首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyamines stimulate lysosomal cystine transport   总被引:1,自引:0,他引:1  
Lysosomal cystine transport is a carrier-dependent process that, in isolated lysosomes, is stimulated by proton gradients, membrane potential, and millimolar concentrations of divalent cations. The importance of these regulatory factors in vivo is not well established. Polyamines were found to stimulate cystine transport in Percoll gradient purified rat liver lysosomes with spermidine greater than putrescine = cadaverine greater than spermine in order of effectiveness. Maximal stimulation was achieved with 500 microM spermidine. The effects of optimal concentrations of polyamines and divalent cations on cystine transport were not additive. Spermidine stimulated cystine efflux from lysosomes of cultured human diploid fibroblasts, but had no effect on lysosomes of cystinotic fibroblasts which have defective cystine transport. Spermidine did not accumulate within lysosomes in exchange for cystine, had no effect on lysosomal pH, had only slight effects on the lysosomal membrane potential, and had little effect on either methionine or tyrosine efflux. Polyamines are cellular cytoplasmic components that, in physiologic concentrations, stimulate lysosomal cystine transport.  相似文献   

2.
The regulation of lysosomal cystine transport was studied using cystine dimethyl ester-loaded lysosomes isolated from human diploid fibroblasts. Net efflux from normal fibroblast lysosomes was compared to that from lysosomes of cystinotic fibroblasts, which contain an inherited mutation decreasing lysosomal cystine transport. This exodus of cystine from normal fibroblast lysosomes was greater than from cystinotic fibroblast lysosomes. When lysosomes were incubated with both 5 mM MgCl2 and 2 mM ATP (Mg/ATP), the amount of lysosomal cystine lost from normal lysosomes doubled, but the amount of cystine lost from cystinotic lysosomes remained small. This effect of Mg/ATP on cystine loss from lysosomes isolated from normal fibroblasts was abolished when either carbonyl cyanide m-chlorophenylhydrazone or N-ethylmaleimide was present, suggesting that the effect of Mg/ATP was mediated by the action of a lysosomal proton-translocating ATPase. Addition of KCl, RbCl, or NaCl to normal lysosomes caused smaller increases in cystine exodus. A variety of experimental conditions altered lysosomal pH, membrane potential, and the cystine lost from normal fibroblast lysosomes. These same experimental conditions produced similar alterations in the lysosomal pH and membrane potential of cystinotic fibroblast lysosomes without a comparable alteration in cystine loss. These results have led us to propose a model in which the transport of cystine out of the normal lysosome is regulated by both the lysosomal membrane potential gradient and the transmembrane pH gradient.  相似文献   

3.
Proton-translocating ATPase and lysosomal cystine transport   总被引:6,自引:0,他引:6  
A proton-translocating ATPase was identified in highly purified lysosomes from Epstein-Barr virus-transformed human lymphoblasts. Activity of this ATPase caused acidification of highly purified, fluorescein isothiocyanate dextran-loaded lysosomes and correlated with the ATP-dependent efflux of lysosomal cystine. The lysosomal ATPase was distinct from mitochondrial F1-ATPase in its responses to a variety of inhibitors. Although ATP-dependent lysosomal cystine efflux is not demonstrable in cultured lymphoblasts from individuals with nephropathic cystinosis, ATPase activity and acidification in lysosomes from these cells is comparable to that in noncystinotic lysosomes. ATPase activity in lymphoblasts from normal individuals was 543 +/- 79 nmol/mg/min while in lymphoblasts from cystinotic individuals this activity was 541 +/- 25 nmol/mg/min. ATP-dependent acidification of lysosomes from normals was -0.5 +/- 0.1 pH units compared to -0.5 +/- 0.1 pH units in cystinotic lysosomes. Activity of the lysosomal proton-translocating ATPase is a necessary, but not sufficient, condition for lysosomal cystine efflux.  相似文献   

4.
Purified rat liver lysosomes were incubated in 0.2 M sialic acid resulting in an increase in lysosomal free sialic acid of 3.8 +/- 1.5 nmol/unit beta hexosaminidase. Sialic acid loss by these lysosomes was stimulated 2-3 fold by 25 mM sodium phosphate. Loss of sialic acid by lysosomes from cultured human diploid fibroblasts was similar to that observed in rat liver lysosomes while loss of sialic acid by lysosomes from cultured fibroblasts from a patient with infantile Salla disease occurred much more slowly. Salla disease appears to be the consequence of defective lysosomal transport of sialic acid and is analogous to cystinosis, a disorder of lysosomal amino acid transport.  相似文献   

5.
In order to study the intracellular localization of the proteolytic processing steps in the maturation of alpha-glucosidase and cathepsin D in cultured human skin fibroblasts we have used incubation with glycyl-L-phenylalanine-beta-naphthylamide (Gly-Phe-NH-Nap) as described by Jadot et al. [Jadot, M., Colmant, C., Wattiaux-de Coninck, S. & Wattiaux, R. (1984) Biochem. J. 219,965-970] for the specific lysis of lysosomes. When a homogenate of fibroblasts was incubated for 20 min with 0.5 mM Gly-Phe-NH-Nap, a substrate for the lysosomal enzyme cathepsin C, the latency of the lysosomal enzymes alpha-glucosidase and beta-hexosaminidase decreased from 75% to 10% and their sedimentability from 75% to 20-30%. In contrast, treatment with Gly-Phe-NH-Nap had no significant effect on the latency of galactosyltransferase, a marker for the Golgi apparatus, and on the sedimentability of glutamate dehydrogenase and catalase, markers for mitochondria and peroxisomes, respectively. The maturation of alpha-glucosidase and cathepsin D in fibroblasts was studied by pulse-labelling with [35S]methionine, immunoprecipitation, polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate and fluorography. When homogenates of labelled fibroblasts were incubated with Gly-Phe-NH-Nap prior to immunoprecipitation, 70-80% of all proteolytically processed forms of metabolically labelled alpha-glucosidase and cathepsin D was recovered in the supernatant. The earliest proteolytic processing steps in the maturation of alpha-glucosidase and cathepsin D appeared to be coupled to their transport to the lysosomes. Although both enzymes are transported via the mannose-6-phosphate-specific transport system, the velocity with which they arrived in the lysosomes was consistently different. Whereas newly synthesized cathepsin D was found in the lysosomes 1 h after synthesis, alpha-glucosidase was detected only after 2-4 h. When a pulse-chase experiment was carried out in the presence of 10 mM NH4Cl there was a complete inhibition of the transport of cathepsin D and a partial inhibition of that of alpha-glucosidase to the lysosomes. Leupeptin, an inhibitor of lysosomal thiol proteinases, had no effect on the transport of labelled alpha-glucosidase to the lysosomes. However, the early processing steps in which the 110-kDa precursor is converted to the 95-kDa intermediate form of the enzyme were delayed, a transient 105-kDa form was observed and the conversion of the 95-kDa intermediate form to the 76-kDa mature form of the enzyme was completely inhibited.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Lysosomes contain enzymatic activities capable of degrading nucleic acids to their constituent nucleosides, but the manner by which these degradation products are released from the lysosome is unknown. To investigate this process, human fibroblast lysosomes, purified on Percoll density gradients, were incubated with [3H]adenosine at pH 7.0, and the amount of adenosine taken up by the lysosomes was measured. Adenosine uptake by fibroblast lysosomes attained a steady state by 12 min at 37 degrees C and was unaffected by the presence of 2 mM MgATP or changes in pH from 5.0 to 8.0. An Arrhenius plot was linear with an activation energy of 12.9 kcal/mol and a Q10 of 2.0. Lysosomal adenosine uptake is saturable, displaying a Km of 9 mM at pH 7.0 and 37 degrees C. Various nucleosides and the nucleobase, 6-dimethylaminopurine, strongly inhibit lysosomal adenosine uptake, whereas neither D-ribose or nucleotide monophosphates have any significant effect upon lysosomal adenosine uptake. On a molar basis, purines are recognized more strongly than pyrimidines. Changing the nature of the nucleoside sugar from ribose to arabinose or deoxyribose has little effect on reactivity with this transport system. The known plasma membrane nucleoside transport inhibitors, dipyridamole and nitrobenzylthioinosine, inhibit lysosomal nucleoside transport at relatively low concentrations (25 microM) relative to the Km of 9 mM for lysosomal adenosine uptake. The half-times of [3H]inosine and [3H]uridine efflux from fibroblast lysosomes ranged from 6 to 8 min at 37 degrees C. Trans effects were not observed to be associated with either inosine or uridine exodus. In contrast to adenosine uptake, adenine primarily enters fibroblast lysosomes by a route not saturable by high concentrations of various nucleosides. In conclusion, the saturability of lysosomal adenosine uptake and its specific, competitive inhibition by other nucleosides indicate the existence of a carrier-mediated transport system for nucleosides within fibroblast lysosomal membranes.  相似文献   

7.
Summary The mechanism for lead induced cellular injury was studied on in vitro cultured rat fibroblasts, treated with lead in a dose that caused demonstrable cellular alterations within a couple of days. The changes were studied by means of methods for the histochemical demonstration of heavy metals and lysosomal membrane latency.The lead, added to the cultivation medium, was quickly incorporated into presumed secondary lysosomes of the fibroblasts and caused regressive cellular changes such as cytoplasmic vacuolization, nuclear pycnosis and eventually cell death. The lead exposure resulted in reduced lysosomal membrane latency and signs of enzyme and lead leakage to the cytoplasm.The cell damage might be mediated through lysosomal membrane alteration resulting in reduced latency and presumably leakage of lytic enzymes.Supported by the Swedish Medical Research Council (grant no 12 X-2037).  相似文献   

8.
Mammalian cells, cultured in the presence of serum lipoproteins, acquire cholesterol necessary for growth from the uptake and lysosomal hydrolysis of low-density lipoproteins (LDL). The mechanism(s) of intracellular transport of LDL-derived cholesterol from lysosomes to other cellular sites is unknown. In this study, various pharmacological agents were assessed for their ability to inhibit the movement of LDL-cholesterol from lysosomes to the plasma membrane. The only pharmacological agent tested in these experiments that specifically inhibited LDL-cholesterol movement was U18666A. Ketoconazole impaired the intracellular transport of LDL-cholesterol; however, ketoconazole also had a general effect on cholesterol movement, since it impeded the desorption of endogenously synthesized cholesterol into the medium. Other drugs that affected cholesterol movement appeared to be nonspecific. Cholesterol transport from lysosomes to plasma membranes was not significantly altered by agents that affect lysosomal function or cytoskeletal organization, as well as energy poisons and cycloheximide.  相似文献   

9.
To gain insight into the transport of sterol from lysosomes to the plasma membrane, we studied the efflux of lysosomal free cholesterol from intact Fu5AH rat hepatoma cells to high density lipoprotein (HDL) and other extracellular acceptors that promote sterol desorption from the plasma membrane. The procedures involved pulsing cells at 15 degrees C with low density lipoprotein that had been reconstituted with [3H]cholesteryl oleate and then incubating the cells at 37 degrees C in the presence of a sterol acceptor, while monitoring both the hydrolysis of [3H]cholesteryl oleate in lysosomes and the efflux of the resulting [3H]free cholesterol to the acceptor. After warming cells to 37 degrees C, rapid hydrolysis of [3H]cholesteryl oleate began after 10-20 min, and the lysosomally generated [3H]free cholesterol became available for efflux after an additional delay of 40-50 min. The kinetics of hydrolysis and the delay between hydrolysis and efflux were unchanged over a wide range of HDL3 concentrations (10-1000 micrograms of protein/ml), and with acceptors that do not interact with HDL-specific cell surface binding sites (phospholipid vesicles, dimethyl suberimidate cross-linked HDL). In addition, the delivery of lysosomal cholesterol to the plasma membrane was unaffected when cellular cholesterol content was elevated 2.6-fold above the normal control level, or when the activity of cellular acyl-coenzyme A/cholesterol acyltransferase (ACAT) was stimulated with exogenous oleic acid. We conclude that in the Fu5AH cell, a maximum of 40-50 min is required for the transport of cholesterol from lysosomes to the plasma membrane and that this transport is not regulated in response to either specific extracellular acceptors or the content of sterol in cells. The lack of effect of increased ACAT activity implies that the pathway for this transport does not involve passage of sterol through the rough endoplasmic reticulum, the subcellular location of ACAT.  相似文献   

10.
Synopsis A method is described for measuring the latency of lysosomal acid phosphatase in cultured rat heart endotheloid cells.210Pb was added to a medium used to demonstrate acid phosphatase activity by the Gomori lead method, and the amount of lead deposited was measured with a liquid scintillation counter. Deposition rates were measured after enzyme activation pretreatments with acetate buffer (pH 5.0) at various osmolalities, and after formaldehyde fixation. Formaldehyde, alloxan, or fluoride in the Gomori medium were evaluated for their differential effects on lysosomal and non-lysosomal acid phosphatase. The method was found to provide a sensitive, rapid and quantitative evaluation of acid phosphatase latency and should be useful for studying the integrity of lysosomes within cells.  相似文献   

11.
Targeting of lysosomal acid phosphatase with altered carbohydrate   总被引:3,自引:0,他引:3  
Human lysosomal acid phosphatase is transported as a transmembrane protein to lysosomes, where it is converted into a soluble protein by a limited proteolysis (Waheed et al., 1988, EMBO J. 7, 2351-2358). Transport of human lysosomal acid phosphatase in heterologous BHK-21 cells was examined under conditions that impair mannose-6-phosphate receptor-dependent transport, N-glycosylation or processing of N-linked oligosaccharides. Targeting of lysosomal acid phosphatase to lysosomes was neither affected by antibodies blocking the mannose-6-phosphate/IGF II receptor, nor by NH4Cl, which inhibited the mannose-6-phosphate receptor-dependent targeting of soluble lysosomal enzymes. 1-Deoxynojirimycin, 1-deoxymannojirimycin and swainsonine inhibited processing of N-linked oligosaccharides in lysosomal acid phosphatase without significantly affecting its transport. Tunicamycin inhibited N-glycosylation of lysosomal acid phosphatase. The non-glycosylated lysosomal acid phosphatase polypeptides accumulated within light membranes and were not transported to dense lysosomes. These results indicate that transport of lysosomal acid phosphatase is independent of mannose-6-phosphate receptors, does not involve an acid pH-dependent step and does not require processing of N-linked oligosaccharides. N-glycosylation appears to be necessary to achieve a transport competent form of lysosomal acid phosphatase.  相似文献   

12.
Starvation induces significant alterations in lysosomal enzymes, and reduced concentrations of glucose increases the activity of several lysosomal enzymes. Therefore, to evaluate the lysosomal antimicrobial activity under starvation conditions, we added 0, 5, 10, 20, or 40 g/l of glucose (0%, 0.5%, 1%, 2%, or 4% glucose) supplemented YP medium to cultured Saccharomyces cerevisiae, and lysosomal fractions were isolated from S. cerevisiae grown under the various culture conditions. The lysosomes isolated from each condition exhibited increased antimicrobial activity against Escherichia coli as determined by a decrease in glucose concentration. In addition, a starvation-dependent increase in lysosomal activity coincided with increased lysosome intensity at the cytosol and distinct protein expression from lysosomes in S. cerevisiae. It also was determined found that the lysosomes have antimicrobial activity against seven different microorganisms, including E. coli, and starvation-induced lysosomes showed enhanced antimicrobial activity compared to those from normal lysosomes. These results suggest the possibility that lysosomal alterations during starvation may induce conditions that activate lysosomes for future development of efficient antimicrobial agents.  相似文献   

13.
Effect of brefeldin A on the transport of lysosomal acid hydrolases (cathepsins D and H) was investigated in primary cultured rat hepatocytes. Both cathepsins were synthesized as proenzymes and progressively converted to mature enzymes in the control cells. However, BFA strongly inhibited the appearance of the mature enzymes in the cells in a dose dependent manner, suggesting that transport of newly synthesized lysosomal enzymes from the endoplasmic reticulum to lysosomes is blocked by the drug. The inhibitory effect by brefeldin A was reversible. Upon recovery from brefeldin A-intoxication, procathepsin D was effectively targeted into lysosomes, whereas a substantial amount of procathepsin H was found to be missorted, resulting in its secretion into the culture medium.  相似文献   

14.
Since lysosomes are prone to osmotic lysis, we have examined the correlation between their physical state and sensitivity to osmotic challenge, using agents which modify membrane fluidity. The latency loss of beta-hexosaminidase after an incubation in hypotonic sucrose medium was followed under different conditions of membrane fluidity, recorded by steady-state fluorescence anisotropy of 1,6-diphenyl-1,3, 5-hexatriene. Increasing fluidity of the lysosomal membranes with benzyl alcohol (BA) and greater rigidity caused by cholesteryl hemisuccinate (CHS) increased and decreased the enzyme latency loss, respectively. The effects of BA and CHS treatments on osmotic sensitivity were reversible subsequently by reciprocal treatments of the lysosomes with CHS and BA, respectively. The results indicate that the physical state of the membrane does indeed affect lysosomal osmotic stability.  相似文献   

15.
A method was developed for the isolation of unmodified lysosomes of human origin using cultured EB-virus transformed lymphoblasts. The cells were lysed carefully by repeated resuspension in buffered isotonic sucrose. A crude granular fraction derived from this lysate was further purified by isopyknic centrifugation in an isotonic colloidal silica gel gradient and by free-flow electrophoresis. The following relative specific activities (mean ± S.D.) of lysosomal marker enzymes were measured in a pooled lysosomal fraction obtained from the final electrophoresis step (representing less than 0.1% of the initial protein): β-N-acetylglucosaminidase 85.6 ± 15.5; β-galactosidase 87.6 ± 13.4; acid β-glycerophosphatase 41.7 ± 3.5; β-glucuronidase 36.6 ± 6.1. With respect to the final two enzymes the recovery within this pooled fraction was 5–6% of the initial lysate. The great differences in relative specific activities achievable may be due mainly to different extralysosomal portions of the lysosomal marker enzymes, as was found for acid β-glycerophosphatase which was largely distributed within non-lysosomal structures in lymphoblasts when studied by histochemical staining. The final fraction consisted almost exclusively of lysosomes when examined by electron microscopy. Most lysosomes appeared club-shaped immediately after cell lysis and throughout the preparation procedure. Examination by electron microscopy and measurement of the latency of lysosomal enzyme activity revealed an exceptional integrity of the lysosomal membrane. This method provides the opportunity to study highly purified lysosomes from patients with lysosomal disorders.  相似文献   

16.
Studies on the permeability of rat liver lysosomes to carbohydrates   总被引:15,自引:12,他引:3       下载免费PDF全文
1. The latency of nitrocatechol sulphatase activity was measured in rat liver lysosomes before and after preincubation in 0.25m solutions of 25 different carbohydrates. 2. Preincubation in disaccharides, hexitols, gluconate, glucuronate or lactate gave little or no rise in ;free' sulphatase activity, indicating that these compounds do not easily penetrate the lysosomal membrane, but incubation in monosaccharides or the lower glycitols caused a progressive loss of latency. 3. Rates of increase in ;free' activity were taken as an indication of rates of solute penetration into lysosomes and were correlated with the structure and molecular weight of each sugar. 4. Additional evidence for non-penetration of maltose was obtained by demonstrating that the latency of lysosomal alpha-glucosidase is independent of substrate concentration employed. 5. The results are discussed in the light of published data on the latency of lysosomal enzymes.  相似文献   

17.
Tilorone, an amphiphilic cationic compound with antiviral activity perturbed the lysosomal system. In cultured fibroblasts tilorone induced storage of sulfated glycosaminoglycans, enhanced secretion of precursor forms of lysosomal enzymes, inhibited intracellular proteolytic maturation of lysosomal enzymes, and inhibited receptor-mediated endocytosis of lysosomal enzymes. In isolated lysosomes tilorone was found to increase pH and to abolish the ATP-dependent acidification. These effects suggest that tilorone acts like a weak base that accumulates in acid compartments of the cells, raises the pH therein and interferes with lysosomal catabolic activity and with receptor-mediated transport of lysosomal enzymes.  相似文献   

18.
Intracellular protein degradation rates decrease with age in many tissues and organs. In cultured cells, chaperone-mediated autophagy, which is responsible for the selective degradation of cytosolic proteins in lysosomes, decreases with age. In this work we use lysosomes isolated from rat liver to analyze age-related changes in the levels and activities of the main components of chaperone-mediated autophagy. Lysosomes from "old" (22-month-old) rats show lower rates of chaperone-mediated autophagy, and both substrate binding to the lysosomal membrane and transport into lysosomes decline with age. A progressive age-related decrease in the levels of the lysosome-associated membrane protein type 2a that acts as a receptor for chaperone-mediated autophagy was responsible for decreased substrate binding in lysosomes from old rats as well as from late passage human fibroblasts. The cytosolic levels and activity of the 73-kDa heat-shock cognate protein required for substrate targeting to lysosomes were unchanged with age. The levels of lysosome-associated hsc73 were increased only in the oldest rats. This increase may be an attempt to compensate for reduced activity of the pathway with age.  相似文献   

19.
Oxidized low density lipoprotein (LDL) has been found to exhibit numerous potentially atherogenic properties, including transformation of macrophages to foam cells. It is believed that high density lipoprotein (HDL) protects against atherosclerosis by removing excess cholesterol from cells of the artery wall, thereby retarding lipid accumulation by macrophages. In the present study, the relative rates of HDL-mediated cholesterol efflux were measured in murine resident peritoneal macrophages that had been loaded with acetylated LDL or oxidized LDL. Total cholesterol content of macrophages incubated for 24 h with either oxidized LDL or acetylated LDL was increased by 3-fold. However, there was no release of cholesterol to HDL from cells loaded with oxidized LDL under conditions in which cells loaded with acetylated LDL released about one-third of their total cholesterol to HDL. Even mild degrees of oxidation were associated with impairment of cholesterol efflux. Macrophages incubated with vortex-aggregated LDL also displayed impaired cholesterol efflux, but aggregation could not account for the entire effect of oxidized LDL. Resistance of apolipoprotein B (apoB) in oxidized LDL to lysosomal hydrolases and inactivation of hydrolases by aldehydes in oxidized LDL were also implicated. The subcellular distribution of cholesterol in oxidized LDL-loaded cells and acetylated LDL-loaded cells was investigated by density gradient fractionation, and this indicated that cholesterol derived from oxidized LDL accumulates within lysosomes. Thus impairment of cholesterol efflux in oxidized LDL-loaded macrophages appears to be due to lysosomal accumulation of oxidized LDL rather than to impaired transport of cholesterol from a cytosolic compartment to the plasma membrane.  相似文献   

20.
Fluorescent microscopic examination of fibroblasts cultured with low density lipoprotein (LDL) and progesterone (10 micrograms/ml) for 24 h revealed extensive filipin-cholesterol staining of perinuclear lysosomes. Levels of unesterified cholesterol were 2-fold greater than in fibroblasts cultured with LDL alone. Progesterone strongly blocked cholesteryl ester synthesis. When cellular uptake of LDL was monitored in the presence of 58035, a specific inhibitor of acyl-CoA:cholesterol acyltransferase, excess unesterified cholesterol was not stored in lysosomes. Discontinuation of LDL uptake in conjunction with progesterone washout markedly reversed the filipin-cholesterol staining of lysosomes. Reversal of the lysosomal cholesterol lipidosis was associated with a rapid burst of cholesteryl ester synthesis and a normalization of the cellular levels of free and esterified cholesterol. In contrast to normal cells, progesterone removal from Niemann-Pick C fibroblasts did not reverse the lysosomal cholesterol accumulation of these mutant cultures. The metabolic precursor of progesterone, pregnenolone, also induced extensive accumulation of cholesterol in lysosomes. Other steroids induced less vacuolar cholesterol accumulation in the following decreasing order: corticosterone and testosterone, promegestone, RU 486. The relative inhibition of cellular cholesterol esterification by the steroids paralleled their respective abilities to sequester cholesterol in lysosomes rather than their inhibition of acyl-CoA:cholesterol acyltransferase activity in cell-free extracts. The progesterone-related inhibition and restoration of lysosomal cholesterol trafficking is a useful experimental means of studying intracellular cholesterol transport. A particularly important feature of its utility is the facile reversibility of the steroid-induced block. The lysosomal cholesterol lipidosis established with a hydrophobic amine, U18666A, was not as readily reversed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号