首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flavodoxins are proteins with an alpha/beta doubly wound topology that mediate electron transfer through a non-covalently bound flavin mononucleotide (FMN). The FMN moiety binds strongly to folded flavodoxin (K(D)=0.1 nM, oxidized FMN). To study the effect of this organic cofactor on the conformational stability, we have characterized apo and holo forms of Desulfovibrio desulfuricans flavodoxin by GuHCl-induced denaturation. The unfolding reactions for both holo- and apo-flavodoxin are reversible. However, the unfolding curves monitored by far-UV circular dichroism and fluorescence spectroscopy do not coincide. For both apo- and holo-flavodoxin, a native-like intermediate (with altered tryptophan fluorescence but secondary structure as the folded form) is present at low GuHCl concentrations. There is no effect on the flavodoxin stability imposed by the presence of the FMN cofactor (DeltaG=20(+/-2) and 19(+/-1) kJ/mol for holo- and apo-flavodoxin, respectively). A thermodynamic cycle, connecting FMN binding to folded and unfolded flavodoxin with the unfolding free energies for apo- and holo-flavodoxin, suggests that the binding strength of FMN to unfolded flavodoxin must be very high (K(D)=0.2 nM). In agreement, we discovered that the FMN remains coordinated to the polypeptide upon unfolding.  相似文献   

2.
The kinetics and thermodynamics of the urea-induced unfolding of flavodoxin and apoflavodoxin from Desulfovibrio vulgaris were investigated by measuring changes in flavin and protein fluorescence. The reaction of urea with flavodoxin is up to 5000 times slower than the reaction with the apoprotein (0.67 s(-1) in 3 m urea in 25 mm sodium phosphate at 25 degrees C), and it results in the dissociation of FMN. The rate of unfolding of apoflavodoxin depends on the urea concentration, while the reaction with the holoprotein is independent of urea. The rates decrease in high salt with the greater effect occurring with apoprotein. The fluorescence changes fit two-state models for unfolding, but they do not exclude the possibility of intermediates. Calculation suggests that 21% and 30% of the amino-acid side chains become exposed to solvent during unfolding of flavodoxin and apoflavodoxin, respectively. The equilibrium unfolding curves move to greater concentrations of urea with increase of ionic strength. This effect is larger with phosphate than with chloride, and with apoflavodoxin than with flavodoxin. In low salt the conformational stability of the holoprotein is greater than that of apoflavodoxin, but in high salt the relative stabilities are reversed. It is calculated that two ions are released during unfolding of the apoprotein. It is concluded that the urea-dependent unfolding of flavodoxin from D. vulgaris occurs because apoprotein in equilibrium with FMN and holoprotein unfolds and shifts the equilibrium so that flavodoxin dissociates. Small changes in flavin fluorescence occur at low concentrations of urea and these may reflect binding of urea to the holoprotein.  相似文献   

3.
We here compare thermal unfolding of the apo and holo forms of Desulfovibrio desulfuricans flavodoxin, which noncovalently binds a flavin mononucleotide (FMN) cofactor. In the case of the apo form, fluorescence and far-UV circular dichroism (CD) detected transitions are reversible but do not overlap (T(m) of 50 and 60 degrees C, respectively, pH 7). The thermal transitions for the holo form follow the same pattern but occur at higher temperatures (T(m) of 60 and 67 degrees C for fluorescence and CD transitions, respectively, pH 7). The holoprotein transitions are also reversible and exhibit no protein concentration dependence (above 10 microM), indicating that the FMN remains bound to the polypeptide throughout. Global analysis shows that the thermal reactions for both apo and holo forms proceed via an equilibrium intermediate that has approximately 90% nativelike secondary structure and significant enthalpic stabilization relative to the unfolded states. Incubation of unfolded holoflavodoxin at high temperatures results in FMN dissociation. Rebinding of FMN at these conditions is nominal, and therefore, cooling of holoprotein heated to 95 degrees C follows the refolding pathway of the apo form. However, FMN readily rebinds to the apoprotein at lower temperatures. We conclude that (1) a three-state thermal unfolding behavior appears to be conserved among long- and short-chain, as well as apo and holo forms of, flavodoxins and (2) flavodoxin's thermal stability (in both native and intermediate states) is augmented by the presence of the FMN cofactor.  相似文献   

4.
Campos LA  Sancho J 《Proteins》2006,63(3):581-594
Flavodoxins are useful models to investigate protein/cofactor interactions. The binding energy of the apoflavodoxin-FMN complex is high and therefore the holoflavodoxin is expected to be more stable than the apoprotein. This expectation has been challenged by reports on the stability of Desulfovibrio desulfuricans flavodoxin indicating that FMN binds to the unfolded polypeptide with similar affinity as to the native state, thus causing no net effect on protein stability. In previous work, we have analyzed in detail the stability of the apoflavodoxin from Anabaena PCC 7119 and the energetics of its functional complex with FMN. Here, we use the Anabaena holoprotein to directly investigate the contribution of the bound cofactor to protein stability through a detailed analysis of the chemical and thermal denaturation equilibria. Our data clearly shows that FMN binding largely stabilizes the protein towards both chemical and thermal denaturation, and that the stabilization observed at 25 degrees C in low ionic strength conditions is precisely the one expected if full release of the cofactor takes place upon flavodoxin unfolding. On the other hand, the binding of FMN to the native polypeptide is shown to simplify the thermal unfolding so that, while apoflavodoxin follows a three-state mechanism, the holoprotein unfolds in a two-state fashion. Comparison of the X-ray structure of native apoflavodoxin with the phi-structure of the thermal intermediate indicates that the increase in cooperativity driven by the cofactor originates in its preferential binding to the native state, which is a consequence of the disorganization in the intermediate of the FMN binding loops and of an adjacent longer loop.  相似文献   

5.
Liu CP  Li ZY  Huang GC  Perrett S  Zhou JM 《Biochimie》2005,87(11):1023-1031
Trigger factor (TF) is an important catalyst of nascent peptide folding and possesses both peptidyl-prolyl cis-trans isomerase (PPIase) and chaperone activities. TF has a modular structure, containing three domains with distinct structural and functional properties. The guanidine hydrochloride (GuHCl) induced unfolding of TF was investigated by monitoring Trp fluorescence, far-UV CD, second-derivative UV absorption, enzymatic and chaperone activities, chemical crosslinking and binding of the hydrophobic dye, 1-anilinonaphthalene-8-sulfonate (ANS); and was compared to the urea induced unfolding. The native state of TF was found to bind ANS in 1:1 stoichiometry with a K(d) of 84 microM. A native-like state, N', is stable around 0.5 M GuHCl, and shows increased ANS binding, while retaining PPIase activity and most secondary and tertiary structure, but loses chaperone and dimerization activities, consistent with slight conformational rearrangement. A compact denatured state, I, is populated around 1.0 M GuHCl, is inactive and does not show significant binding to ANS. The data suggest that TF unfolds in a stepwise manner, consistent with its modular structure. The ability of TF to undergo structural rearrangement to maintain enzymatic activity while reducing chaperone and dimerization abilities may be related to the physiological function of TF.  相似文献   

6.
Helicobacter pylori flavodoxin is the electronic acceptor of the pyruvate-oxidoreductase complex (POR) that catalyzes pyruvate oxidative decarboxilation. Inactivation of this metabolic route precludes bacterial survival. Because flavodoxin is not present in the human host, substances interfering electronic transport from POR might be well suited for eradication therapies against the bacterium. H. pylori flavodoxin presents a peculiar cofactor (FMN) binding site, compared to other known flavodoxins, where a conserved aromatic residue is replaced by alanine. A cavity thus appears under the cofactor that can be filled with small organic molecules. We have cloned H. pylori fldA gene, expressed the protein in Escherichia coli and characterized the purified flavodoxin. Thermal up-shift assays of flavodoxin with different concentrations of benzylamine, as well as fluorescence titration experiments indicate benzylamine binds in the pocket near the FMN binding site. It seems thus that low affinity inhibitors of H. pylori flavodoxin can be easily found that, after improvement, may give rise to leads.  相似文献   

7.
Folding of cofactor-binding proteins involves ligand binding in addition to polypeptide folding. We here assess the kinetic folding/binding landscape for Desulfovibrio desulfuricans flavodoxin that coordinates an FMN cofactor. The apo-form folds in a two-step process involving a burst-phase intermediate. Studies on Tyr98Ala and Trp60Ala variants reveal that these aromatics-that stack with the FMN in the holo-form-are not participating in the apo-protein folding pathway. However, these residues are essential for FMN interactions with the unfolded protein during refolding of holo-flavodoxin. Unfolding of wild-type holo-flavodoxin is coupled to FMN dissociation whereas for Tyr98Ala and Trp60Ala holo-variants, FMN dissociates before polypeptide unfolding. Both variants refold as apo-proteins before FMN rebinds. In sharp contrast, refolding of unfolded wild-type holo-flavodoxin is over an order of magnitude faster than that of the apo-form, the pathway does not include a burst-phase intermediate, and the speed is independent of FMN excess ratio. These observations demonstrate that FMN binds rapidly to the unfolded polypeptide and guides folding straight to the native state. As this path to functional D. desulfuricans holo-flavodoxin is faster than if the cofactor binds to pre-folded apo-protein, this is one of few examples where molecular recognition via a "fly-casting" mechanism is kinetically favored.  相似文献   

8.
During chemical denaturation different intermediate states are populated or suppressed due to the nature of the denaturant used. Chemical denaturation by guanidine-HCl (GuHCl) of human carbonic anhydrase II (HCA II) leads to a three-state unfolding process (Cm,NI=1.0 and Cm,IU=1.9 M GuHCl) with formation of an equilibrium molten-globule intermediate that is stable at moderate concentrations of the denaturant (1-2 M) with a maximum at 1.5 M GuHCl. On the contrary, urea denaturation gives rise to an apparent two-state unfolding transition (Cm=4.4 M urea). However, 8-anilino-1-naphthalene sulfonate (ANS) binding and decreased refolding capacity revealed the presence of the molten globule in the middle of the unfolding transition zone, although to a lesser extent than in GuHCl. Cross-linking studies showed the formation of moderate oligomer sized (300 kDa) and large soluble aggregates (>1000 kDa). Inclusion of 1.5 M NaCl to the urea denaturant to mimic the ionic character of GuHCl leads to a three-state unfolding behavior (Cm,NI=3.0 and Cm,IU=6.4 M urea) with a significantly stabilized molten-globule intermediate by the chloride salt. Comparisons between NaCl and LiCl of the impact on the stability of the various states of HCA II in urea showed that the effects followed what could be expected from the Hofmeister series, where Li+ is a chaotropic ion leading to decreased stability of the native state. Salt addition to the completely urea unfolded HCA II also led to an aggregation prone unfolded state, that has not been observed before for carbonic anhydrase. Refolding from this state only provided low recoveries of native enzyme.  相似文献   

9.
The effect of deglycosylation on the physiological and functional organization of milin was studied under different denaturizing conditions. Trifluoromethanesulfonic acid mediated deglycosylation resulted in insoluble milin, which was found to be soluble only in 1.5 M GuHCl with native-like folded structure. Kinetic stability, proteolytic activity, and dimeric association were lost in deglycosylated milin. Urea-induced unfolding revealed two inactive, highly stable equilibrium intermediates at pH 7.0 and pH 2.0. These intermediates were stable between 5.5–6.5 and 5.0–6.0 M total chaotropes (urea + 1.5 M GuHCl) at pH 7.0 and pH 2.0, respectively. GuHCl-induced unfolding was cooperative and noncoincidental with a broad transition range (2.0–5.0 M) at pH 7.0 and pH 2.0. Equilibrium unfolding of deglycosylated milin by urea and GuHCl substantiates the involvement of various inactive monomeric intermediates. This study provides a way to understand the role of glycosylation in the unfolding mechanism, stability, and functional activity of the serine protease milin.  相似文献   

10.
Reversible denaturation of the gene V protein of bacteriophage f1   总被引:7,自引:0,他引:7  
H Liang  T C Terwilliger 《Biochemistry》1991,30(11):2772-2782
The guanidine hydrochloride (GuHCl)-induced denaturation of the gene V protein of bacteriophage f1 has been studied, using the chemical reactivity of a cysteine residue that is buried in the folded protein and the circular dichroism (CD) at 211 and 229 nm as measures of the fraction of polypeptide chains in the folded form. It is found that this dimeric protein unfolds in a single cooperative transition from a folded dimer to two unfolded monomers. A folded, monomeric form of the gene V protein was not detected at equilibrium. The kinetics of unfolding of the gene V protein in 3 M GuHCl and the refolding in 2 M GuHCl are also consistent with a transition between a folded dimer and two unfolded monomers. The GuHCl concentration dependence of the rates of folding and unfolding suggests that the transition state for folding is near the folded conformation.  相似文献   

11.
Here we report the conformational stability of homodimeric desulfoferrodoxin (dfx) from Desulfovibrio desulfuricans (ATCC 27774). The dimer is formed by two dfx monomers linked through beta-strand interactions in two domains; in addition, each monomer contains two different iron centers: one Fe-(S-Cys)(4) center and one Fe-[S-Cys+(N-His)(4)] center. The dissociation constant for dfx was determined to be 1 microM (DeltaG = 34 kJ/mol of dimer) from the concentration dependence of aromatic residue emission. Upon addition of the chemical denaturant guanidine hydrochloride (GuHCl) to dfx, a reversible fluorescence change occurred at 2-3 M GuHCl. This transition was dependent upon protein concentration, in accord with a dimer to monomer reaction [DeltaG(H(2)O) = 46 kJ/mol of dimer]. The secondary structure did not disappear, according to far-UV circular dichroism (CD), until 6 M GuHCl was added; this transition was reversible (for incubation times of < 1 h) and independent of dfx concentration [DeltaG(H(2)O) = 50 kJ/mol of monomer]. Thus, dfx equilibrium unfolding is at least three-state, involving a monomeric intermediate with native-like secondary structure. Only after complete polypeptide unfolding (and incubation times of > 1 h) did the iron centers dissociate, as monitored by disappearance of ligand-to-metal charge transfer absorption, fluorescence of an iron indicator, and reactivity of cysteines to Ellman's reagent. Iron dissociation took place over several hours and resulted in an irreversibly denatured dfx. It appears as if the presence of the iron centers, the amino acid composition, and, to a lesser extent, the dimeric structure are factors that aid in facilitating dfx's unusually high thermodynamic stability for a mesophilic protein.  相似文献   

12.
Although many proteins require the binding of a ligand to be functional, the role of ligand binding during folding is scarcely investigated. Here, we have reported the influence of the flavin mononucleotide (FMN) cofactor on the global stability and folding kinetics of Azotobacter vinelandii holoflavodoxin. Earlier studies have revealed that A. vinelandii apoflavodoxin kinetically folds according to the four-state mechanism: I(1) <=> unfolded apoflavodoxin <=> I(2) <=> native apoflavodoxin. I(1)an off-pathway molten globule-like is intermediate that populates during denaturant-induced equilibrium unfolding; I(2) is a high energy on-pathway folding intermediate that never populates to a significant extent. Here, we have presented extensive denaturant-induced equilibrium unfolding data of holoflavodoxin, holoflavodoxin with excess FMN, and apoflavodoxin as well as kinetic folding and unfolding data of holoflavodoxin. All folding data are excellently described by a five-state mechanism: I(1) + FMN <=> unfolded apoflavodoxin + FMN <=> I(2) + FMN <=> native apoflavodoxin + FMN<=> holoflavodoxin. The last step in flavodoxin folding is thus the binding of FMN to native apoflavodoxin. I(1),I(2), and unfolded apoflavodoxin do not interact to a significantextent with FMN. The autonomous formation of native apoflavodoxin is essential during holoflavodoxin folding. Excess FMN does not accelerate holoflavodoxin folding, and FMN does not act as a nucleation site for folding. The stability of holoflavodoxin is so high that even under strongly denaturing conditions FMN needs to be released first before global unfolding of the protein can occur.  相似文献   

13.
The stability against chemical denaturants of the elongation factor EF-1alpha (SsEF-1alpha), a protein isolated from the hyperthermophilic archaeon Sulfolobus solfataricus has been characterized in detail. Indeed, the atypical shape of the protein structure and the unusual living conditions of the host organism prompted us to analyze the effect of urea and guanidine hydrochloride (GuHCl) on the GDP complex of the enzyme (SsEF-1alpha x GDP) by fluorescence and circular dichroism. These studies were also extended to the nucleotide-free form of the protein (nfSsEF-1alpha). Interestingly, the experiments show that the denaturation curves of both SsEF-1alpha forms present a single inflection point, which is indicative of a cooperative unfolding process with no intermediate species. Moreover, the chemically induced unfolding process of both SsEF-1alpha x GDP and nfSsEF-1alpha is fully reversible. Both SsEF-1alpha forms exhibit remarkable stability against urea, but they do not display a strong resistance to the denaturing action of GuHCl. These findings suggest that electrostatic interactions significantly contribute to SsEF-1alpha stability.  相似文献   

14.
Kinetically stable homodimeric serine protease milin reveals high conformational stability against temperature, pH and chaotrope [urea, guanidine hydrochloride (GuHCl) and guanidine isothiocynate (GuSCN)] denaturation as probed by circular dichroism, fluorescence, differential scanning calorimetry and activity measurements. GuSCN induces complete unfolding in milin, whereas temperature, urea and GuHCl induce only partial unfolding even at low pH, through several intermediates with distinct characteristics. Some of these intermediates are partially active (viz. in urea and 2 M GuHCl at pH 7.0), and some exhibited strong ANS binding as well. All three tryptophans in the protein seem to be buried in a rigid, compact core as evident from intrinsic fluorescence measurements coupled to equilibrium unfolding experiments. The protein unfolds as a dimer, where the unfolding event precedes dimer dissociation as confirmed by hydrodynamic studies. The solution studies performed here along with previous biochemical characterization indicate that the protein has α-helix and β-sheet rich regions or structural domains that unfold independently, and the monomer association is isologous. The complex unfolding pathway of milin and the intermediates has been characterized. The physical, physiological and probable therapeutic importance of the results has been discussed.  相似文献   

15.
Ervatamin A, a cysteine proteases from Ervatamia coronaria, has been used as model system to examine structure-function relationship by equilibrium unfolding methods. Ervatamin A belongs to alpha+beta class of proteins and exhibit stability towards temperature and chemical denaturants. Acid induced unfolding of ervatamin A was incomplete with respect to the structural content of the enzyme. Between pH 0.5 and 2.0, the enzyme is predominantly in beta-sheet conformation and shows a strong ANS binding suggesting the existence of a partially unfolded intermediate state (I(A) state). Surprisingly, high concentrations of GuHCl required to unfold this state and the transition mid points GuHCl induced unfolding curves are significantly higher. GuHCl induced unfolding of ervatamin A at pH 3.0 as well as at pH 4.0 is complex and cannot be satisfactorily fit to a two-state model for unfolding. Besides, a strong ANS binding to the protein is observed at low concentration of GuHCl, indicating the presence of intermediate in the unfolding pathway. On the other hand, even in the presence of urea (8M) the enzyme retains all the activity as well as structural parameters at neutral pH. However, the protein is susceptible to urea unfolding at pH 3.0 and below. Urea induced unfolding of ervatamin A at pH 3.0 is cooperative and the transitions curves obtained by different probes are and non-coincidental. Temperature denaturation of ervatamin A in I(A) state is non-cooperative, contrary to the cooperativity seen with native protein, suggesting the presence of two parts in the molecular structure of ervatamin A may be domains, with different stability that unfolds in steps. Careful inspection of biophysical properties of intermediate states populated in urea and GuHCl (I(UG) state) induced unfolding suggests all these three intermediates are identical and populated in different conditions. However, the properties of the intermediate (I(A) state) identified at pH approximately 1.5 are different from those of the I(UG) state.  相似文献   

16.
Zhu L  Qin ZJ  Zhou JM  Kihara H 《Biochimie》2004,86(2):127-132
The unfolding kinetics of creatine kinase (CK) in various concentrations of urea or guanidine hydrochloride (GuHCl) was investigated by small angle X-ray scattering (SAXS) using synchrotron radiation, and compared with the results obtained by stopped-flow circular dichroism and stopped-flow fluorescence. Using the three methods, the unfolding kinetics of CK fits well to a single exponential function with similar apparent rate constants, and the amplitude of the monophasic kinetics covers the entire range of the equilibrium values. The results suggest that the unfolding time-course measured by integrated SAXS intensity corresponds to the intramolecular loss of globular structure. The refolding kinetics of 8 M urea-denatured CK was monitored in a stopped-flow apparatus by following the spectroscopic changes, and the final state of folding was investigated by SAXS. A substantial part of the ellipticity is recovered within a burst phase, indicating that the secondary structure forms at an early stage in refolding. The R(g) value of the final folded state was 33.6 A when the folding buffer contained 20% glycerol, which is characteristic of native-like compactness and globularity.  相似文献   

17.
Flavodoxin is an alpha/beta protein with a noncovalently bound flavin-mononucleotide (FMN) cofactor. The apo-protein adopts a structure identical to that of the holo-form, although there is more dynamics in the FMN-binding loops. The equilibrium unfolding processes of Azotobacter vinelandii apo-flavodoxin, and Desulfovibrio desulfuricans ATCC strain 27774 apo- and holo-flavodoxins involve rather stable intermediates. In contrast, we here show that both holo- and apo-forms of flavodoxin from D. desulfuricans ATCC strain 29577 (75% sequence similarity with the strain 27774 protein) unfold in two-state equilibrium processes. Moreover, the FMN cofactor remains bound to the unfolded holo-protein. The folding and unfolding kinetics for holo-flavodoxin exhibit two-state behavior, albeit an additional slower phase is present at very low denaturant concentrations. The extrapolated folding time in water for holo-flavodoxin, approximately 280 microsec, is in excellent agreement with that predicted from the protein's native-state topology. Unlike the holo-protein behavior, the folding and unfolding reactions for apo-flavodoxin are best described by two kinetic phases, with rates differing approximately 15-fold, suggesting the presence of a kinetic intermediate. Both folding phases for apo-flavodoxin are orders of magnitude slower (40- and 530-fold, respectively) than that for the holo-protein. We conclude that polypeptide-cofactor interactions in the unfolded state of D. desulfuricans strain 29577 flavodoxin alter the kinetic-folding path towards two-state and speed up the folding reaction.  相似文献   

18.
Michaela Kupka 《BBA》2008,1777(1):94-103
Optical spectroscopic properties of the covalently linked chromophores of biliproteins are profoundly influenced by the state of the protein. This has been used to monitor the urea-induced denaturation of C-phycocyanin (CPC) from Mastigocladus laminosus and its subunits. Under equilibrium conditions, absorption, fluorescence and circular dichroism of the chromophores were monitored, as well as the circular dichroism of the polypeptide. Treatment of CPC trimers (αβ)3 resulted first in monomerization (αβ), which was followed by a complex unfolding process of the protein. Loss of chromophore fluorescence is the next process at increasing urea concentrations; it indicates increased flexibility of the chromophore while maintaining the native, extended conformation, and a less compact but still native-like packing of the protein in the regions sampled by the chromophores. This was followed by relaxation of the chromophores from the energetically unfavorable extended to a cyclic-helical conformation, as reported by absorption and CD in the visible range, indicating local loss of protein structure. Only then is the protein secondary structure lost, as reported by the far-UV CD. Sequential processes were also seen in the subunits, where again the chromophore-protein interactions were reduced before the unfolding of the protein. It is concluded that the bilin chromophores are intrinsic probes suitable to differentiate among different processes involved in protein denaturation.  相似文献   

19.
The structural and functional aspects of ervatamin B were studied in solution. Ervatamin B belongs to the alpha + beta class of proteins. The intrinsic fluorescence emission maximum of the enzyme was at 350 nm under neutral conditions, and at 355 nm under denaturing conditions. Between pH 1.0- 2.5 the enzyme exists in a partially unfolded state with minimum or no tertiary structure, and no proteolytic activity. At still lower pH, the enzyme regains substantial secondary structure, which is predominantly a beta-sheet conformation and shows a strong binding to 8-anilino-1- napthalene-sulfonic acid (ANS). In the presence of salt, the enzyme attains a similar state directly from the native state. Under neutral conditions, the enzyme was stable in urea, while the guanidine hydrochloride (GuHCl) induced equilibrium unfolding was cooperative. The GuHCl induced unfolding transition curves at pH 3.0 and 4.0 were non-coincidental, indicating the presence of intermediates in the unfolding pathway. This was substantiated by strong ANS binding that was observed at low concentrations of GuHCl at both pH 3.0 and 4.0. The urea induced transition curves at pH 3.0 were, however, coincidental, but non-cooperative. This indicates that the different structural units of the enzyme unfold in steps through intermediates. This observation is further supported by two emission maxima in ANS binding assay during urea denaturation. Hence, denaturant induced equilibrium unfolding pathway of ervatamin B, which differs from the acid induced unfolding pathway, is not a simple two-state transition but involves intermediates which probably accumulate at different stages of protein folding and hence adds a new dimension to the unfolding pathway of plant proteases of the papain superfamily.  相似文献   

20.
The small flavoprotein, flavodoxin, isolated from Peptostreptococcus elsdenii, has been covalently coupled to CNBr-activated Sepharose 4B. The immobilized protein replaces ferredoxin as an electron carrier in hydrogen production from dithionite or pyruvate in the presence of ferredoxin-free extracts of P. elsdenii; compared with soluble flavodoxin, its activities in these systems are 13% and 3.5% respectively. Acid treatment reversibly dissociates FMN from the immobilized protein. The dissociation constant of the complex with FMN, determined by fluorimetric titration, is 1.5 (+/- 0.4) nM, and is therefore very little different from that of soluble flavodoxin. Like soluble apoflavodoxin, the immobilized apoprotein is highly specific for flavins with an N-10 side-chain of 5 carbon atoms and a C-5' phosphate group. Approximately half of the flavin impurity in commercial preparations of FMN (12-15% of the total flavin), and similar impurity in synthetic analogues of FMN, is not separated by conventional purification procedures, but it is readily and conveniently removed by affinity chromatography with apoflavodoxin as the immobilized ligand. The immobilized protein is stable for long periods; its capacity for FMN decreases by only 20% after 15 cycles of flavin dissociation and reassociation during several months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号