首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Dietary fish oil reduces oxidative DNA damage in rat colonocytes   总被引:4,自引:0,他引:4  
Prolonged generation of reactive oxygen species by inflammatory mediators can induce oxidative DNA damage (8-oxodG formation), potentially resulting in intestinal tumorigenesis. Fish oil (FO), compared to corn oil (CO), has been shown to downregulate inflammation and upregulate apoptosis targeted at damaged cells. We hypothesized FO could protect the intestine against 8-oxodG formation during dextran sodium sulfate- (DSS-) induced inflammation. We provided 60 rats with FO- or CO-supplemented diets for 2 weeks with or without 3% DSS in drinking water for 48 h. Half the treated rats received 48 additional h of untreated water before termination. Due to DSS treatment, the intestinal epithelium had higher levels of 8-oxodG (p =.04), induction of repair enzyme OGG1 mRNA (p =.02), and higher levels of apoptosis at the top of colonic crypts (p =.01) and in surface cells (p <.0001). FO-fed rats, compared to CO, had lower levels of 8-oxodG (p =.05) and increased apoptosis (p =.04) in the upper crypt region; however, FO had no significant effect on OGG1 mRNA. We conclude that FO protects intestinal cells against oxidative DNA damage in part via deletion mechanisms.  相似文献   

2.
Although intraepithelial T lymphocytes of the large intestine (LI) are known to differ from those of the small intestine (SI) in phenotype and function, differences in LI and SI lamina propria (LP) lymphocyte populations have not been clearly established. In this work we found striking phenotypic differences between SI and LI LP lymphocyte populations from Balb/c mice analyzed by flow cytometry. In the LI most lymphocytes were B cells and the predominant T cells were TCR-alpha beta+, CD8+. In contrast, in the SI most T lymphocytes were CD4+ expressing TCR-alpha beta+, although a higher proportion expressed TCR-gamma delta+ than in the LI. In T cells the expression of adhesion molecules and cytokines was also different between SI and LI. The proportion of LP T cells expressing alpha4beta7 and L-selectin was higher in the LI than in the SI; whereas a greater proportion of cells expressing alpha(E)beta7 were detected in the SI than in LI. Higher proportions of T cells expressing L-selectin and alpha4beta1 were detected in the intraepithelial compartment of the LI than that of the SI, whereas the number of T cells expressing alpha(E)beta7 was much higher in the SI than in the LI. The proportion of T cells spontaneously producing IL-2, IFN gamma, and IL-4 at the intraepithelial and lamina propria, in the small and large intestine, was different indicating that distinctive functional features exist in the lymphocyte populations residing at the different intestinal compartments.  相似文献   

3.
The large (LI) and small intestine (SI) differ in patterns of susceptibility to chronic mucosal inflammation. In this study, we evaluated whether this might, in part, reflect differences in resident mucosal CD11c(+) T cells. These cells comprised 39-48% (SI) and 12-17% (LI) of the intraepithelial compartment, most of which were T-cell receptor-αβ(+). In the SI, the majority of these cells were CD103(+) CD8(+) NK1.1(-), whereas the opposite phenotype prevailed in the LI. In transfer models of CD4(+) T cell-induced colitis, small numbers (2.5 × 10(5)) of SI CD11c(+) CD8(+) T cells suppressed proinflammatory cytokine-producing CD4(+) T cells in mesenteric lymph nodes and mucosa-associated lymphoid compartments (SI and LI) and protected mice from chronic inflammation. On a per-cell basis, the regulatory function of SI CD11c(+) T cells in CD4(+) T cell colitis was potent compared with other reported regulatory CD4(+) or CD8(+) T cells. In contrast, neither LI CD11c(+) T cells nor SI CD11c(-) T cells were effective in such immunoregulation. SI CD11c(+) CD8(+) T cells were similarly effective in suppressing CD4(+)CD45RB(hi) T cell colitis, as evidenced by inhibition of intracellular proinflammatory cytokine expression and histological inflammation. These findings indicate that SI CD11c(+) CD8(+) T cells are a distinct intestinal T cell population that plays an immunoregulatory role in control of proinflammatory CD4(+) T cells and maintenance of intestinal mucosal homeostasis.  相似文献   

4.
DNA damage response and cellular senescence in tissues of aging mice   总被引:1,自引:0,他引:1  
The impact of cellular senescence onto aging of organisms is not fully clear, not at least because of the scarcity of reliable data on the mere frequency of senescent cells in aging tissues. Activation of a DNA damage response including formation of DNA damage foci containing activated H2A.X (γ-H2A.X) at either uncapped telomeres or persistent DNA strand breaks is the major trigger of cell senescence. Therefore, γ-H2A.X immunohistochemistry (IHC) was established by us as a reliable quantitative indicator of senescence in fibroblasts in vitro and in hepatocytes in vivo and the age dependency of DNA damage foci accumulation in ten organs of C57Bl6 mice was analysed over an age range from 12 to 42 months. There were significant increases with age in the frequency of foci-containing cells in lung, spleen, dermis, liver and gut epithelium. In liver, foci-positive cells were preferentially found in the centrilobular area, which is exposed to higher levels of oxidative stress. Foci formation in the intestine was restricted to the crypts. It was not associated with either apoptosis or hyperproliferation. That telomeres shortened with age in both crypt and villus enterocytes, but telomeres in the crypt epithelium were longer than those in villi at all ages were confirmed by us. Still, there was no more than random co-localization between γ-H2A.X foci and telomeres even in crypts from very old mice, indicating that senescence in the crypt enterocytes is telomere independent. The results suggest that stress-dependent cell senescence could play a causal role for aging of mice.  相似文献   

5.
One main function of telomeres is to maintain chromosome and genome stability. The rate of telomere shortening can be accelerated significantly by chemical and physical environmental agents. Reactive oxygen species are a source of oxidative stress and can produce modified bases (mainly 8-oxoG) and single strand breaks anywhere in the genome. The high incidence of guanine residues in telomeric DNA sequences makes the telomere a preferred target for oxidative damage. Our aim in this work is to evaluate whether chromosome instability induced by oxidative stress is related specifically to telomeric damage. We treated human primary fibroblasts (MRC-5) in vitro with hydrogen peroxide (100 and 200 µM) for 1 hr and collected data at several time points. To evaluate the persistence of oxidative stress-induced DNA damage up to 24 hrs after treatment, we analysed telomeric and genomic oxidative damage by qPCR and a modified comet assay, respectively. The results demonstrate that the genomic damage is completely repaired, while the telomeric oxidative damage persists. The analysis of telomere length reveals a significant telomere shortening 48 hrs after treatment, leading us to hypothesise that residual telomere damage could be responsible for the telomere shortening observed. Considering the influence of telomere length modulation on genomic stability, we quantified abnormal nuclear morphologies (Nucleoplasmic Bridges, Nuclear Buds and Micronuclei) and observed an increase of chromosome instability in the same time frame as telomere shortening. At subsequent times (72 and 96 hrs), we observed a restoration of telomere length and a reduction of chromosome instability, leaving us to conjecture a correlation between telomere shortening/dysfunction and chromosome instability. We can conclude that oxidative base damage leads to abnormal nuclear morphologies and that telomere dysfunction is an important contributor to this effect.  相似文献   

6.
7.
8.
Sucrase-isomaltase (SI) expression along the longitudinal and vertical axis of the small intestine was studied by sequentially isolating enterocytes from villus to crypt of rat proximal jejunum and distal ileum. Gradients of sucrase activity were observed with greatest activity occurring in jejunal and villus regions. Along the villus-to-crypt axis, gradients of SI mRNA abundance corresponded with activity. However, along the longitudinal axis no differences in SI mRNA levels were observed, thus not accounting for the observed 3-5-fold difference in SI activities between jejunum and ileum. Comparison of SI immunoprecipitates from jejunal and ileal mucosal scrapings showed significant differences in gel mobilities of the more mature forms, which did not appear to affect SI functional activities. When relative rates of de novo SI protein synthesis were compared, [35S]methionine incorporation into all SI forms was observed to be 3-5-fold greater in jejunum than in ileum at all time points. Because these results suggested differences in regional translational regulation, subcellular distribution of SI mRNA in jejunal and ileal epithelial cells was compared. A greater proportion of jejunal SI mRNA was found to be associated with membrane-bound polyribosomes. We conclude 1) sucrase expression along the villus-to-crypt axis correlates with SI mRNA abundance, 2) post-translational processing of SI differ in ileum and jejunum, but appear not to determine SI expression, and 3) differences in translational processing in distal ileum and proximal jejunum may determine sucrase activity along the longitudinal axis of rat small intestine.  相似文献   

9.
Abstract

Mutations in mismatch repair (MMR) genes are commonly associated with the development of colorectal cancer. Additionally, base excision repair, which involves apurinic/apyrimidinic endonuclease 1 (APE1), recognizes and eliminates oxidative DNA damage. Here, we investigated the possible roles of APE1 in dextran sulfate sodium (DSS)-induced acute colitis using the young rat model. Four-week-old Sprague–Dawley rats were administered 2% DSS in drinking water for 1 week. MMR and APE1 expression levels were assessed by western blotting and immunohistochemistry. Following DSS treatment, growth of young rats failed and the animals had loose stools. Together with the histological changes associated with acute colitis, APE1 and MSH2 levels increased significantly at 3 and 5 days after DSS treatment, respectively. The difference between APE1 and MSH2 expression was significant. DSS-induced DNA damage and subsequent repair activity were evaluated by staining for 8-hydroxy-deoxyguanosine (8-OHdG) and APE1, respectively; 8-OHdG immunoreactivity increased throughout the colonic mucosa, while APE1 levels in the surface epithelium increased at an earlier timepoint. Taken together, our data suggest that changes in APE1 expression after DSS treatment occurred earlier and were more widespread than changes in MMR expression, suggesting that APE1 is more sensitive for prediction of DNA deterioration in DSS-induced colitis.  相似文献   

10.
Vitamin D is a secosteroid best known for its role in maintaining bone and muscle health. Adequate levels of vitamin D may also be beneficial in maintaining DNA integrity. This role of vitamin D can be divided into a primary function that prevents damage from DNA and a secondary function that regulates the growth rate of cells. The potential for vitamin D to reduce oxidative damage to DNA in a human has been suggested by clinical trial where vitamin D supplementation reduced 8-hydroxy-2'-deoxyguanosine, a marker of oxidative damage, in colorectal epithelial crypt cells. Studies in animal models and in different cell types have also shown marked reduction in oxidative stress damage and chromosomal aberrations, prevention of telomere shortening and inhibition of telomerase activity following treatment with vitamin D. The secondary function of vitamin D in preventing DNA damage includes regulation of the poly-ADP-ribose polymerase activity in the DNA damage response pathway involved in the detection of DNA lesions. It is also able to regulate the cell cycle to prevent the propagation of damaged DNA, and to regulate apoptosis to promote cell death. Vitamin D may contribute to prevention of human colorectal cancer, though there is little evidence to suggest that prevention of DNA damage mediates this effect, if real. Very limited human data mean that the intake of vitamin D required to minimise DNA damage remains uncertain.  相似文献   

11.
Proteins of the basolateral membrane (BLM) of small intestine epithelial cells of adult rats, in the MW ranges of 50-65 KD, 85-100 KD, and over 100 KD, were obtained as follows. After isolation of the BLM and subsequent SDS-PAGE and transblotting of the proteins on nitrocellulose sheets, the bands in these MW ranges were cut out of the nitrocellulose sheet and extracted. Balb/C mice were immunized with these protein fractions and a monoclonal antibody (MAb) was then produced. MAb SI/CC1 obtained via immunization with the 50-65 KD protein fraction shows specificity for the crypt epithelium of the small intestine. It can be used to characterize, by light and electron microscopic immunohistochemical methods, a crypt cell protein (SI/CC1-Ag) with a very specific localization. Fluorescence labeling shows that the SI/CC1-Ag can be found only in the epithelium of small intestine crypts (except for the granules in eosinophilic granulocytes). The epithelium of the colon, as well as the epithelia of other organs, could not be labeled. In the small intestine crypts, SI/CC1-Ag is found only in the Paneth cells located in the basal crypt section, and in the undifferentiated cells in the middle crypt section; it is lacking in the cells of the upper crypt section. Gold labeling shows that SI/CC1-Ag in the undifferentiated cells is localized exclusively in the basolateral PM domain. On the Paneth cells, the content of the secretory granules is labeled, along with the basolateral PM domain; the labeling sometimes present on their luminal part is probably due to passively absorbed secretion from these cells. The SI/CC1-Ag in the BLM of undifferentiated and Paneth cells is found only on Days 21-23 post partum, whereas the Paneth cell granules could be labeled as early as the Day 16 post partum. With immunodetection with SI/CC1, one band at about 55 KD is specifically labeled in the protein pattern of the isolated small intestine cell BLM. In the protein pattern of the isolated crypt cells two bands were labeled, again one at 55 KD and one at about 120 KD. These findings indicate that SI/CC1-Ag is a 55 KD protein that appears on Days 21-23 post partum in the BLM of undifferentiated cells and of Paneth cells.  相似文献   

12.
Reactive oxygen species (ROS)-induced genomic damage may have important consequences in the initiation and progression of cancer. Deregulated expression of the proto-oncogene c-MYC is associated with intracellular oxidative stress and increased DNA damage. However, the protective role of antioxidants such as Vitamin C against MYC-induced genomic damage has not been fully investigated. In a variety of cell lines, we show that ectopic MYC over-expression results in the elevation of intracellular ROS levels and a concomitant increase in oxidative DNA damage, as assessed by levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) in the genomic DNA. Loading cells with ascorbic acid (AA) relieved MYC-elicited intracellular oxidative stress and conferred genomic protection. A mitochondrially targeted Vitamin E analog, TPPB, also protected cells from MYC-elicited oxidative DNA damage, suggesting the involvement of mitochondria in increased ROS production. We found that deregulated MYC expression resulted in the attenuation of intracellular glutathione levels, which was reversed by loading cells with Vitamin C. Additionally, cells over-expressing MYC had elevated levels of intracellular superoxide, which was significantly quenched by Vitamin C or the selective superoxide quencher, Tiron. Consequently, Vitamin C and other antioxidants protected cells from MYC-induced cellular transformation. Our studies implicate a role for ROS, and superoxide in particular, in MYC-elicited oxidative DNA damage and cellular transformation, and point to a pharmacological role of antioxidants in cancer chemoprevention.  相似文献   

13.
Introduction Excess of intracellular reactive oxygen species in relation to antioxidative systems results in an oxidative environment which may modulate gene expression or damage cellular molecules. These events are expected to greatly contribute to processes of carcinogenesis. Only few studies are available on the oxidative/reductive conditions in the colon, an important tumour target tissue. It was the objective of this work to further develop methods to assess intracellular oxidative stress within human colon cells as a tool to study such associations in nutritional toxicology.

Methods We have measured H2O2-induced oxidative stress in different colon cell lines, in freshly isolated human colon crypts, and, for comparative purposes, in NIH3T3 mouse embryo fibroblasts. Detection was performed by loading the cells with the fluorigenic peroxide-sensitive dye 6-carboxy-2',7'-dichlorodihydrofluorescein diacetate (diacetoxymethyl ester), followed by in vitro treatment with H2O2 and fluorescence detection with confocal laser scanning microscopy (CLSM). Using the microgel electrophoresis (“Comet”) Assay, we also examined HT29 stem and clone 19A cells and freshly isolated primary colon cells for their relative sensitivity toward H2O2-induced DNA damage and for steady-state levels of endogenous oxidative DNA damage.

Results A dose-response relationship was found for the H2O2-induced dye decomposition in NIH3T3 cells (7.8-125 μM H2O2) whereas no effect occurred in the human colon tumour cell lines HT29 stem and HT29 clone 19A (62-1000 μM H2O2). Fluorescence was significantly increased at 62 μM H2O2 in the human colon adenocarcinoma cell line Caco-2. In isolated human colon crypts, the lower crypt cells (targets of colon cancer) were more sensitive towards H2O2 than the more differentiated upper crypt cells. In contrast to the CLSM results, oxidative DNA damage was detected in both cell lines using the Comet Assay. Endogenous oxidative DNA damage was highest in HT29 clone 19A, followed by the primary colon cells and HT29 stem cells.

Conclusions Oxidative stress in colon cells leads to damage of macromolecules which is sensitively detected in the Comet Assay. The lacking response of the CLSM-approach in colon tumour cells is probably due to intrinsic modes of protective activities of these cells. In general, however, the CLSM method is a sensitive technique to detect very low concentrations of H2O2-induced oxidative stress in NIH3T3 cells. Moreover, by using colon crypts it provides the unique possibility of assessing cell specific levels of oxidative stress in explanted human tissues. Our results demonstrate that the actual target cells of colon cancer induction are indeed susceptible to the oxidative activity of H2O2.  相似文献   

14.
Inflammatory bowel disease (IBD) is related to dysfunction of intestinal immunity. Neutrophils have an important role in innate immunity via the oxidative burst, using the p47phox- and gp91(phox)-containing NAD(P)H oxidase known as Nox2. In dextran sulphate sodium (DSS)-induced colitis, no significant difference in inflammation between p47(phox-/-) and wild-type (WT) mice was reported, but there was improved endothelium-dependent arteriolar dilation in gp91(phox-/-) mice, compared with that in WT mice. Gp91(phox) and p47 (phox) are not only essential components of phagocyte Nox2, but also have roles in other enzymes. Thus the differences in response of their respective gene knockout mice to DSS challenge are not completely unexpected, but need further investigation. The clinicopathological changes and immunological responses to DSS challenge have not been fully described in gp91(phox-/-) mice. Thus we treated WT and gp91(phox-/-) mice with 2.5% DSS for 7 days. The gp91(phox-/-) mice developed less severe colitis than WT mice following DSS treatment, reflected by a smaller body weight loss, less rectal bleeding and fewer histopathological changes. Less colonic myeloperoxidase was observed in gp91(phox-/-), compared with WT mice, following DSS challenge, correlating with interleukin (IL)-6 production. IL-10 was upregulated in both gp91(phox-/-) and WT mice, but was significantly higher in the latter, following 7 days DSS challenge. These results suggest that gp91(phox-/-) mice are less susceptible to acute DSS-induced colitis, possibly because of a reduced oxidative burst in the intestine and, consequently, less tissue damage.  相似文献   

15.
In vivo DNA damage in gastric epithelial cells   总被引:6,自引:0,他引:6  
A number of risk factors have been linked epidemiologically with gastric cancer, but studies of DNA damage in gastric epithelial cells are limited. The comet assay is a simple technique for determining levels of DNA damage in individual cells. In this study, we have validated the comet assay for use in epithelial cells derived directly from human gastric biopsies, determined optimal conditions for biopsy digestion and investigated the effects of oxidative stress and digestion time on DNA damage. Biopsies taken at endoscopy were digested using combinations of pronase and collagenase, ethylenediaminetetra-acetic acid (EDTA) and vigorous shaking. The resultant cell suspension was assessed for cell concentration and epithelial cell and leukocyte content. A score for DNA damage, the comet %, was derived from the cell suspension, and the effect of various digestion conditions was studied. Cells were incubated with H(2)O(2) and DNA damage was assessed. Pronase and collagenase provided optimum digestion conditions, releasing 1. 12x10(5) cells per biopsy, predominantly epithelial. Of the 23 suspensions examined, all but three had leukocyte concentrations of less than 20%. The comet assay had high inter-observer (6.1%) and inter-assay (4.5%) reproducibility. Overnight storage of the biopsy at 4 degrees C had no significant effect on DNA migration. Comet % increased from a median of 46% in untreated cells to 88% in cells incubated for 45 min in H(2)O(2) (p=0.005). Serial 25-min digestions were performed on biopsies from 13 patients to release cells from successively deeper levels in the crypt. Levels of DNA migration were significantly lower with each digestion (r=-0.94, p<0.001), suggesting that DNA damage is lower in younger cells released from low in the gastric crypt. The comet assay is a reproducible measure of DNA damage in gastric epithelial cells. Damage accumulates in older, more superficial cells, and can be induced by oxidative stress.  相似文献   

16.
The traditional Chinese medicine Danshensu (DSS) has a protective effect on cardiac ischaemia/reperfusion (I/R) injury. However, the molecular mechanisms underlying the DSS action remain undefined. We investigated the potential role of DSS in autophagy and apoptosis using cardiac I/R injury models of cardiomyocytes and isolated rat hearts. Cultured neonatal rat cardiomyocytes were subjected to 6 hrs of hypoxia followed by 18 hrs of reoxygenation to induce cell damage. The isolated rat hearts were used to perform global ischaemia for 30 min., followed by 60 min. reperfusion. Ischaemia/reperfusion injury decreased the haemodynamic parameters on cardiac function, damaged cardiomyocytes or even caused cell death. Pre‐treatment of DSS significantly improved cell survival and protected against I/R‐induced deterioration of cardiac function. The improved cell survival upon DSS treatment was associated with activation of mammalian target of rapamycin (mTOR) (as manifested by increased phosphorylation of S6K and S6), which was accompanied with attenuated autophagy flux and decreased expression of autophagy‐ and apoptosis‐related proteins (including p62, LC3‐II, Beclin‐1, Bax, and Caspase‐3) at both protein and mRNA levels. These results suggest that alleviation of cardiac I/R injury by pre‐treatment with DSS may be attributable to inhibiting excessive autophagy and apoptosis through mTOR activation.  相似文献   

17.
The nonapeptide oxytocin (OT) is important for uterine contractility at parturition, milk ejection during lactation, and the induction of maternal behavior. OT messenger ribonucleic acid (mRNA) levels increase in the paraventricular and supraoptic nuclei (PVN and SON) of late pregnant and lactating rats and are modulated by the steroid milieu that accompanies these states. Specifically, sequential exposure to estradiol (E2) and progesterone (P) followed by P withdrawal 48 hrs prior to sacrifice increases PVN, and to a lesser but significant degree, SON OT mRNA. To better define the time course of induction of OT mRNA levels following P withdrawal, ovariectomized Sprague-Dawley rats were treated with empty or steroid-filled capsules. On day 1, animals received an E2-filled or empty capsule, followed by P-filled or empty capsules on day 3. On day 14, P-filled or empty capsules were removed and animals were sacrificed 24, 36, or 48 hrs later. The hypothalamic PVN were analyzed for OT mRNA by in situ hybridization histochemistry. Significant differences in PVN OT mRNA were found among the groups (P < 0.0001, Kruskal-Wallis). Animals in the 48 hr (P = 0.007) and 36 hr (P = 0.005), but not the 24 hr, steroid-treated groups had significantly increased OT mRNA relative to their respective sham-treated cohorts (Mann-Whitney U test). The relative abundance of PVN OT mRNA differed among the steroid-treated groups (Kruskal-Wallis, P < 0.0003), with highest levels at 48 hr. We conclude that increases in PVN OT mRNA occur by 36 hrs, and are highest at 48 hrs, after P withdrawal in the E2-primed rat. Future studies will determine if OT-mediated changes in behavior or physiology that surround parturition are related to these changes in OT mRNA.  相似文献   

18.
The cell's susceptibility to DNA damage and its ability to repair this damage are important for cancer induction, promotion and progression. In the present work we determined the level of basal (total endogenous) and endogenous oxidative DNA damage as well as polymorphism of the DNA repair genes: RAD51 (135 G/C), XRCC3 (Thr241Met), OGG1 (Ser326Cys) and XPD (Lys751Gln) in peripheral blood lymphocytes of 41 breast cancer patients and 48 healthy individuals. DNA damage was evaluated by alkaline comet assay with DNA repair enzymes: Endo III and Fpg, preferentially recognizing oxidized DNA bases. The genotypes of the polymorphisms were determined by restriction fragment length polymorphism PCR. We observed a strong association between breast cancer occurrence and the genotypes C/C of the RAD51-135G/C polymorphism, Ser/Ser of the OGG1-Ser326Cys and Lys/Gln of the XPD-Lys751Gln, whereas the genotypes G/C of the RAD51-135G/C and Lys/Lys of the XPD-Lys751Gln exerted a protective effect against breast cancer. We also found that individuals with the G/C genotype of the RAD51-135G/C polymorphism and with the Lys/Lys genotype of the XPD-Lys751Gln polymorphism displayed a lower extent of basal and oxidative DNA damage. A strong association between higher level of oxidative DNA damage and the Lys/Gln genotype of the latter polymorphism was found. We also correlated genotypes with clinical characteristics of breast cancer patients. We observed a strong association between the G/C genotype of the RAD51-135 G/C polymorphism and the expression of the progesterone receptor and between both alleles of the OGG1-Ser326Cys polymorphism and lymph node metastasis. Our results suggest that the polymorphism of the RAD51, OGG1 and XPD genes may be linked with breast cancer by the modulation of the cellular response to oxidative stress and these polymorphisms may be considered as markers in breast cancer along with the genetic or/and environmental indicators of oxidative stress.  相似文献   

19.
Neuronal DNA repair remains one of the most exciting areas for investigation, particularly as a means to compare the DNA repair response in mitotic (cancer) vs. post-mitotic (neuronal) cells. In addition, the role of DNA repair in neuronal cell survival and response to aging and environmental insults is of particular interest. DNA damage caused by reactive oxygen species (ROS) such as generated by mitochondrial respiration includes altered bases, abasic sites, and single- and double-strand breaks which can be prevented by the DNA base excision repair (BER) pathway. Oxidative stress accumulates in the DNA of the human brain over time especially in the mitochondrial DNA (mtDNA) and is proposed to play a critical role in aging and in the pathogenesis of several neurological disorders including Parkinson's disease, ALS, and Alzheimer's diseases. Because DNA damage accumulates in the mtDNA more than nuclear DNA, there is increased interest in DNA repair pathways and the consequence of DNA damage in the mitochondria of neurons. The type of damage that is most likely to occur in neuronal cells is oxidative DNA damage which is primarily removed by the BER pathway. Following the notion that the bulk of neuronal DNA damage is acquired by oxidative DNA damage and ROS, the BER pathway is a likely area of focus for neuronal studies of DNA repair. BER variations in brain aging and pathology in various brain regions and tissues are presented. Therefore, the BER pathway is discussed in greater detail in this review than other repair pathways. Other repair pathways including direct reversal, nucleotide excision repair (NER), mismatch repair (MMR), homologous recombination and non-homologous end joining are also discussed. Finally, there is a growing interest in the role that DNA repair pathways play in the clinical arena as they relate to the neurotoxicity and neuropathy associated with cancer treatments. Among the numerous side effects of cancer treatments, major clinical effects include neurocognitive dysfunction and peripheral neuropathy. These symptoms occur frequently and have not been effectively studied at the cellular or molecular level. Studies of DNA repair may help our understanding of how those cells that are not dividing could succumb to neurotoxicity with the clinical manifestations discussed in the following article.  相似文献   

20.
Azoxymethane (AOM) is a methylating agent capable of inducing mutations in DNA by forming adducts with DNA bases. It has been used to understand the mechanisms involved in colon carcinogenesis. Of the adducts formed in response to AOM, O(6)-methyl-2'-deoxy-guanosine (O(6)-mdGua) is the most mutagenic. Based on studies in rodents of the abundance and persistence of DNA adducts in various tissues after treatment with alkylating agents, previous results suggest, as a generalization, that the longer O(6)-mdGua adducts remain unrepaired in the cells of a tissue, the greater the risk for tumorigenesis. To test this hypothesis, we have built on these studies, expanding the number of tissues in which O(6)-mdGua abundance and persistence were examined and correlating these data with tumour distribution and abundance in rats maintained for 26 weeks after the treatment with AOM. Our study revealed firstly the existence of groups of tissues that developed relatively large amounts (proximal and distal colon, proximal small intestine (SI), liver and kidney) and relatively low levels (stomach, distal SI, bladder, spleen, blood and lung) of O(6)-mdGua after AOM exposure. Secondly, while all tissues showed an increase in adduct levels at 6h after mutagen treatment and most showed a significant drop in adduct levels between 6h and 48h (stomach, proximal and distal SI, liver, spleen, blood and lung), one group of tissues displayed O(6)-mdGua levels that did not decrease at 48h (proximal and distal colon, kidney and bladder). Predictably, the colon displayed tumours 26 weeks after treatment. Interestingly, however, the proximal SI also displayed significant tumour formation at that time. Our findings demonstrate (1) a direct association between exposure to O(6)-mdGua and tumours of the distal colon and (2) a dissociation of the relationship between adduct clearance and tumorigenesis in the SI. This diversity of response in the gastrointestinal tract warrants further analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号