS PharmSciTech》2008,9(3):860-865
In order to develop a novel transdermal drug delivery system that facilitates the skin permeation of finasteride encapsulated in novel lipid-based vesicular carriers (ethosomes)finasteride ethosomes were constructed and the morphological characteristics were studied by transmission electron microscopy. The particle size, zeta potential and the entrapment capacity of ethosome were also determined. In contrast to liposomes ethosomes were of more condensed vesicular structure and they were found to be oppositely charged. Ethosomes were found to be more efficient delivery carriers with high encapsulation capacities. In vitro percutaneous permeation experiments demonstrated that the permeation of finasteride through human cadaver skin was significantly increased when ethosomes were used. The finasteride transdermal fluxes from ethosomes containing formulation (1.34 ± 0.11 μg/cm2/h) were 7.4, 3.2 and 2.6 times higher than that of finasteride from aqueous solution, conventional liposomes and hydroethanolic solution respectively (P < 0.01).Furthermore, ethosomes produced a significant (P < 0.01) finasteride accumulation in the skin, especially in deeper layers, for instance in dermis it reached to 18.2 ± 1.8 μg/cm2. In contrast, the accumulation of finasteride in the dermis was only 2.8 ± 1.3 μg/cm2 with liposome formulation. The study demonstrated that ethosomes are promising vesicular carriers for enhancing percutaneous absorption of finasteride.  相似文献   

5.
The influence of formulation additives, e.g. preservative, antioxidant and viscolizing agents on in vitro transcorneal permeation of ketorolac tromethamine from 0.5%(w/v) aqueous drop was studied using goat cornea. Permeation characteristics of drug, from selected formulations, through excised rabbit cornea were also evaluated. Aqueous solution of ketorolac tromethamine (0.5% w/v), pH 6.5 or 7.0 having ionic strength 0.2, was prepared. To this solution perservatives either alone or in combination with other additives were added to have drops of various composition. Permeation studies with goat cornea showed maximum permeation of ketorolac tromethamine from formulation containing benzalkonium chloride and disodium edetate. Increase in viscosity of drop resulted in decreased permeation of drug. Formulation containing benzalkonium chloride and disodium edetate also increased permeation of drug through rabbit cornea. Cumulative permeation of drug through rabbit cornea was found to be 2.3-2.4 fold higher than that observed with goat cornea.  相似文献   

6.
In the present study attempt was made for preparation of isotretinoin-hydroxypropyl β cyclodextrin (HP-β-CD) inclusion complex and encapsulate this complex in elastic liposomes to study the effect of dual carrier approach on skin targeting of isotretinoin. The isotretinoin HP-β-CD complex was prepared by freeze-drying method and characterized by IR spectroscopy. The drug and drug-CD complex loaded elastic liposomal formulation were prepared and characterized in vitro, ex-vivo and in vivo for shape, size, entrapment efficiency, no. of vesicles per cubic mm, in vitro skin permeation and deposition study, photodegradation and skin toxicity assay. The transdermal flux for different vesicular formulations was observed between 10.5 ± 0.5 to 13.9 ± 1.6 μg/cm2/h. This is about 15-21 folds higher than that obtained from drug solution (0.7 ± 0.1 μg/cm2/h) and 4-5 folds higher than obtained with drug-CD complex solution (2.7 ± 0.1 μg/cm2/h). The amount of drug deposit was found to increase significantly (p < 0.05) by cyclodextrin complexation (30.1 ± 0.1 μg). The encapsulation of this complex in elastic liposomal formulation further increases its skin deposition (262.2 ± 21 μg). The results of skin irritation study using Draize test also showed the significant reduction in skin irritation potential of isotretinoin elastic liposomal formulation in comparison to free drug. The results of the present study demonstrated that isotretinoin elastic liposomal formulation possesses great potential for skin targeting, prolonging drug release, reduction of photodegradation, reducing skin irritation and improving topical delivery of isotretinoin.  相似文献   

7.
Context: Pirfenidone (PFD) is an anti-fibrotic and anti-inflammatory agent indicated for the treatment of idiopathic pulmonary fibrosis (IPF). The current oral administration of PFD has several limitations including first pass metabolism and gastrointestinal irritation.

Objective: The aim of this study is to investigate the feasibility of transdermal delivery of PFD using liposomal carrier system.

Materials and methods: PFD-loaded liposomes were prepared using soy phosphatidylcholine (SPC) and sodium cholate (SC). Encapsulation efficiency (EE) of PFD in liposomes was optimized using different preparation techniques including thin film hydration (TFH) method, direct injection method (DIM) and drug encapsulation using freeze–thaw cycles. In vitro drug release study was performed using dialysis membrane method. The skin permeation studies were performed using excised porcine ear skin model in a Franz diffusion cell apparatus.

Results and discussion: The average particle size and zeta-potential of liposomes were 191?±?4.1?nm and ?40.4?±?4.5?mV, respectively. The liposomes prepared by TFH followed by 10 freeze–thaw cycles showed the greatest EE of 22.7?±?0.63%. The optimized liposome formulation was incorporated in hydroxypropyl methyl cellulose (HPMC) hydrogel containing different permeation enhancers including oleic acid (OA), isopropyl myristate (IPM) and propylene glycol (PG). PFD-loaded liposomes incorporated in hydrogel containing OA and IPM showed the greatest flux of 10.9?±?1.04?μg/cm2/h across skin, which was 5-fold greater compared with free PFD. The cumulative amount of PFD permeated was 344?±?28.8?μg/cm2 with a lag time of 2.3?±?1.3?h.

Conclusion: The hydrogel formulation containing PFD-loaded liposomes can be developed as a potential transdermal delivery system.  相似文献   

8.
Shaoul E  Ayalon A  Tal Y  Lotan T 《PloS one》2012,7(2):e31922
Transdermal drug delivery has made a notable contribution to medical practice, but has yet to fully achieve its potential as an alternative to oral delivery and hypodermic injections. While transdermal delivery systems would appear to provide an attractive solution for local and systemic drug delivery, only a limited number of drugs can be delivered through the outer layer of the skin. The most difficult to deliver in this way are hydrophilic drugs. The aquatic phylum Cnidaria, which includes sea anemones, corals, jellyfish and hydra, is one of the most ancient multicellular phyla that possess stinging cells containing organelles (cnidocysts), comprising a sophisticated injection system. The apparatus is folded within collagenous microcapsules and upon activation injects a thin tubule that immediately penetrates the prey and delivers its contents. Here we show that this natural microscopic injection system can be adapted for systemic transdermal drug delivery once it is isolated from the cells and uploaded with the drug. Using a topically applied gel containing isolated natural sea anemone injectors and the muscarinic receptor antagonist scopolamine, we found that the formulated injectors could penetrate porcine skin and immediately deliver this hydrophilic drug. An in-vivo study in pigs demonstrated, for the first time, rapid systemic delivery of scopolamine, with T(max) of 30 minutes and C(max) 5 times higher than in controls treated topically with a scopolamine-containing gel without cnidocysts. The ability of the formulated natural injection system to penetrate a barrier as thick as the skin and systemically deliver an exogenous compound presents an intriguing and attractive alternative for hydrophilic transdermal drug delivery.  相似文献   

9.
The purpose of this study was to design and investigate the transdermal controlled release cubic phase gels containing capsaicin using glycerol monooleate (MO), propylene glycol (1,2-propanediol, PG), and water. Three types of cubic phase gels were designed based on the ternary phase diagram of the MO–PG–water system, and their internal structures were confirmed by polarizing light microscopy (PLM) and small-angle X-ray scattering (SAXS). Release results showed the cubic phase gels could provide a sustained system for capsaicin, while the initial water content in the gels was the major factor affecting the release rate. Release kinetics was determined to fit Higuchi’s square-root equation indicating that the release was under diffusion control. The calculated diffusion exponent showed the release from cubic phase gels was anomalous transport. The unique structure of the cubic phases, capsaicin distributed in the lipid bilayers, and cubic phase gel swelling contributed to the release mechanism. The cubic phase gel may be an interesting application for transdermal delivery system of capsaicin in alleviating the post-incision pain.  相似文献   

10.
Abstract

The efficacy of gel formulations containing free and liposomal foscarnet has been evaluated in a murine model of cutaneous Herpes simplex virus type-1 infection. Both formulations were applied topically 3 times daily for 4 days and initiated 24 h post-infection. The penetration of liposomes incorporated into the gel in infected skin tissues was better than that of liposomes dispersed in buffer. Therein, their localization mostly matched that of viral antigen detected by immunoperoxydase staining. Despite these facts, the efficacy of gel formulations of both free and liposomal foscarnet in preventing the development of a zosteriform rash in mice was similar. Electron microscopic examination revealed that liposomes incorporated into the gel formed aggregates together with the micelles of gel. Diffusion studies showed that liposomes were trapped within these aggregates and were hardly able to diffuse across a polycarbonate membrane. In addition, although the liposomes were shown to be highly stable in vitro, the formation of these aggregates destabilized their membrane resulting in a premature release of foscarnet from liposomes. The efficacy of both gel formulations was higher than that of solutions of free or liposomal foscarnet suggesting that the gel formulation is a suitable matrix for the delivery of drugs. Thus, strategies aimed at reducing the interaction of liposomes with the gel could be a convenient approach to improve the efficacy of liposome-encapsulated drug over the free drug.  相似文献   

11.
The effects of chiral discrimination in inclusion complexes formed by native β-cyclodextrin and its substituted form (namely methyl-β-cyclodextrin) with racemate or pure enantiomers of the non-steroidal anti-inflammatory drug ibuprofen have been investigated in water. Stability constants and complexation efficiency have been determined for these host–guest systems with a 1:1 molar ratio from phase solubility profiles, showing that in aqueous solution, methylated cyclodextrin is a better complex agent than native cyclodextrin, with more enhanced effects for the (R)-enantiomer. These results have been validated using NMR technique. In particular, 1H NMR spectra in D2O show a splitting of the signals for the methyl group and the aromatic protons close to the asymmetric centre of the racemate ibuprofen included in cyclodextrin cavity.  相似文献   

12.
We evaluated the ability of microemulsions containing medium-chain glycerides as penetration enhancers to increase the transdermal delivery of lipophilic (progesterone) and hydrophilic (adenosine) model drugs as well as the effects of an increase in surfactant blend concentration on drug transdermal delivery. Microemulsions composed of polysorbate 80, medium-chain glycerides, and propylene glycol (1:1:1, w/w/w) as surfactant blend, myvacet oil as the oily phase, and water were developed. Two microemulsions containing different concentrations of surfactant blend but similar water/oil ratios were chosen; ME-lo contained a smaller concentration of surfactant than ME-hi (47:20:33 and 63:14:23 surfactant/oil/water, w/w/w). Although in vitro progesterone and adenosine release from ME-lo and ME-hi was similar, their transdermal delivery was differently affected. ME-lo significantly increased the flux of progesterone and adenosine delivered across porcine ear skin (4-fold or higher, p < 0.05) compared to progesterone solution in oil (0.05 ± 0.01 μg/cm2/h) or adenosine in water (no drug was detected in the receptor phase). The transdermal flux of adenosine, but not of progesterone, was further increased (2-fold) by ME-hi, suggesting that increases in surfactant concentration represent an interesting strategy to enhance transdermal delivery of hydrophilic, but not of lipophilic, compounds. The relative safety of the microemulsions was assessed in cultured fibroblasts. The cytotoxicity of ME-lo and ME-hi was significantly smaller than sodium lauryl sulfate (considered moderate-to-severe irritant) at same concentrations (up to 50 μg/mL), but similar to propylene glycol (regarded as safe), suggesting the safety of these formulations.  相似文献   

13.
Abstract

Valsartan (VLT) is a highly selective and orally active antihypertensive drug. However, its oral administration is associated with drawbacks like low bioavailability. The objective of this study was to design and develop a transdermal delivery system for VLT using ethosomal carriers to investigate their enhanced transdermal delivery potential. VLT ethosomes were prepared by cold method. VLT ethosomes were characterized by scanning electron microscopy. The prepared ethanolic liposomes were characterized to be spherical having low polydispersity of nano-size range with good entrapment efficiency. ETC5 ethosomal suspension with 4% of phospholipon 90H and 40% of ethanol was found to have highest entrapment efficiency, i.e. 80.230?±?0.8748%. The permeation study of ethosomes was evaluated by ex vivo diffusion study through rat abdominal skin using Franz’s diffusion cells and ETC5 ethosomal suspension was found to have highest permeation with flux of 92.819?±?1.539?µg/cm2/h, when compared to the permeation profiles of drug solutions either in water or in a water–ethanol mixture. Transdermal application of ethosomal VLT on Wistar rats showed better and prolonged antihypertensive activity in comparison to orally administered VLT suspension by virtue of transdermal permeation through Wistar rat skin. Histopathological study of skin applied with ETC5 showed intercellular permeation across skin by dissolving intercellular lipids in epidermis without causing any rigorous changes in the skin cellular structure. In conclusion, ethosomes enabled the transdermal permeation of VLT, which amply proves its superiority over oral administration for antihypertensive treatment.  相似文献   

14.
The aim of this study was to improve the solubility and oral bioavailability of clozapine (CLZ), a poorly water-soluble drug subjected to substantial first-pass metabolism, employing cyclodextrin complexation technique. The inclusion complexes were prepared by an evaporation method. Phase solubility studies, differential scanning calorimetry, X-ray powder diffraction, and Fourier transform infrared spectroscopy were used to evaluate the complexation of CLZ with hydroxypropyl-β-cyclodextrin (HP-β-CD) and the formation of true inclusion complexes. Characterization and dissolution studies were carried out to evaluate the orally disintegrating tablets (ODTs) containing CLZ/HP-β-CD complexes prepared by direct compression. Finally, the bioavailability studies of the prepared ODTs were performed by oral administration to rabbits. The ODTs showed a higher in vitro dissolution rate and bioavailability compared with the commercial tablets. It is evident from the results herein that the developed ODTs provide a promising drug delivery system in drug development, owing to their excellent performance of a rapid onset of action, improved bioavailability, and good patient compliance.  相似文献   

15.
For improving effectiveness of conventional chemotherapy of subcutaneous tumor, we selected 2-methoxyestradiol (2-ME) as a model drug, local injectable PLGA-PEG-PLGA copolymer thermosensitive hydrogel loading 2-ME liposomes instead of free 2-ME as a novel two-phase drug delivery system was developed, which avoid rapid clearance of liposomes follwing systemic administration. This new transport system was characterized in vitro and in vivo including rheological behavior, thermo-sensitiveness, stability, released character and intratumoral delivery. The PLGA-PEG-PLGA copolymer solution exhibited still reversible thermosensitive property and better syringeability after incorporated 2-ME liposomes. The 2-ME liposomes were demonstrated stable in the hydrogel by five methods such as scanning electron microscopy (SEM), fluorescent labeling, opalescence, particle size and ultrafiltration methods. Results showed that intact liposomes could be released from the hydrogel and following zero-order model, and sustained release one–two months in vitro and in vivo. In vivo release data demonstrating that 2-ME liposomes could be transported to tumor site, improved therapeutic efficacy and bioavailability of 2-ME liposomes in subcutaneous tumor chemotherapy.  相似文献   

16.
The purpose of this study was to formulate topically effective controlled release ophthalmic acetazolamide liposomal formulations. Reverse-phase evaporation and lipid film hydration methods were used for the preparation of reversephase evaporation (REVs) and multilamellar (MLVs) acetazolamide liposomes consisting of egg phosphatidylcholine (PC) and cholesterol (CH) in the molar ratios of (7∶2), (7∶4), (7∶6), and (7∶7) with or without stearylamine (SA) or dicetyl phosphate (DP) as positive and negative charge inducers, respectively. The prepared liposomes were evaluated for their entrapment efficiency and in vitro release. Multilamellar liposomes entrapped greater amounts of drug than REVs liposomes. Drug loading was increased by increasing CH content as well as by inclusion of SA. Drug release rate showed an order of negatively charged > neutral > positively charged liposomes, which is the reverse of the data of drug loading efficiency. Physical stability study indicated that approximately 89%, 77%, and 69% of acetazolamide was retained in positive, negative, and neutral MLVs liposomal formulations up to a period of 3 months at 4°C. The intraocular pressure (IOP)-lowering activity of selected acetazolamide liposomal formulations was determined and compared with that of plain liposomes and acetazolamide solution. Multilamellar acetazolamide liposomes revealed more prolonged effect than REVs liposomes. The positively charged and neutral liposomes exhibited greater lowering in IOP and a more prolonged effect than the negatively charged ones. The positive multilamellar liposomes composed of PC:CH:SA (7:4:1) molar ratio showed the maximal response, which reached a value of −7.8±1.04 mmHg after 3 hours of topical administration. Published: January 5, 2007  相似文献   

17.
A novel method was developed for the simultaneous determination of guaifenesin (GUA) and ketorolac tromethamine (KET) enantiomers in plasma samples. Since GUA probably increases the absorption of coadministered drugs (e.g., KET), it would be extremely important to monitor KET plasma levels for the purpose of dose adjustment with a subsequent decrease in the side effects. Enantiomeric resolution was achieved on a polysaccharide‐based chiral stationary phase, amylose‐2, as a chiral selector under the normal phase (NP) mode and using ornidazole (ORN) as internal standard. This innovative method has the advantage of the ease and reliability of sample preparation for plasma samples. Sample clean‐up was based on simply using methanol for protein precipitation followed by direct extraction of drug residues using ethanol. Both GUA and KET enantiomers were separated using an isocratic mobile phase composed of hexane/isopropanol/trifluoroacetic acid, 85:15:0.05 v/v/v. Peak area ratios were linear over the range 0.05–20 µg/mL for the four enantiomers S (+) GUA, R (–) GUA, R (+) KET, and S (–) KET. The method was fully validated according to the International Conference on Harmonization (ICH) guidelines in terms of system suitability, specificity, accuracy, precision, robustness, and solution stability. Finally, this procedure was innovative to apply the rationale of developing a chiral high‐performance liquid chromatography (HPLC) procedure for the simultaneous quantitative analysis of drug isomers in clinical samples. Chirality 26:629–639, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
In view of the good skin tolerability, glycofurol was used as a vehicle-based gel, and its effect in the topical penetration of Naproxen (NAP) was investigated. The aims of this study were to develop a suitable gel with bioadhesive property, spreadability, and viscosity for topical anti-inflammatory effect. Three gelling and adhesive agents were examined: Carbopol 974P, Gantrez AN 119, and polyvinylpyrollidone K30. Skin permeation rates and lag times of NAP were evaluated using the Franz-type diffusion cell in order to optimize the gel formulation. The permeation rate of NAP-based gel across the excised rat skin was investigated. A significant increase in permeability parameters such as steady-state flux (J ss), permeability coefficient (K p), and penetration index (PI) was observed in optimized formulation containing 2% Transcutol as an permeation enhancer. From skin irritation test, it was concluded that the optimized novel glycofurol-based gel formulation was safe to be used for topical drug delivery. The developed glycofurol-based gel appeared promising for dermal and transdermal delivery of naproxen and could be applicable with water-insoluble drugs, which would circumvent most of the problems associated with drug therapy.  相似文献   

19.
The main aim of the present study was to evaluate potential of ternary complexation (comprising of drug, cyclodextrin and polymer) as an approach for taste masking. For this purpose famotidine with property of bitter taste was selected as a model drug. Improvement in taste masking capability of cyclodextrin towards famotidine was evaluated by formulating a ternary complex including hydrophilic polymer hydroxyl propyl methyl cellulose (HPMC 5 cps) as the third component. Phase solubility analysis at 25 °C was carried out for both the binary systems (viz. drug–cyclodextrin and drug–polymer) and the ternary system (drug–cyclodextrin–polymer). Ternary complex was prepared using solution method and was further characterized using XRD, DSC, FT-IR and microscopic studies. In vitro dissolution study was carried out to see the effect of ternary complexation on drug release. Taste perception study was carried out on human volunteers to evaluate the taste masking ability of ternary complexation. Results obtained from phase solubility analysis showed that the combined use of polymer and cyclodextrin effectively increased the stability constant of the complex [from 538 M−1 for binary system to 15,096 M−1 for ternary system]. Ternary system showed effective taste masking as compared to binary complex and at the same time showed no limiting effect on the drug release (D.E15min = 90%). The effective taste masking was attributed to the enhanced complexation of famotidine in ternary system compared to binary system and the same was confirmed from the characterization studies. In conclusion, the study confirmed that ternary complexation can be utilized as an alternative approach for effective taste masking.  相似文献   

20.
AimsThe aim of the present investigation was to develop a nanoemulsion (NE) gel formulation for the transdermal delivery of meloxicam (MLX) in order to ensure maximum controlled and sustained drug release capacity.Main methodsThe MLX containing NE gel was prepared and characterized for particle size, zeta potential, pH, rheology, in vitro drug release, in vitro skin permeation, and in vitro hemolysis. Differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) of MLX-NE gel treated rat skin was performed to investigate the skin permeation mechanism of meloxicam from NE gel. Skin permeation potential of the developed gel formulation was assessed using confocal laser scanning microscopy (CLSM). The in vivo toxicity of MLX-NE gel was assessed by histopathological examination in rat. The rat paw edema test was performed to evaluate the anti-inflammatory activity of MLX-NE gel.Key findingsPercutaneous absorption studies demonstrated a higher permeation of meloxicam from NE gel, than the drug solution. FTIR and DSC studies supported stratum corneum lipid extraction as a possible penetration enhancer mechanism for MLX-NE gel. CLSM studies confirmed the permeation of the NE gel formulation to the deeper layers of the skin (up to 130 μm). MLX-NE gel turned out to be non-irritant, biocompatible, and provided maximum inhibition of paw edema in rats over 24 h in contrast to MLX solution.SignificanceThe nanoemulsion gel formulation may hold promise as an effective alternative for the transdermal delivery of meloxicam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号