首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasma membrane (PM) H(+)-ATPase and H(+) transport activity were detected in PM fractions prepared from Zostera marina (a seagrass), Vallisneria gigantea (a freshwater grass) and Oryza sativa (rice, a terrestrial plant). The properties of Z. marina PM H(+)-ATPase, specifically, the optimal pH for ATPase activity and the result of trypsin treatment, were similar to those of authentic PM H(+)-ATPases in higher plants. In V. gigantea and O. sativa PM fractions, vanadate-sensitive (P-type) ATPase activities were inhibited by the addition of NaCl. In contrast, activity in the Z. marina PM fraction was not inhibited. The nitrate-sensitive (V-type) and azide-sensitive (F-type) ATPase activities in the Z. marina crude microsomal fraction and the cytoplasmic phosphoenolpyruvate carboxylase activity, however, were inhibited by NaCl, indicating that not all enzyme activities in Z. marina are insensitive to salt. Although the ratio of Na(+) to K(+) (Na(+)/K(+)) in seawater is about 30, Na(+)/K(+) in the Z. marina cells was about 1.0. The salt-tolerant ATPase activity in the plasma membrane must play an important role in maintaining a low Na(+) concentration in the seagrass cells.  相似文献   

2.
Colonizations from marine to freshwater environments constitute among the most dramatic evolutionary transitions in the history of life. Colonizing dilute environments poses great challenges for acquiring essential ions against steep concentration gradients. This study explored the evolution of body fluid regulation following freshwater invasions by the copepod Eurytemora affinis. The goals of this study were to determine (1) whether invasions from saline to freshwater habitats were accompanied by evolutionary shifts in body fluid regulation (hemolymph osmolality) and (2) whether parallel shifts occurred during independent invasions. We measured hemolymph osmolality for ancestral saline and freshwater invading populations reared across a range of common-garden salinities (0.2-25 PSU). Our results revealed the evolution of increased hemolymph osmolality (by 16-31%) at lower salinities in freshwater populations of E. affinis relative to their saline ancestors. Moreover, we observed the same evolutionary shifts across two independent freshwater invasions. Such increases in hemolymph osmolality are consistent with evidence of increased ion uptake in freshwater populations at low salinity, found in a previous study, and are likely to entail increased energetic costs upon invading freshwater habitats. Our findings are consistent with the evolution of increased physiological regulation accompanying transitions into stressful environments.  相似文献   

3.
In this study, the correlation between Cl(-) influx in freshwater tilapia and various transporters or enzymes, the Cl(-)/HCO(3)(-) exchanger, Na(+),K(+)-ATPase, V-type H(+)-ATPase, and carbonic anhydrase were examined. The inhibitors 2x10(-4) M ouabain (a Na(+),K(+)-ATPase inhibitor), 10(-5) M NEM (a V-type H(+)-ATPase inhibitor), 10(-2) M ACTZ (acetazolamide, a carbonic anhydrase inhibitor), and 6x10(-4) M DIDS (a Cl(-)/HCO(3)(-) exchanger inhibitor) caused 40%, 60%-80%, 40%-60%, and 40%-60% reduction in Cl(-) influx of freshwater tilapia, respectively. The inhibitor 2x10(-4) M ouabain also caused 50%-65% inhibition in gill Na(+),K(+)-ATPase activity. Western blot results showed that protein levels of gill Na(+),K(+)-ATPase, V-type H(+)-ATPase, and carbonic anhydrase in tilapia acclimated in low-Cl(-) freshwater were significantly higher than those acclimated to high-Cl(-) freshwater. Based on these data, we conclude that Na(+),K(+)-ATPase, V-H(+)-ATPase, the Cl(-)/HCO(3)(-) exchanger, and carbonic anhydrase may be involved in the active Cl(-) uptake mechanism in gills of freshwater-adapted tilapia.  相似文献   

4.
This study was carried out to determine the effects of gradual salinity increase on osmoregulatory ability of the Caspian roach Rutilus caspicus, under conditions which mimic stocking conditions of hatchery-raised fish. Initially, 30 juvenile fish (mean ± S.D. 3.20 ± 0.34 g) were transferred to 20 l circular tanks, in which salinities were changed in a stepwise fashion, from 0 to 5, 10 or 15 at 48 h intervals. The fish at salinity 15 were held for an additional 48 h at this salinity. Forty-eight hours after salinity transfer, survival rate, haematocrit, plasma Cl(-) , Na(+) and K(+) concentrations, osmolality and gill Na(+) /K(+) -ATPase (NKA) activity were measured. The only effect of exposure to 5 was a significant reduction in haematocrit compared to the freshwater control group. Exposure to salinity 10 raised haematocrit, Cl(-) and Na(+) concentrations and osmolality. At 48 h exposure to salinity 15, haematocrit, Cl(-) and Na(+) concentrations and osmolality were significantly higher than freshwater controls, and gill NKA activity was significantly lower, but the effect on NKA was no longer evident at 96 h exposure. There were no effects on survival. These results indicate that R. caspicus juveniles experience an initial non-lethal iono-osmotic perturbation following salinity increase but can adapt to brackish water at salinity 15.  相似文献   

5.
Response to selection and evolvability of invasive populations   总被引:3,自引:0,他引:3  
Lee CE  Remfert JL  Chang YM 《Genetica》2007,129(2):179-192
While natural selection might in some cases facilitate invasions into novel habitats, few direct measurements of selection response exist for invasive populations. This study examined selection response to changes in salinity using the copepod Eurytemora affinis. This copepod has invaded fresh water from saline habitats multiple times independently throughout the Northern Hemisphere. Selection response to a constant intermediate salinity (5 PSU) was measured in the laboratory for saline source and freshwater invading populations from the St. Lawrence drainage (North America). These populations were reared under three conditions: (1) native salinities (0 or 15 PSU) for at least two generations, (2) 5 PSU for two generations, and (3) 5 PSU for six generations. Full-sib clutches taken from populations reared under these three conditions were split across four salinities (0, 5, 15, and 25 PSU) to determine reaction norms for survival and development time. Contrasts in survival and development time across the three rearing conditions were treated as the selection response. Selection at 5 PSU resulted in a significant decline in freshwater (0 PSU) tolerance for both the saline and freshwater populations. Yet, evolutionary differences in freshwater tolerance persisted between the saline and freshwater populations. The saline and freshwater populations converged in their high-salinity (25 PSU) tolerance, with an increase in the freshwater population and decline in the saline population. Development time did not shift greatly in response to selection at 5 PSU. For all three rearing conditions, the freshwater population exhibited retarded larval development and accelerated juvenile development relative to the saline population. Results from this study indicate that both the saline and freshwater populations exhibit significant responses to selection for a fitness-related trait critical for invasions into a novel habitat. For the Symposium on “Evolvability and Adaptation of Invasive Species,” Society for the Study of Evolution 2004.  相似文献   

6.
The enzyme Na(+), K(+)-ATPase was investigated in the gills of selected hyper-regulating gammarid amphipods. Gill Na(+), K(+)-ATPase was characterised with respect to the main cation and co-factor concentrations for the freshwater amphipod Gammarus pulex. The optimum cation and co-factor concentrations for maximal gill Na(+), K(+)-ATPase activity in G. pulex were 100mM Na(+), 15mM K(+), 15mM Mg(2+) and 5mM ATP, at pH 7.2. The effects of salinity acclimation on gill Na(+), K(+)-ATPase activity and haemolymph sodium concentrations was investigated in selected gammarid amphipods from different salinity environments. Maximal enzyme activity occurred in all gammarids when acclimated to the most dilute media. This maximal activity coincided with the largest sodium gradient between the haemolymph and the external media. As the haemolymph/medium sodium gradient decreased, a concomitant reduction in gill Na(+), K(+)-ATPase activity occurred. This implicates the involvement of gill Na(+), K(+)-ATPase in the active uptake of sodium from dilute media in hyper-regulating gammarids.  相似文献   

7.
8.
In plants, the plasma membrane Na(+)/H(+) antiporter is the only key enzyme that extrudes cytosolic Na(+) and contributes to salt tolerance. But in fungi, the plasma membrane Na(+)/H(+) antiporter and Na(+)-ATPase are known to be key enzymes for salt tolerance. Saccharomyces cerevisiae Ena1p ATPase encoded by the ENA1/PMR2A gene is primarily responsible for Na(+) and Li(+) efflux across the plasma membrane during salt stress and for K(+) efflux at high pH and high K(+). To test if the yeast ATPase would improve salt tolerance in plants, we expressed a triple hemagglutinin (HA)-tagged Ena1p (Ena1p-3HA) in cultured tobacco (Nicotiana tabacum L.) cv Bright Yellow 2 (BY2) cells. The Ena1p-3HA proteins were correctly localized to the plasma membrane of transgenic BY2 cells and conferred increased NaCl and LiCl tolerance to the cells. Under moderate salt stress conditions, the Ena1p-3HA-expressing BY2 clones accumulated lower levels of Na(+) and Li(+) than nonexpressing BY2 clones. Moreover, the Ena1p-3HA expressing BY2 clones accumulated lower levels of K(+) than nonexpressing cells under no-stress conditions. These results suggest that the yeast Ena1p can also function as an alkali-cation (Na(+), Li(+), and K(+)) ATPase and alter alkali-cation homeostasis in plant cells. We conclude that, even with K(+)-ATPase activity, Na(+)-ATPase activity of the yeast Ena1p confers increased salt tolerance to plant cells during salt stress.  相似文献   

9.
Five widely documented mechanisms for chloride transport across biological membranes are known: anion-coupled antiport, Na+ and H(+)-coupled symport, Cl- channels and an electrochemical coupling process. These transport processes for chloride are either secondarily active or are driven by the electrochemical gradient for chloride. Until recently, the evidence in favour of a primary active transport mechanism for chloride has been inconclusive despite numerous reports of cellular Cl(-)-stimulated ATPases coexisting, in the same tissue, with uphill ATP-dependent chloride transport. Cl(-)-stimulated ATPase activity is a ubiquitous property of practically all cells with the major location being of mitochondrial origin. It also appears that plasma membranes are sites of Cl(-)-stimulated ATPase pump activity. Recent studies of Cl(-) -stimulated ATPase activity and ATP-dependent chloride transport in the same plasma membrane system, including liposomes, strongly suggest a mediation by the ATPase in the net movement of chloride up its electrochemical gradient across the plasma membrane structure. Contemporary evidence points to the existence of Cl(-)-ATPase pumps; however, these primary active transporters exist as either P-, F- or V-type ATPase pumps depending upon the tissue under study.  相似文献   

10.
We conducted this study to assess serum soluble E-selectin (sE-selectin) levels and erythrocyte membrane Na(+)K(+) ATPase activity in patients with rheumatoid arthritis (RA) and correlate the levels with disease activity. Levels of sE-selectin were measured in the serum of 20 patients with RA and 20 control subjects by an enzyme-linked immunosorbant assay. Na(+)K(+) ATPase activity was determined by a colorimetric method in RA patients and healthy controls. There were no statistically significant differences between the two groups with respect to demographic data such as age and sex (p > 0.05). The serum levels of sE-selectin, ESR and C-reactive protein (CRP) in RA patients were significantly higher than in healthy controls (p < 0.001). Erythrocyte membrane Na(+)K(+) ATPase activity was significantly lower in the RA group than in the control group (p < 0.001). Correlation analysis revealed significant positive correlations between soluble E-selectin and ESR (r = 0.457; p < 0.05) and CRP (r = 0.682; p < 0.01) levels. There were statistically significant negative correlations between erythrocyte membrane Na(+)K(+) ATPase activity and ESR (r = -0.450; p < 0.05) and CRP (r = -0.446; p < 0.05) levels. Additionally, a significant negative correlations between sE-selectin and Na(+)K(+) ATPase activity was observed (r = -0.80; p < 0.001). These results show that decreases in erythrocyte membrane Na(+)K(+) ATPase activity and increases in sE-selectin are observed in RA, and that increased levels of sE-selectin may also reflect disease status or activity.  相似文献   

11.
Invasive species that penetrate habitat boundaries are likelyto experience strong selection and rapid evolution. This studydocuments evolutionary shifts in tolerance and performance followingthe invasion of fresh water by the predominantly estuarine andsalt marsh copepod Eurytemora affinis. Common-garden experimentswere performed on freshwater-invading (Lake Michigan) and ancestralsaline (St. Lawrence marsh) populations to measure shifts inadult survival (at 0, 5, and 25 PSU), and survival during developmentand development time (both using full-sib clutches split across0, 5, 15, and 25 PSU). Results showed clear evidence of heritableshifts in tolerance and performance associated with freshwaterinvasions. The freshwater population exhibited a gain in low-salinitytolerance and a reduction in high-salinity tolerance relativeto the saline population, suggesting tradeoffs. These tradeoffswere supported by negative genetic correlations between survivalat fresh (0 PSU) versus higher salinities. Mortality in responseto salinity occurred primarily before metamorphosis, suggestingthat selection in response to salinity had acted primarily onthe early life-history stages. The freshwater population exhibitedcurious patterns of life-history evolution across salinities,relative to the saline population, of retarded development tometamorphosis but accelerated development from metamorphosisto adulthood. This pattern might reflect tradeoffs between developmentrate and survival in fresh water at the early life-history stages,but some other selective force acting on later life-historystages. Significant effects of clutch (genotype) and clutch-by-salinityinteraction (G x E) on survival and development time in bothpopulations indicated ample genetic variation as substrate fornatural selection. Variation for high-salinity tolerance waspresent in the freshwater population despite negative geneticcorrelations between high- and low-salinity tolerance. Resultsimplicate the importance of natural selection and document theevolution of reaction norms during freshwater invasions.  相似文献   

12.
Gastric H(+),K(+)-ATPase consists of alpha-subunit with 10 transmembrane domains and beta-subunit with a single transmembrane domain. We constructed cDNAs encoding chimeric beta-subunits between the gastric H(+),K(+)-ATPase and Na(+),K(+)-ATPase beta-subunits and co-transfected them with the H(+),K(+)-ATPase alpha-subunit cDNA in HEK-293 cells. A chimeric beta-subunit that consists of the cytoplasmic plus transmembrane domains of Na(+),K(+)-ATPase beta-subunit and the ectodomain of H(+),K(+)-ATPase beta-subunit assembled with the H(+),K(+)-ATPase alpha-subunit and expressed the K(+)-ATPase activity. Therefore, the whole cytoplasmic and transmembrane domains of H(+),K(+)-ATPase beta-subunit were replaced by those of Na(+),K(+)-ATPase beta-subunit without losing the enzyme activity. However, most parts of the ectodomain of H(+),K(+)-ATPase beta-subunit were not replaced by the corresponding domains of Na(+), K(+)-ATPase beta-subunit. Interestingly, the extracellular segment between Cys(152) and Cys(178), which contains the second disulfide bond, was exchangeable between H(+),K(+)-ATPase and Na(+), K(+)-ATPase, preserving the K(+)-ATPase activity intact. Furthermore, the K(+)-ATPase activity was preserved when the N-terminal first 4 amino acids ((67)DPYT(70)) in the ectodomain of H(+),K(+)-ATPase beta-subunit were replaced by the corresponding amino acids ((63)SDFE(66)) of Na(+),K(+)-ATPase beta-subunit. The ATPase activity was abolished, however, when 4 amino acids ((76)QLKS(79)) in the ectodomain of H(+),K(+)-ATPase beta-subunit were replaced by the counterpart ((72)RVAP(75)) of Na(+),K(+)-ATPase beta-subunit, indicating that this region is the most N-terminal one that discriminates the H(+),K(+)-ATPase beta-subunit from that of Na(+), K(+)-ATPase.  相似文献   

13.
Both phosphointermediate- and vacuolar-type (P- and V-type, respectively) ATPase activities found in cholinergic synaptic vesicles isolated from electric organ are immunoprecipitated by a monoclonal antibody to the SV2 epitope characteristic of synaptic vesicles. The two activities can be distinguished by assay in the absence and presence of vanadate, an inhibitor of the P-type ATPase. Each ATPase has two overlapping activity maxima between pH 5.5 and 9.5 and is inhibited by fluoride and fluorescein isothiocyanate. The P-type ATPase hydrolyzes ATP and dATP best among common nucleotides, and activity is supported well by Mg2+, Mn2+, or Co2+ but not by Ca2+, Cd2+, or Zn2+. It is stimulated by hyposmotic lysis, detergent solubilization, and some mitochondrial uncouplers. Kinetic analysis revealed two Michaelis constants for MgATP of 28 microM and 3.1 mM, and the native enzyme is proposed to be a dimer of 110-kDa subunits. The V-type ATPase hydrolyzes all common nucleoside triphosphates, and Mg2+, Ca2+, Cd2+, Mn2+, and Zn2+ all support activity effectively. Active transport of acetylcholine (ACh) also is supported by various nucleoside triphosphates in the presence of Ca2+ or Mg2+, and the Km for MgATP is 170 microM. The V-type ATPase is stimulated by mitochondrial uncouplers, but only at concentrations significantly above those required to inhibit ACh active uptake. Kinetic analysis of the V-type ATPase revealed two Michaelis constants for MgATP of approximately 26 microM and 2.0 mM. The V-type ATPase and ACh active transport were inhibited by 84 and 160 pmol of bafilomycin A1/mg of vesicle protein, respectively, from which it is estimated that only one or two V-type ATPase proton pumps are present per synaptic vesicle. The presence of presumably contaminating Na+,K(+)-ATPase in the synaptic vesicle preparation is demonstrated.  相似文献   

14.
S. cervi showed particulate bound Ca2+ ATPase and Na+,K(+)-ATPase activities while Mg2+ ATPase was detected in traces. ATPase of S. cervi was also differentiated from the nonspecific p-nitrophenyl phosphatase activity. Female parasite and microfilariae exhibited higher Ca2+ ATPase and Na+,K(+)-ATPase activities than the male adults and the enzyme Na+,K(+)-ATPase was mainly concentrated in the gastrointestinal tract of the filarial parasite. Na+,K(+)-ATPase of the filariid was ouabain-sensitive while Ca2(+)-ATPase activity was regulated by concentration of Ca2+ ions and inhibited by EGTA. Phenothiazines, viz. trifluoperazine, promethazine and chlorpromazine caused significant inhibition of Ca2+ ATPase and Na+,K(+)-ATPase. Diethylcarbamazine was a potent inhibitor of these ATPases. Mebendazole, levamisole and centperazine also caused significant inhibition of the ATPases indicating this enzyme system as a common target for the action of anthelmintic drugs.  相似文献   

15.
In this study we reveal regions of Na(+),K(+)-ATPase and H(+),K(+)-ATPase that are involved in cation selectivity. A chimeric enzyme in which transmembrane hairpin M5-M6 of H(+),K(+)-ATPase was replaced by that of Na(+),K(+)-ATPase was phosphorylated in the absence of Na(+) and showed no K(+)-dependent reactions. Next, the part originating from Na(+),K(+)-ATPase was gradually increased in the N-terminal direction. We demonstrate that chimera HN16, containing the transmembrane segments one to six and intermediate loops of Na(+),K(+)-ATPase, harbors the amino acids responsible for Na(+) specificity. Compared with Na(+),K(+)-ATPase, this chimera displayed a similar apparent Na(+) affinity, a lower apparent K(+) affinity, a higher apparent ATP affinity, and a lower apparent vanadate affinity in the ATPase reaction. This indicates that the E(2)K form of this chimera is less stable than that of Na(+),K(+)-ATPase, suggesting that it, like H(+),K(+)-ATPase, de-occludes K(+) ions very rapidly. Comparison of the structures of these chimeras with those of the parent enzymes suggests that the C-terminal 187 amino acids and the beta-subunit are involved in K(+) occlusion. Accordingly, chimera HN16 is not only a chimeric enzyme in structure, but also in function. On one hand it possesses the Na(+)-stimulated ATPase reaction of Na(+),K(+)-ATPase, while on the other hand it has the K(+) occlusion properties of H(+),K(+)-ATPase.  相似文献   

16.
Physiological mechanisms involved in acclimation to variable salinity and oxygen levels and their interaction were studied in European flounder. The fish were acclimated for 2 weeks to freshwater (1 per thousand salinity), brackish water (11 per thousand) or full strength seawater (35 per thousand) under normoxic conditions (water Po(2) = 158 mmHg) and then subjected to 48 h of continued normoxia or hypoxia at a level (Po(2) = 54 mmHg) close to but above the critical Po(2). Plasma osmolality, [Na(+)] and [Cl(-)] increased with increasing salinity, but the rises were limited, reflecting an effective extracellular osmoregulation. Muscle water content was the same at all three salinities, indicating complete cell volume regulation. Gill Na(+)/K(+)-ATPase activity did not change with salinity, but hypoxia caused a 25% decrease in branchial Na(+)/K(+)-ATPase activity at all three salinities. Furthermore, hypoxia induced a significant decrease in mRNA levels of the Na(+)/K(+)-ATPase alpha1-subunit, signifying a reduced expression of the transporter gene. The reduced ATPase activity did not influence extracellular ionic concentrations. Blood [Hb] was stable with salinity, and it was not increased by hypoxia. Instead, hypoxia decreased the erythrocytic nucleoside triphosphate content, a common mechanism for increasing blood O(2) affinity. It is concluded that moderate hypoxia induced an energy saving decrease in branchial Na(+)/K(+)-ATPase activity, which did not compromise extracellular osmoregulation.  相似文献   

17.
Aphanothece cells could take up Na(+) and this uptake was strongly inhibited by the protonophore, carbonyl cyanide m-chlorophenylhydrazone (CCCP). Cells preloaded with Na(+) exhibited Na(+) extrusion ability upon energizing with glucose. Na(+) was also taken up by the plasma membranes supplied with ATP and the uptake was abolished by gramicidin D, monensin or Na(+)-ionophore. Orthovanadate and CCCP strongly inhibited Na(+) uptake, whereas N, N'-dicyclohexylcarbodiimide (DCCD) slightly inhibited the uptake. Plasma membranes could hydrolyse ATP in the presence of Na(+) but not with K(+), Ca(2+) and Li(+). The K(m) values for ATP and Na(+) were 1.66+/-0.12 and 25.0+/-1.8 mM, respectively, whereas the V(max) value was 0.66+/-0.05 mumol min(-1) mg(-1). Mg(2+) was required for ATPase activity whose optimal pH was 7.5. The ATPase was insensitive to N-ethylmaleimide, nitrate, thiocyanate, azide and ouabain, but was substantially inhibited by orthovanadate and DCCD. Amiloride, a Na(+)/H(+) antiporter inhibitor, and CCCP showed little or no effect. Gramicidin D and monensin stimulated ATPase activity. All these results suggest the existence of a P-type Na(+)-stimulated ATPase in Aphanothece halophytica. Plasma membranes from cells grown under salt stress condition showed higher ATPase activity than those from cells grown under nonstress condition.  相似文献   

18.
Unipolar depression and bipolar depression are prevalent and debilitating diseases in need of effective novel treatments. It is becoming increasingly evident that depressive disorders manifest from a combination of inherited susceptibility genes and environmental stress. Genetic mutations resulting in decreased neuronal Na(+) ,K(+) -ATPase (sodium-potassium adenosine triphosphatase) activity may put individuals at risk for depression given that decreased Na(+) ,K(+) -ATPase activity is observed in depressive disorders and animal models of depression. Here, we show that Na(+) ,K(+) -ATPase α3 heterozygous mice (Atp1a3(+/-) ), with 15% reduced neuronal Na(+) ,K(+) -ATPase activity, are vulnerable to develop increased depression-like endophenotypes in a chronic variable stress (CVS) paradigm compared to wild-type littermates (Atp1a3(+/+) ). In Atp1a3(+/+) mice CVS did not decrease Na(+) ,K(+) -ATPase activity, however led to despair-like behavior in the tail suspension test (TST), anhedonia in a sucrose preference test and a minimal decrease in sociability, whereas in Atp1a3(+/-) mice CVS decreased neuronal Na(+) ,K(+) -ATPase activity to 33% of wild-type levels, induced despair-like behavior in the TST, anhedonia in a sucrose preference test, anxiety in the elevated plus maze, a memory deficit in a novel object recognition task and sociability deficits in a social interaction test. We found that a mutation that decreases neuronal Na(+) ,K(+) -ATPase activity interacts with stress to exacerbate depression. Furthermore, we observed an interesting correlation between Na(+) ,K(+) -ATPase activity and mood that may relate to both unipolar depression and bipolar disorder. Pharmaceuticals that increase Na(+) ,K(+) -ATPase activity or block endogenous Na(+) , K(+) -ATPase inhibition may provide effective treatment for depressive disorders and preclude depression in susceptible individuals.  相似文献   

19.
20.
V-type Na(+)-ATPase of Enterococcus hirae binds about six (6 +/- 1) Na(+) ions/enzyme molecule with a high affinity (Murata, T., Igarashi, K., Kakinuma, Y., and Yamato, I. (2000) J. Biol. Chem. 275, 13415-13419). After the addition of 5 mm ATP, the binding capacity dropped to about 2 (1.8 +/- 0.3) Na(+) ions/enzyme molecule, returning to the initial value concomitant with the decrease of ATP hydrolysis rate. These findings suggest that the affinity of four of six Na(+)-binding sites of the enzyme changes (lowers) in enzyme reaction. The ATP analogs (adenosine 5'-O-(3-thiotriphosphate) or 5'-adenylylimido-diphosphate), ADP, or aluminum fluoride that is postulated to trap ATPases at their transition state did not inhibit the Na(+) binding capacity significantly. Therefore, the affinity decrease of Na(+)-binding sites was unlikely to be due to ATP binding alone or at the transition state of ATP hydrolysis. In the presence of 5 mm ATP, the ATPase showed strong negative cooperativity (n(H) = 0.16 +/- 0.03) for Na(+) stimulation of ATPase activity. The Hill coefficient (n(H)) increased to 1 in parallel to the decrease of ATP concentration in the reaction mixture. Thus, the ATP-dependent affinity change cooperatively occurs in continuous enzyme reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号