首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Multiple-equilibrium equations were solved to investigate the individual and separate effects of Mg2+, Mn2+, Ca2+, ATP4–, and their complexes on the kinetics of brain adenylate cyclase. The effects of divalent metals and/or ATP4– (in excess of their participation in complex formation) were determined and, from the corresponding apparent affinity values, the following kinetic constants were obtained:K m(MgATP)=1.0 mM,K i(ATP4–)=0.27 mM,K m(MnATP)=0.07 mM, andK i(CaATP)=0.015 mM. MgATP, MnATP, ATP4–, and CaATP were shown to compete for the active site of the enzyme. Hence, it is proposed that endogenous metabolites with a strong ligand activity for divalent metals, such as citrate and some amino acids, become integrated into a metabolite feedback control of the enzyme through the release of ATP4– from MgATP. Ca2+ fluxes may participate in the endogenous regulation of adenylate cyclase by modifying the level of CaATP. The free divalent metals show an order of affinityK 0.5(Ca2+)=0.02 mM,K 0.5(Mn2+)=3.8 mM,K 0.5(Mg2+)=4.7 mM, and an order of activity Mn2+>Mg2+>Ca2+. The data indicate that Mn2+ and Mg2+ ions may compete for a regulatory site distinct from the active site and increaseV m without changingK m(MgATP),K m(MnATP), orK i(ATP4–). The interactions of ATP4– and CaATP, which act as competitive inhibitors of the reaction of the enzyme with the substrates MgATP and MnATP, and Mg2+ and Mn2+, which act as activators of the enzyme in the absence of hormones, are shown to follow the random rapid equilibrium BiBi group-transfer mechanism of Cleland with the stipulation that neither Mg2+ nor Mn2+, in excess of their respective participation in substrate formation, are obligatorily required for basal activity. ATP4– and CaATP are involved in dead-end inhibition. For MgCl2 saturation curves at constant total ATP concentration, the computer-generated curves based on the RARE BiBi model predict a change in the Hill cooperativityh from a basal value of 2.6, when Mg2+ is not obligatorily required, to 4.0 when the addition of hormones or neurotransmitters induces an obligatory requirement for Mg2+.Abbreviations used: Me, divalent metal; MeT (MgT or MnT), total Me (Me2+ and its complexes); ATPT, total ATP (ATP4– and its complexes).  相似文献   

2.
(1) The effects of calmodulin binding on the rates of Ca2+-dependent phosphorylation and dephosphorylation of the red-cell Ca2+ pump, have been tested in membranes stripped of endogenous calmodulin or recombined with purified calmodulin. (2) In Mg2+-containing media, phosphorylation and dephosphorylation rates are accelerated by a large factor (at 0°C), but the steady-state level of phosphoenzyme is unaffected by calmodulin binding (at 0°C and 37°C). In Mg2+-free media, slower rates of phosphoenzyme formation and hydrolysis are observed, but both rates and the steady-state phosphoenzyme level are raised following calmodulin binding. (3) At 37°C and 0°C, the rate of (Ca2+ + Mg2+)-ATPase activity is stimulated maximally by 6–7-fold, following calmodulin binding. At 37°C the apparent Ca2+ affinity for sustaining ATP hydrolysis is raised at least 20-fold, Km(Ca) ? 10 μM (—calmodulin) and Km(Ca) < 0.5 μM (+ calmodulin), but at 0°C the apparent Ca2+ affinity is very high in calmodulin-stripped membranes and little or no effect of calmodulin is observed (Km(Ca) ? 3–4 · 10-8 M). (Ca2+ + Mg2+)-ATPase activity in calmodulin activated membranes and at saturating ATP levels, is sharply inhibited by addition of calcium in the range 50–2000 μM. (4) A systematic study of the effects of the nucleotide species MgATP, CaATP and free ATP on (Ca2+ + Mg2+)-ATPase activity in calmodulin-activated membranes reveals: (a) In the 1–10 μmolar concentration range MgATP, CaATP and free ATP appear to sustain (Ca2+ + Mg2+)-ATPase activity equally effectively. (b) In the range 100–2000 μM, MgATP accelerates ATP hydrolysis (Km(MgATP) ? 360 μM), and CaATP is an inhibitor (Ki(CaATP) ? 165 μM), probably competing with MgATP fo the regulatory site. (5) The results suggest that calmodulin binding alters the conformational state of the Ca2+- pump active site, producing a high (Ca2+ + Mg2+)-ATPase activity, high Ca2+ affinity and regulation of activity by MgATP.  相似文献   

3.
1-adrenaline, ACTH and glucagon activate the adenylate cyclase of rat adipocytes by decreasing its S0.5(Mg2+) (concentration yielding 0.5 Vmax) from its basal value of 11.5 to 1.2, 0.3 and 1.8 mM and by increasing its Ki(ATP4?) from 0.03 to 0.25; 0.62 and 0.16 mM respectively. The kinetic properties of the enzyme are regulated by its state of saturation with ATP4? or Mg2+; its saturation with ATP4? and citrate3? suppressed its basal and hormone-dependent activities. The hormone-dependent decrease in Km and increase in Vmax of the enzyme occur when shifting from suboptimal low concentrations of hormone and Mg2+ to optimal conditions, i.e., high concentration of hormone and low concentration of Mg2+. The increase in the state of saturation of the enzyme with Mg2+ decreases the hormone-dependent effects on Vmax and results in identical values of Km (0.14 mM) for its basal and 1-adrenaline dependent activities. CaCl2 saturation curves at 5 mM ATP with either 5, 10 or 20 mM MgCl2 show that the substitution of 5 mM MgCl2 by 10 mM and 20 mM MgCl2 increased the Ki(Ca2+) of the enzyme from 0.19 to 0.49 and 0.94 mM but decreased its Ki(CaATP) from 0.42 to 0.19 and 0.14 mM respectively. Only when the concentration of MgCl2 exceeded that of ATP did 1-adrenaline and ACTH activate the enzyme by increasing its Ki(Ca2+), although only ACTH increased its Ki(CaATP). An increase in energy charge would decrease the intracellular concentrations of Mg2+ and Ca2+ because ATP4? has stronger binding constants for Mg2+ and Ca2+ than ADP3? and AMP2?. Hence, the reported properties of the enzyme suggests that changes in energy charge may allow for metabolic feedback control of the hormonal responsiveness of the Mg2+, Ca2+, ATP4? -sensitive adenylate cyclase.  相似文献   

4.
Free ribulose bisphosphate (RuBP4?) rather than its magnesium complex (RuBP-Mg2?) was the apparent substrate for spinach ribulose bisphosphate carboxylase/oxygenase. The apparent Km for total RuBP (pH 8.0 at 30° C) increased with increasing Mg2+ concentrations from 11.6 μM at 13.33 mM Mg2+ to 32.6 μM at 40.33 mM Mg2+. Similarly the apparent Km for RuBP-Mg2? complex increased with increasing Mg2+ from 9.4 μM at 13.33 mM Mg2+ to 29.7 μM at 40.33 mM Mg2+. However, the Km values for uncomplexed RuBP4? were independent of the (saturating) concentration of Mg2+ (Km=2.2 μM). The Vmax did not vary with the changing concentrations of Mg2+. In contrast, the Km for total RuBP remained constant with varying Mg2+ concentrations (Km=59.5 μM) for the enzyme from R. rubrum. The apparent Km for the RuBP-Mg2? complex decreased with increasing Mg2+ concentrations from 16.0 μM at 7.5 mM Mg2+ to 5.9 μM at 27.5 mM Mg2+. The initial velocity for the C. vinosum enzyme was also found to be independent of the (saturating) concentration of Mg2+ when total RuBP was varied in the assay. Thus the response to total RuBP by these two bacterial enzymes, which markedly differ in structure, was closely similar.  相似文献   

5.
Free ribulose hisphosphate (RuBP4?) rather than its magnesium complex (RuBP-Mg2?) was the apparent substrate for spinach ribulose bisphosphate carboxylase/oxygenase. The apparent Km for total RuBP (pH 8.0 at 30° C) increased with increasing Mg2+ concentrations from 11.6 μM at 13.33 mM Mg2+ to 32.6 μM at 40.33 mM Mg2+. Similarly the apparent Km for RuBP-Mg2? complex increased with increasing Mg2+ from 9.4 μM at 13.33 mM Mg2+ to 29.7 μM at 40.33 mM Mg2+. However, the Km values for uncomplexed RuBP4? were independent of the (saturating) concentration of Mg2+ (Km=2.2 μM). The Vmax did not vary with the changing concentrations of Mg2+. In contrast, the Km for total RuBP remained constant with varying Mg2+ concentrations (Km=59.5 μM) for the enzyme from R. rubrum. The apparent Km for the RuBP-Mg2? complex decreased with increasing Mg2+ concentrations from 16.0 μM at 7.5 mM Mg2+ to 5.9 μM at 27.5 mM Mg2+. The initial velocity for the C. vinosum enzyme was also found to be independent of the (saturating) concentration of Mg2+ when total RuBP was varied in the assay. Thus the response to total RuBP by these two bacterial enzymes, which markedly differ in structure, was closely similar.  相似文献   

6.
Bovine thyroid tissue exhibited cAMP-dependent and Ca2+-dependent protien kinase activities as well as a basal (cAMP- and Ca2+-independent) one, and phosphoprotein phosphatase activity. Although the former two protein kiniase activities were not clearly demonstrated using endogenous protein as substrate, they were clearly shown in soluble, particulate and plasma membrane fractions using exogenous histones as substrate. The highest specific activities were in the plasma membrane. The apparent Km values of cAMP and Ca2+ for the membrane-bound protein kinase were 5·10?8 M and 8.3·10?4M (in the presence of 1 mM EGTA), respectively. The apparent Km values of Mg2+ were 7·10?4 M (without cAMP and Ca2+, 5·10?4 M (with cAMP) and 1.3·10?3 M (with Ca2+), and those ATP were 3.5·10?5 M (with or without cAMP) and 8.5·10?5 M (with Ca2+). The Ca2+-dependent protein kinase could be dissociated from the membrane by EGTA-washing. The enzyme activity so released was further activated by added phospholipid (phosphatidylserine/1,3-diolein), but not by calmodulin. Phosphoprotein phosphatase activity was also clearly demonstrated in all of the fractions using 32P-labeled mixed histones as substrate. The activity was not modified by either cAMP or Ca2+, but was sitmulated by a rather broad range (5–25 mM) of Mg2+ and Mn2+. NaCl and substrate concentrations also influenced the activity. Pyrophosphate, ATP, inorganic phosphate and NaF inhibited the activity in a dose-dependent manner. Trifluoperazine, chlorpromazine, dibucaine and Triton X-100 (above 0.05%, w/v) specifically inhibited the Ca2+-dependent protein kinase in plasma membranes. Repetitive phosphorylation of intrinsic and extrinsic proteins by the membrane-bound enzyme activities clearly showed an important co-ordination of them at the step of protein phosphorylation. These findings suggest that these enzyme activities in plasma membranes may contribute to regulation of thyroid function in response to external stimuli.  相似文献   

7.
Glycerol-3-phosphatase (EC 3.1.3.2.1) was studied by following the release of radioactive glycerol from L-(U-14C)glycerol-3-phosphate in Dunaliella tertiolecta enzyme extracts. The reaction showed a neutral pH optimum and had an absolute requirement for Mg2+. The substrate saturation curve was hyperbolic with an apparent K m value for glycerol-3-phosphate of 0.7 mM in the absence of phosphate. Inorganic orthophosphate was a competitive inhibitor of the enzyme with an estimated K j of 0.1 mM. The glycerol-3-phosphatase reaction was blocked nearly completely by millimolar Ca2+ concentrations. Ca2+ inhibition did not depend on the presence of calmodulin in the reaction medium. The characteristics of glycerol-3-phosphatase are discussed in relation to the regulation of the cyclic glycerol metabolism in Dunaliella cells during periods of osmotic stress.  相似文献   

8.
Isolated basolateral plasmamembrane vesicles from rat duodenum epithelial cells exhibit ATP-dependent calcium-accumulation and Ca2+-dependent ATPase activity. Calcium accumulation stimulated by ATP is prevented by the calcium ionophore A23187, inhibited 80% by 0.1 mM orthovanadate but is not effected by oligomycin. Calcium accumulation is not observed with the substrate β-γ-(CH2)-ATP, ADP and p-nitrophenyl phosphate. Kinetic studies reveal an apparent Km of 0.2 μM Ca2+ and a Vmax of 5.3 nmol Ca2+/min per mg protein for the ATP-dependent calcium-uptake system. Calmodulin and phenothiazines have no effect on calcium accumulation in freshly prepared membranes, but small effects are inducable after a wash with a 5 mM EGTA. The kinetic parameters of Ca2+-ATPase are: Km = 0.25 μM Ca2+ and Vmax = 19.2 nmol Pi/min per mg protein. Three techniques, osmotic shock, treatment with Triton X-100 or the channel-forming peptide alamethacin, reveal that about 40% of the vesicles are resealed. Assuming that half of the resealed vesicles have an inside-out orientation, the Vmax of ATP-dependent calcium uptake amounts to 25 nmol Ca2+/min per mg protein and of the Ca2+-ATPase to 23 nmol Pi/min per mg protein. The close correlation between kinetic parameters of Ca2+-ATPase and ATP-dependent calcium-transport strongly suggests that both systems are expressions of a Ca2+-pump located in duodenal basolateral plasma membranes.  相似文献   

9.
Abstract: [3H]Ryanodine binding studies of ryanodine receptors in brain membrane preparations typically require the presence of high salt concentrations in assay incubations to yield optimal levels of binding. Here, radioligand binding measurements on rat cerebral cortical tissues were conducted under high (1.0 M KCI) and low (200 mM KCI) salt buffer conditions to determine the effects of ionic strength on receptor binding properties as well as on modulation of ligand binding by Ca2+, Mg2+, β,γ-methylene-adenosine 5′-triphosphate (AMP-PCP), and caffeine. In 1.0 M KCI buffer, labeled titration/equilibrium analyses yielded two classes of binding sites with apparent KD (nM) and Bmax (fmol/mg of protein) values of 2.4 and 34, respectively, for the high-affinity site and 19.9 and 157, respectively, for the low-affinity site. Unlabeled titration/equilibrium measurements gave a single high-affinity site with a KD value of 1.9 nM and a Bmax value of 95 fmol/mg of protein. The apparent KD value derived from association and dissociation studies was 20 pM. Equilibrium binding was activated by Ca2+ (KD/Ca2+= 14 nM), inhibited by Mg2+ (IC60= 5.0 mM), and unaffected by AMP-PCP or caffeine. In 200 mM KCI buffer conditions, labeled titration analyses gave only a single site with a KD value similar to and a Bmax value 1.8-fold greater than those obtained for the low-affinity site in 1.0 M KCI buffer. In unlabeled titration measurements, the KD value was fivefold lower, whereas the Bmax value was unaffected. The KD value derived from association and dissociation analysis was 2.4-fold greater in 200 mM KCI compared with 1.0 M KCI buffer conditions. In 200 mM compared with 1.0 M KCI, the potency with which Mg2+ inhibited binding was increased by 3.8-fold, whereas the affinity of the activation site for Ca2+ was reduced by 13-fold. Addition of caffeine in the presence of low salt increased the affinity of Ca2+ activation by 1.7-fold. The inhibitory effect of Mg2+ on [3H]-ryanodine binding in the presence of 200 mM KCI was reversed by AMP-PCP and caffeine with apparent EC50 values of 0.25 and 7.6 mM, respectively. Taken together, these results indicate that ionic strength is an important consideration in binding studies of brain ryanodine receptors and their interactions with modulatory agents.  相似文献   

10.
The inhibition of brain choline kinase by hernicholinium-3   总被引:1,自引:0,他引:1  
Abstract— The calcium-dependent incorporation of choline, ethanolamine and L-serine into the phospholipids of isolated rat brain microsomes has been studied in vitro, and various properties of the incorporation have have been examined. The optimum pH for the incorporation of each base was found to vary inversely with the Ca2- concentration. Conversely, the optimal Ca2 + concentration for the exchange of the bases increased with decreasing pH values. The enzymic system for the incorporation of ethanolamine appeared to be saturated by two substrate concentrations, i.e. 0-2 and 1-7-2-0 mM. At low ethanolamine concentration (0-2 mM] much less incorporation of the base occurred into the alkenylacyl- and alkylacyl-derivatives of ethanolamine phosphoglycerides compared to that into the diacyl species, whereas the difference becomes smaller at a high substrate concentration (1-7 mM). At pH 81 and 2 mM-Ca2+ the apparent Km of ethanolamine at low substrate concentration was 80 × 10-5 M, and this value increased to 16-2 × 10-4.viat 10mM-Ca2+ concentration. At similar pH the Km values for choline and L-serine were 5.88 × 10-4M and 40 × 10-4 M at 2 mM- and 10mM-Ca2 + concentrations, respectively. The properties of the enzyme system show differences for the three substrates when various factors are changed during incubation. These and other results indicate that more than one enzyme is probably involved in the Ca2+-medialed exchange of nitrogenous bases.  相似文献   

11.
A Ca2+-dependent cyclic nucleotide phosphodiesterase has been partially purified from extracts of porcine brain by column chromatography on Sepharose 6 B containing covalently linked protamine residues, ammonium sulfate salt fractionation, and ECTEOLA-cellulose column chromatography. The resultant preparation contained a single form of cyclic nucleotide phosphodiesterase activity by the criteria of isoelectric focusing, gel filtration chromatography on Sephadex G-200, and electrophoretic migration on polyacrylamide gels. When fully activated by the addition of Ca2+ and microgram quantities of a purified Ca2+-binding protein (CDR), the phosphodiesterase hydrolyzed both adenosine 3′,5′-monophosphate (cyclic AMP) and guanosine 3′,5′-monophosphate (cyclic GMP), with apparent Km values of 180 and 8 μm, respectively. Approximately 15% of the total enzymic activity was present in the absence of added CDR and Ca2+. This activity exhibited apparent Km values for the two nucleotides identical to those observed for the maximally activated enzyme. Competitive substrate kinetics and heat destabilization studies demonstrated that both cyclic nucleotides were hydrolyzed by the same phosphodiesterase. The purified enzyme was identical to a Ca2+-dependent phosphodiesterase present in crude extract by the criteria of gel filtration chromatography, polyacrylamide-gel electrophoresis, and kinetic behavior.Apparent Km values of the Ca2+-dependent phosphodiesterase for cyclic AMP and cyclic GMP were lowered more than 20-fold as CDR quantities in the assay were increased to microgram amounts, whereas the respective maximal velocities remained constant. The apparent Km for Mg2+ was lowered more than 50-fold as CDR was increased to microgram amounts. Half-maximal activation of the phosphodiesterase occurred with lower amounts of CDR as a function of either increasing degrees of substrate saturation or increasing concentrations of Mg2+. At low cyclic nucleotide substrate concentrations i.e., 2.5 μm, cyclic GMP was hydrolyzed at a fourfold greater velocity than cyclic AMP. At high substrate concentrations (millimolar range) cyclic AMP was hydrolyzed at a threefold greater rate than cyclic GMP.  相似文献   

12.
Biochemical and kinetic properties under identical substrate and reaction conditions were obtained for an ATP-dependent Ca2+ pump and (Ca2+ + Mg2+)-ATPase in synaptosome membrane vesicles prepared from the brain of the moth, Mamestra configurata. Both the ATP-dependent Ca2+ pump and (Ca2+ + Mg2+)-ATPase had single, high-affinity binding sites for ATP (Km = 14 and 116 μM, respectively), Ca2+free (Km = 0.13 nM and 0.072 nM, respectively), and Mg2+ (Km = 1.1 mM and 0.07 mM, respectively). Both systems were relatively little affected by K+ and were insensitive to ouabain, an inhibitor of (Na+ + K+)-ATPase. The results indicate that the ATP-dependent Ca2+ pump and (Ca2+ + Mg2+)-ATPase are functionally coupled in synaptic membranes and constitute a mechanism for Ca2+ transport in the brain of M. configurata. Although moth brain (Ca2+ + Mg2+)-ATPase is maximally active at nanomolar concentrations of free calcium ion, the enzyme retains at least one-half of its maximal activity at micromolar calcium concentrations, indicating either that the enzyme has two binding sites for calcium (a high-affinity site at nanomolar Ca2+free and a low-affinity site at micromolar Ca2+free), or that there are two enzymes with high and low affinity for calcium, respectively. Calcium extrusion from brain neurones of M. configurata may operate in a two-stage, concentration-dependent process in which a first stage, low-affinity pump reduces intraneuronal calcium to a concentration at which a second stage, high-affinity pump becomes activated.  相似文献   

13.
(i) The activity of purified NAD-specific isocitrate dehydrogenase from bovine heart was stimulated by free Ca2+ in the presence of ADP and subsaturating levels of magnesium isocitrate, but not in absence of ADP. However, Ca2+ was not absolutely required for ADP activation. This was particularly apparent when free Mg2+ was kept low (0.0024–0.020 mm) and the substrate magnesium dl-isocitrate ranged from 0.07–0.25 mm. When kinetic constants were determined at pH 7.4 under these conditions and in the absence of ethylene glycol bis(β-aminoethyl ether) N,N′-tetraacetate, Ca2+ had little or no effect on Km (app) for ADP; the stimulation of rate by Ca2+ was mainly due to increased V (app). With subsaturating ADP, there was an interdependence in the interaction of the enzyme with substrate and Ca2+. Thus, with ADP constant (0.30 mm) the values of Km (app) for magnesium dl-isocitrate declined from 0.35 mm at zero Ca2+ to 0.19 mm with saturating Ca2+ without affecting V; Km (app) for free Ca2+ declined with increasing magnesium isocitrate to a limiting Km of 0.3 μm. (ii) Ethylene glycol bis(β-aminoethyl ether)-N,N′-tetraacetate, frequently used as a calcium buffer, inhibited enzyme activity with and without ADP. (iii) The enzyme was not inhibited by the calmodulin inhibitors trifluoperazine and chlorpromazine. Inhibition by lanthanide ions of the isocitrate dehydrogenase was competitive with magnesium isocitrate and not with respect to Ca2+. The values of Kis (1.8 to 3.1 μm) for La3+, Yb3+, Gd3+, Eu3+, Tb3+, and Er3+ were about two orders of magnitude smaller than Km for magnesium dl-isocitrate.  相似文献   

14.
Nucleotide-metabolizing enzymes play important roles in the regulation of intracellular and extracellular nucleotide levels. We studied ATPase activity in the nervous ganglia of Phyllocaulis soleiformis, a terrestrial slug. The ATPase was divalent cation-dependent, with a maximal rate for ATP hydrolysis at pH 6.0 and 7.2 in the presence of Ca2+ (5 mM). Mg2+-ATPase activity was only 26% of the activity observed in the presence of Ca2+ (5 mM). ZnCl2 (10 mM) produced a significant inhibition of 70%. Ca2+-ATPase activity was insensitive to the classical ATPase inhibitors ouabain, N-ethylmaleimide, orthovanadate and sodium azide. Levamisole, an inhibitor of alkaline phosphatase, was ineffective. Among nucleotides, ATP was the best substrate. The apparent Km (ATP) for Ca2+-ATPase was 348±84 μM ATP and the Vmax was 829±114 nmol Pi min−1 mg−1 protein. The P. soleiformis ganglial ATPase does not appear to fit clearly into any of the previously described types of Ca2+-ATPases.  相似文献   

15.
Calcium-, calmodulin-dependent phosphorylation of cardiac sarcoplasmic reticulum increases the rate of calcium transport. The complex dependence of calmodulin-dependent phosphoester formation on free calcium and total calmodulin concentrations can be satisfactorily explained by assuming that CaM · (Ca2+)4 is the sole calmodulin-calcium species which activates the calcium-, calmodulin-dependent, membrane-bound protein kinase. The apparent dissociation constant of the E · CaM · (Ca2+)4 complex determined from the calcium dependence of calmodulin-dependent phosphoester formation over a 100-fold range of total calmodulin concentrations (0.01–1 μ M) was 0.9 nM; the respective apparent dissoclation constant at 0.8 mM free calcium, 1 mM free magnesium with low calmodulin concentrations (0.1–50 nM) was 2.60 nM. These results are in good agreement with the apparent dissociation constant of 2.54 nM of high affinity calmodulin binding determined by 125I-labelled calmodulin binding to sarcoplasmic reticulum fractions at 1 mM free calcium, 1 mM free magnesium and total calmodulin concentration ranging from 0.1 to 150 nM, i.e. conditions where approximately 98% of the total calmodulin is present as CaM · (Ca2+)4. The apparent dissociation constant of the calcium-free calmodulin-enzyme complex (E · CaM) is at least 100-fold greater than the apparent dissociation constant of the E · CaM · (Ca2+)4 complex, as judged from non-saturation 125I-labelled calmodulin binding at total calmodulin concentrations of up to 150 nM, in the absence of calcium.  相似文献   

16.
 The membrane-bound F1 sector of the H+–ATPase complex (F-type ATPase) in dark-adapted photosynthetic chromatophores is endowed with MgATP- and CaATP-dependent ATPase activities, both sensitive to inhibitors such as oligomycin and venturicidin. Because of contatamination of free Mg2 + and Ca2+ ions in chromatophore preparations, kinetic characterization of the two hydrolitic reactions can be performed only in the presence of both substrates, using a model for two alternative substrates. The two activities are characterized by similar maximal rates and affinity constants [VMgATP and VCaATP: 13±1 and 10±1 nmol s–1 ATP hydrolyzed (μmol BChl)–1; KMgATP and KCaATP: 0.22±0.06 and 0.20±0.05 mm]. However, only the MgATP-dependent ATPase is coupled to Δ*H + generation. In this process CaATP acts as an alternative substrate and a competitive inhibitor of the proton pump, with a KI coincident with KCaATP for the hydrolytic activity. This finding highlights the central role that the coordination chemistry of the ion-nucleotide complex plays in determining the proton gating mechanism at the catalytic site(s) of the enzyme complex. These results are discussed on the basis of the coordination properties of the ions and of the available information on the protein structure. Received: 5 December 1995 / Accepted: 7 March 1996  相似文献   

17.
Myoinositol hexaphosphate (MHP) strongly inhibited α-amylases of different origins. The inhibition of wheat α-amylase is noncompetitive with an apparent Ki value of 1 mM, pH dependent and markedly increased by the preincubation of enzyme with MHP before the addition of substrate. Addition of Ca2+ did not reverse the inhibition of α-amylase indicating that its inhibition was not due to the binding of Ca2+ by MHP.  相似文献   

18.
Guanylate cyclase activity is present in both soluble and particulate fractions of homogenates of mouse cerebellum and retina. Soluble guanylate cyclases in cerebellum and retina have an apparent Km for GTP of approx 40 and 70 μM, respectively; are stimulated by Ca2+ and Mg2+ in the presence of low Mn2+; and do not respond to NaN3, NH2OH or detergent. The particulate guanylate cyclase found in brain has an apparent Km GTP of 237 7mu;M, is not stimulated by Ca2+ or Mg2+ in the presence of low Mn2+, but is stimulated by NaN3, NH2OH, and detergent. In particulate fractions of normal retina, guanylate cyclase has two apparent Km GTP values (42 and 225 μM); has higher activity at low concentrations of Mn2+ (0.5 mM) than at high concentrations (5.0 mM); is inhibited by Ca2+; and does not respond to NaN3, NH2OH, or detergent. Retinas essentially devoid of photoreceptor cells (from mice with photoreceptor dystrophy) have soluble guanylate cyclase activity which is similar to that in normal retina, but have only 4% as much particulate guanylate cyclase activity. This residual particulate guanylate cyclase has an apparent Km GTP value of 392 μM and other properties similar to particulate guanylate cyclase from brain. These data indicate the presence of three distinguishable guanylate cyclases in CNS: (1) a soluble enzyme present in both brain and retina: (2) a particulate enzyme which is also present in brain and in the inner or neural retina: and (3) another particulate enzyme which is apparently unique and confined to retinal photoreceptor cells.  相似文献   

19.
Phosphatidyl inositol and lysophosphatidyl choline have been identified as activators of a partially purified brain cyclic nucleotide phosphodiesterase previously shown to be regulated in vitro by Ca2+ and a Ca2+-binding protein. Microgram quantities of either phospholipid produced a linear, immediate and reversible activation of the enzyme in the absence of Ca2+ and the Ca2+-dependent regulator (CDR). Fatty acids were also found to activate the phosphodiesterase to varying degrees, with oleic acid being the most effective. Phosphatidyl choline, phosphatidyl ethanolamine, phosphatidyl serine and lysophosphatidyl ethanolamine were not effective as activators. Only sodium dodecyl sulfate, of a variety of nonionic, cationic, and anionic detergents tested, activated the phosphodiesterase. Sodium dodecyl sulfate produced a modest degree of activation over a narrow concentration range, followed by enzyme denaturation at higher concentrations.The interaction of the phosphodiesterase with the phospholipid activators has been compared to its interaction with the Ca2+·CDR complex. Both Ca2+·CDR and lysophosphatidyl choline decreased the thermal stability of the enzyme to a similar extent. The apparent Km of the lysophosphatidyl choline-dependent phosphodiesterase activity was approximately 30 μm with guanosine-3′,5′-monophosphate (cGMP) as substrate and 1 mm with adenosine-3′,5′-monophosphate (cAMP) as substrate. With increasing lysophosphatidyl choline concentration, the apparent Km for each nucleotide remained unchanged while the V increased. The apparent Kd for Mg2+ of the lysophosphatidyl choline-dependent phosphodiesterase activity was approximately 3 μm and was unaffected by lysophosphatidyl choline concentration. Activation of the phosphodiesterase by lysophosphatidyl choline was characterized by a high degree of positive cooperativity, exhibiting a Hill coefficient of 3.8. Fluphenazine was a competitive inhibitor of both Ca2+·CDR and lysophosphatidyl choline activation of the enzyme.  相似文献   

20.
The effects of fluphenazine (FLU) on the noradrenaline (NA) induced cAMP-synthesis in intact rat retinae were studied as a function of extracellular K+- and Ca2+-ions. Thus NA-induced cAMP levels were measured after incubating intact rat retinae with 50 μM NA in the presence or absence of FLU and in the presence of 1 or 10 mM theophylline. Results were: (1) Experimental condition a: standard NA-responses were measured after incubating retinae at 0.75 mM Ca2+, at 10 mM theophylline, at 10 μM FLU and at 2 and 0 mM K+. FLU does not affect the NA-response at 2 mM K+ significantly; however, it inhibits the NA-response at 0 mM K+ in this condition. (2) Experimental condition b: NA-responses were measured after incubating retinae at 0.125 mM Ca2+, 10 mM theophylline, 10 μM FLU and at 2 and 0 mM K+. At 2 mM K+ FLU replaces a Ca2+ function probably connected with the synthesis part of the NA-cAMP system and NA-responses in this low Ca2+ condition are consequently enhanced by FLU; however, FLU inhibits the NA-response at 0 mM K+ in this condition. (3) Experimental condition c: NA-responses were measured after incubating retinae at 0.75 mM Ca2+, 1 mM theophylline, 10 μM FLU and at 2 and 0 mM K+. At 2 mM K+ FLU enhances the NA-response by further inhibition of the degradation part of the NA-cAMP system; FLU inhibits the NA-response at 0 mM K+ in this condition. (4) The inhibitions of the NA-responses by FLU at 0 mM K+ in all three conditions a, b and c showed an apparent Km of 1 μM. (5) Low concentrations of K+ (0.4–0.8 mM) maintain the property of FLU to enhance the NA-responses at condition b (0.125 mM Ca2+) and at condition c (1 mM theophylline). Results suggest that the activation of NA-receptor coupled adenylate cyclases (NA-AC-ases) by NA, resulting in activation of phosphodiesterase activity by the NA-elevated cAMP-levels, is sustained by (a) membraneous factor(s) connected to the NA-receptor. This (these) factor(s) is (are) switched off in the absence of K+. Evidence has been presented, that Ca2+ and FLU do not have access to this intramembraneous factor-enzyme activating moiety of the NA-cAMP system at 0 mM K+. Between 0.4 and 0.8 mM K+ the factor-enzyme-NA-receptor complex is still intact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号