首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have used Xenopus egg extracts to investigate the effects of the antitumor drug daunomycin on DNA replication in vitro. Xenopus sperm nuclei replicated nearly synchronously in our egg extracts, thereby allowing us to determine the effects of the drug on both replication initiation and elongation. Titration experiments demonstrated that daunomycin effectively inhibited replication in the extract, with 50% inhibition at a total drug concentration of 2.7 μM. However, a high concentration of daunomycin 150 μM) also inhibited nuclear envelope assembly, a prerequisite for the initiation of replication in this system. Therefore, to bypass the effects of daunomycin on nuclear envelope assembly, sperm nuclei were preassembled in extract prior to drug addition. Initiation of replication in preassembled nuclei was also inhibited by daunomycin, with 50% inhibition at a drug concentration of 3.6 μM. At low drug concentrations, where replication did occur, the synchrony of initiations within individual nuclei was lost. This drug-induced disruption of initiation events may provide important clues regarding the mechanism(s) by which these events are coordinated in eukaryotic cells. Daunomycin also inhibited replication elongation in preassembled, preinitiated nuclei. However, the concentration of drug required for 50% inhibition of elongation was nearly fourfold higher than that required for inhibition of initiation. Taken together, these data demonstrate that Xenopus egg extract can be used to investigate the effects of DNA-binding antitumor drugs on a number of interrelated cellular processes, many of which are less tractable in whole cell systems. J. Cell. Biochem. 64:476–491. © 1997 Wiley-Liss, Inc.  相似文献   

2.
It was show11 that nuclear reassembly was induced by small pieces of DNA fragments in cell-free extracts ofXenopus. In an attempt to learn the relationship between the nuclear reassembly and nucleosome/chromatin assembly, limited amounts of CM-Cellulose are used to eliminate the capacity of the egg extract S-150 to assemble chromatin. while the forming of nucleosomes is checked with DNA supercoiling by plasmid DNA pBR322 incubated in the extract, and further analysed by micrococcal nuclease digestion. This depleted extract is then used to induce nuclear reassembly around demembraned sperms with membrane vesicles. It is found that CM-Cellulose depletes histones H2A and H2B efficiently and blocks the assembly of nucleosomes, the demembraned sperms are yet reconstituted into nuclei in the treated S-150, although the chromatin in reassembled nuclei does not produce protected DNA fragments when digested with micrococcal nuclease. It suggests that in the cell-free system ofXenopus, DNA can be formed into nuclei without assembly of nucleosomes or chromatin.  相似文献   

3.
During late mitosis and early G1, a series of proteins are assembled onto replication origins, resulting in them becoming ‘licensed’ for replication in the subsequent S phase. Four factors have so far been identified that are required for chromatin to become functionally licensed: ORC (the origin recognition complex) and Cdc6, plus the two components of the replication licensing system RLF-M and RLF-B. Here we describe the first steps of a systematic fractionation of Xenopus egg extracts to identify all the components necessary for the assembly of licensed replication origins on Xenopus sperm nuclei (the physiological DNA substrate in this system). We have purified a new activity essential for this reaction, and have shown that it is nucleoplasmin, a previously known chromatin remodelling protein. Nucleoplasmin decondenses the sperm chromatin by removing protamines, and is required at the earliest known step in origin assembly to allow ORC to bind to the DNA. Sperm nuclei can be licensed by a combination of nucleoplasmin, RLF-M and a partially purified fraction that contains ORC, Cdc6 and RLF-B. This suggests that we are likely to have identified most of the proteins required for this assembly reaction.  相似文献   

4.
Histone H1 binds to linker DNA between nucleosomes, but the dynamics and biological ramifications of this interaction remain poorly understood. We performed single-molecule experiments using magnetic tweezers to determine the effects of H1 on naked DNA in buffer or during chromatin assembly in Xenopus egg extracts. In buffer, nanomolar concentrations of H1 induce bending and looping of naked DNA at stretching forces below 0.6 pN, effects that can be reversed with 2.7-pN force or in 200 mM monovalent salt concentrations. Consecutive tens-of-nanometer bending events suggest that H1 binds to naked DNA in buffer at high stoichiometries. In egg extracts, single DNA molecules assemble into nucleosomes and undergo rapid compaction. Histone H1 at endogenous physiological concentrations increases the DNA compaction rate during chromatin assembly under 2-pN force and decreases it during disassembly under 5-pN force. In egg cytoplasm, histone H1 protects sperm nuclei undergoing genome-wide decondensation and chromatin assembly from becoming abnormally stretched or fragmented due to astral microtubule pulling forces. These results reveal functional ramifications of H1 binding to DNA at the single-molecule level and suggest an important physiological role for H1 in compacting DNA under force and during chromatin assembly.  相似文献   

5.
Quiescent nuclei from differentiated somatic cells can reacquire pluripotence, the capacity to replicate, and reinitiate a program of differentiation after transplantation into amphibian eggs. The replication of quiescent nuclei is recapitulated in extracts derived from activated Xenopus eggs; therefore, we have exploited this cell-free system to explore the mechanisms that regulate initiation of replication in nuclei from terminally differentiated Xenopus erythrocytes. We find that these nuclei lack many, if not all, pre-replication complex (pre-RC) proteins. Pre-RC proteins from the extract form a stable association with the chromatin of permeable nuclei, which replicate in this system, but not with the chromatin of intact nuclei, which do not replicate, even though these proteins cross an intact nuclear envelope. During extract incubation, the linker histones H1 and H1(0) are removed from erythrocyte chromatin by nucleoplasmin. We show that H1 removal facilitates the replication of permeable nuclei by increasing the frequency of initiation most likely by promoting the assembly of pre-RCs on chromatin. These data indicate that initiation in erythrocyte nuclei requires the acquisition of pre-RC proteins from egg extract and that pre-RC assembly requires the loss of nuclear envelope integrity and is facilitated by the removal of linker histone H1 from chromatin.  相似文献   

6.
Soluble Xenopus egg extracts efficiently replicate added plasmids using a physiological mechanism, and thus represent a powerful system to understand vertebrate DNA replication. Surprisingly, DNA replication in this system is highly sensitive to plasmid concentration, being undetectable below ∼10 pM and highly efficient above ∼75 pM. DNA replication at the high plasmid concentration does not require plasmid–plasmid contacts, since replication is not inhibited when plasmids are immobilized in agarose prior to addition of egg extract. The absence of replication at low plasmid concentration is due to a defect in the assembly of pre-replication complexes (pre-RCs). pre-RC assembly requires contact-independent communication between plasmids. Our results show that in Xenopus egg extracts, aggregation of multiple replication forks is not required for efficient replication of plasmid DNA, and they suggest that DNA functions as a co-factor for its own duplication.  相似文献   

7.
Xenopus egg extracts provide a powerful tool for studying the formation and function of chromosomes. Two alternative protocols are generally used to obtain mitotic chromosomes. The first one uses a direct chromatin assembly from sperm nuclei in cytostatic factor (CSF)-arrested meiotic extracts, while the second is based on transition of sperm DNA through a replication step with subsequent reestablishment of CSF arrest. In this study we show that general kinetochore structure is disrupted in chromosomes assembled directly in CSF egg extracts: The amounts of outer kinetochore proteins such as Bub1, BubR1, and Dynactin subunit p150glued are reduced and the components of the inner centromeric region (Aurora B kinase and Survivin) show compromised recruitment to centromeres. On the contrary, kinetochores on chromosomes assembled according to the second protocol closely resemble those in somatic cells. Our results indicate that the transition of sperm nuclei through interphase is an essential step for proper kinetochore assembly.  相似文献   

8.
It was show11 that nuclear reassembly was induced by small pieces of DNA fragments in cell-free extracts ofXenopus. In an attempt to learn the relationship between the nuclear reassembly and nucleosome/chromatin assembly, limited amounts of CM-Cellulose are used to eliminate the capacity of the egg extract S-150 to assemble chromatin. while the forming of nucleosomes is checked with DNA supercoiling by plasmid DNA pBR322 incubated in the extract, and further analysed by micrococcal nuclease digestion. This depleted extract is then used to induce nuclear reassembly around demembraned sperms with membrane vesicles. It is found that CM-Cellulose depletes histones H2A and H2B efficiently and blocks the assembly of nucleosomes, the demembraned sperms are yet reconstituted into nuclei in the treated S-150, although the chromatin in reassembled nuclei does not produce protected DNA fragments when digested with micrococcal nuclease. It suggests that in the cell-free system ofXenopus, DNA can be formed into nuclei without assembly of nucleosomes or chromatin. Projrrt supported by the National Natural Science Foundation of China (Grant No. 39730240)  相似文献   

9.
The initiation of DNA replication requires two protein kinases: cyclin-dependent kinase (Cdk) and Cdc7. Although S phase Cdk activity has been intensively studied, relatively little is known about how Cdc7 regulates progression through S phase. We have used a Cdc7 inhibitor, PHA-767491, to dissect the role of Cdc7 in Xenopus egg extracts. We show that hyperphosphorylation of mini-chromosome maintenance (MCM) proteins by Cdc7 is required for the initiation, but not for the elongation, of replication forks. Unlike Cdks, we demonstrate that Cdc7 executes its essential functions by phosphorylating MCM proteins at virtually all replication origins early in S phase and is not limiting for progression through the Xenopus replication timing programme. We demonstrate that protein phosphatase 1 (PP1) is recruited to chromatin and rapidly reverses Cdc7-mediated MCM hyperphosphorylation. Checkpoint kinases induced by DNA damage or replication inhibition promote the association of PP1 with chromatin and increase the rate of MCM dephosphorylation, thereby counteracting the previously completed Cdc7 functions and inhibiting replication initiation. This novel mechanism for regulating Cdc7 function provides an explanation for previous contradictory results concerning the control of Cdc7 by checkpoint kinases and has implications for the use of Cdc7 inhibitors as anti-cancer agents.  相似文献   

10.
Repair of single-stranded DNA breaks before DNA replication is critical in maintaining genomic stability; however, how cells deal with these lesions during S phase is not clear. Using combined approaches of proteomics and in vitro and in vivo protein–protein interaction, we identified the p58 subunit of DNA Pol α-primase as a new binding partner of XRCC1, a key protein of the single strand break repair (SSBR) complex. In vitro experiments reveal that the binding of poly(ADP-ribose) to p58 inhibits primase activity by competition with its DNA binding property. Overexpression of the XRCC1-BRCT1 domain in HeLa cells induces poly(ADP-ribose) synthesis, PARP-1 and XRCC1-BRCT1 poly(ADP-ribosyl)ation and a strong S phase delay in the presence of DNA damage. Addition of recombinant XRCC1-BRCT1 to Xenopus egg extracts slows down DNA synthesis and inhibits the binding of PCNA, but not MCM2 to alkylated chromatin, thus indicating interference with the assembly of functional replication forks. Altogether these results suggest a critical role for XRCC1 in connecting the SSBR machinery with the replication fork to halt DNA synthesis in response to DNA damage.  相似文献   

11.
In the frog, Xenopus laevis, the Cip/Kip-type cyclin-dependent kinase (CDK) inhibitor, Xic1, inhibits DNA replication in interphase egg extracts through the binding of CDK2-cyclins and Proliferating Cell Nuclear Antigen (PCNA). During DNA polymerase switching in the replicating Xenopus egg extract, Xic1 is targeted for ubiquitination and degradation when localized to chromatin through its binding to PCNA. To date, the machinery responsible for Xic1 ubiquitination is unknown and although it is predicted that the E3 called SCF may mediate Xic1 ubiquitination, characterization of the SCF in Xenopus is lacking. In this study, we describe the identification and characterization of Xenopus Skp2 (xSkp2) and the role of xSkp2 in the ubiquitination of Xic1. Our results indicate that the expression of xSkp2 appears to be developmentally regulated with low protein levels found in the egg and increased levels found in the developing embryo. We also demonstrate that when ectopically expressed, a xSkp2 F-box deletion mutant inhibits the initiation of DNA replication suggesting a role for the SCF in the onset of S phase in Xenopus egg extracts. We further show that xSkp2 binds to C-terminal residues of Xic1 and when co-expressed with Skp1, promotes the proteolysis of Xic1 in the egg extract. Moreover, the xSkp2 F-box deletion mutant inhibits the DNA-dependent ubiquitination and proteolysis of Xic1 when added to the interphase egg extract. Importantly, our studies demonstrate that SCFxSkp2 supports the ubiquitination of Xic1 in a reconstituted in vitro ubiquitination assay and that this Xic1 ubiquitination does not require either CDK2-cyclins or Cks1. These studies provide the first characterization of the SCF in Xenopus and its role in the ubiquitination of CDK inhibitor, Xic1, during DNA replication initiation.  相似文献   

12.
Xenopus egg extracts initiate replication at specific origin sites within mammalian G1‐phase nuclei. Similarly, S‐phase extracts from Saccharomyces cerevisiae initiate DNA replication within yeast nuclei at specific yeast origin sequences. Here we show that Xenopus egg extracts can initiate DNA replication within G1‐phase yeast nuclei but do not recognize yeast origin sequences. When G1‐phase yeast nuclei were introduced into Xenopus egg extract, semiconservative, aphidicolin‐sensitive DNA synthesis was induced after a brief lag period and was restricted to a single round of replication. The specificity of initiation within the yeast 2 μm plasmid as well as in the vicinity of the chromosomal origin ARS1 was evaluated by neutral two‐dimensional gel electrophoresis of replication intermediates. At both locations, replication was found to initiate outside of the ARS element. Manipulation of both cis‐ and trans‐acting elements in the yeast genome before introduction of nuclei into Xenopus egg extract may provide a system with which to elucidate the requirements for vertebrate origin recognition. J. Cell. Biochem. 80:73–84, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

13.
Xenopus egg extract provides an extremely powerful approach in the study of cell cycle regulated aspects of nuclear form and function. Each egg contains enough membrane and protein components to support multiple rounds of cell division. Remarkably, incubation of egg extract with DNA in the presence of an energy regeneration system is sufficient to induce formation of a nuclear envelope around DNA. In addition, these in vitro nuclei contain functional nuclear pore complexes, which form de novo and are capable of supporting nucleocytoplasmic transport. Mitotic entry can be induced by the addition of recombinant cyclin to an interphase extract. This initiates signaling that leads to disassembly of the nuclei. Thus, this cell-free system can be used to decipher events involved in mitotic remodeling of the nuclear envelope such as changes in nuclear pore permeability, dispersal of membrane, and disassembly of the lamina. Both general mechanisms and individual players required for orchestrating these events can be identified via biochemical manipulation of the egg extract. Here, we describe a procedure for the assembly and disassembly of in vitro nuclei, including the production of Xenopus egg extract and sperm chromatin DNA.  相似文献   

14.
Using cell-free extracts made from Xenopus eggs, we show that cdk2-cyclin E and A kinases play an important role in negatively regulating DNA replication. Specifically, we demonstrate that the cdk2 kinase concentration surrounding chromatin in extracts increases 200-fold once the chromatin is assembled into nuclei. Further, we find that if the cdk2–cyclin E or A concentration in egg cytosol is increased 16-fold before the addition of sperm chromatin, the chromatin fails to initiate DNA replication once assembled into nuclei. This demonstrates that cdk2–cyclin E or A can negatively regulate DNA replication. With respect to how this negative regulation occurs, we show that high levels of cdk2–cyclin E do not block the association of the protein complex ORC with sperm chromatin but do prevent association of MCM3, a protein essential for replication. Importantly, we find that MCM3 that is prebound to chromatin does not dissociate when cdk2– cyclin E levels are increased. Taken together our results strongly suggest that during the embryonic cell cycle, the low concentrations of cdk2–cyclin E present in the cytosol after mitosis and before nuclear formation allow proteins essential for potentiating DNA replication to bind to chromatin, and that the high concentration of cdk2–cyclin E within nuclei prevents MCM from reassociating with chromatin after replication. This situation could serve, in part, to limit DNA replication to a single round per cell cycle.  相似文献   

15.
《The Journal of cell biology》1996,135(5):1207-1218
Xenopus egg extracts initiate DNA replication specifically at the dihydrofolate reductase (DHFR) origin locus with intact nuclei from late G1-phase CHO cells as a substrate, but at nonspecific sites when purified DNA is assembled by the extract into an embryonic nuclear structure. Here we show that late G1-phase CHO nuclei can be cycled through an in vitro Xenopus egg mitosis, resulting in the assembly of an embryonic nuclear envelope around G1-phase chromatin. Surprisingly, replication within these chimeric nuclei initiated at a novel specific site in the 5' region of the DHFR structural gene that does not function as an origin in cultured CHO cells. Preferential initiation at this unusual site required topoisomerase II-mediated chromosome condensation during mitosis. Nuclear envelope breakdown and reassembly in the absence of chromosome condensation resulted in nonspecific initiation. Introduction of condensed chromosomes from metaphase- arrested CHO cells directly into Xenopus egg extracts was sufficient to elicit assembly of chimeric nuclei and preferential initiation at this same site. These results demonstrate clearly that chromosome architecture can determine the sites of initiation of replication in Xenopus egg extracts, supporting the hypothesis that patterns of initiation in vertebrate cells are established by higher order features of chromosome structure.  相似文献   

16.
A bis(2,6-dioxopiperazine) derivative, ICRF-193, is a specific inhibitor of topoisomerase II without clearable complex-stabilizing activity. In Xenopus egg extract containing ICRF-193, demembranated sperm head chromatins were inhibited from decondensation. However, nuclear envelope-lamina assembled on the inhibited chromatins. The nuclear envelope-lamina continued to expand even after loss of contact with the chromatin surface. On the other hand, semiconservative DNA replication was initiated as soon as the lamina was assembled onto the surface of condensed chromatin, though the initiation was retarded and its extent was reduced, compared with that in noninhibited chromatins. Thus, it is concluded that topoisomerase II activity is not required for the formation of active DNA replication clusters and the extension of nuclear envelope-lamina on the chromatin, while the nuclear envelope-mediated decondensation of sperm chromatins is dependent on topoisomerase II activity.  相似文献   

17.
Quiescent cells from adult vertebrate liver and contact-inhibited or serum-deprived tissue cultures are active metabolically but do not carry out nuclear DNA replication and cell division. Replication of intact nuclei isolated from either quiescent Xenopus liver or cultured Xenopus A6 cells in quiescence was barely detectable in interphase extracts of Xenopus laevis eggs, although Xenopus sperm chromatin was replicated with approximately 100% efficiency in the same extracts. Permeabilization of nuclei from quiescent Xenopus liver or cultured Xenopus epithelial A6 cells did not facilitate efficient replication in egg extracts. Moreover, replication of Xenopus sperm chromatin in egg extracts was strongly inhibited by a soluble extract of isolated Xenopus liver nuclei; in contrast, complementary-strand synthesis on single-stranded DNA templates in egg extracts was not affected. Inhibition was specific to endogenous molecules localized preferentially in quiescent as opposed to proliferating cell nuclei, and was not due to suppression of cdk2 kinase activity. Extracts of Xenopus liver nuclei also inhibited growth of sperm nuclei formed in egg extracts. However, the rate and extent of decondensation of sperm chromatin in egg extracts were not affected. The formation of prereplication centers detected by anti-RP-A antibody was not affected by extracts of liver nuclei, but formation of active replication foci was blocked by the same extracts. Inhibition of DNA replication was alleviated when liver nuclear extracts were added to metaphase egg extracts before or immediately after Ca++ ion-induced transition to interphase. A plausible interpretation of our data is that endogenous inhibitors of DNA replication play an important role in establishing and maintaining a quiescent state in Xenopus cells, both in vivo and in cultured cells, perhaps by negatively regulating positive modulators of the replication machinery.  相似文献   

18.
DNA replication origins are located at random with respect to DNA sequence in Xenopus early embryos and on DNA replicated in Xenopus egg extracts. We have recently shown that origins fire throughout the S phase in Xenopus egg extracts. To study the temporal regulation of origin firing, we have analyzed origin activation in sperm nuclei treated with the DNA polymerase inhibitor aphidicolin. Sperm chromatin was incubated in Xenopus egg extracts in the presence of aphidicolin and transferred to a fresh extract, and digoxigenin-dUTP and biotin-dUTP were added at various times after aphidicolin release to selectively label early and late replicating DNA. Molecular combing analysis of single DNA fibers showed that only a fraction of potential origins were able to initiate in the presence of aphidicolin. After release from aphidicolin, the remaining origins fired asynchronously throughout the S phase. Therefore, initiation during the S phase depends on the normal progression of replication forks assembled at earlier activated origins. Caffeine, an inhibitor of the checkpoint kinases ATR and ATM, did not relieve the aphidicolin-induced block to origin firing. We conclude that a caffeine-insensitive intra-S phase checkpoint regulates origin activation when DNA synthesis is inhibited in Xenopus egg extracts.  相似文献   

19.
Treslin/Ticrr is required for the initiation of DNA replication and binds to MTBP (Mdm2 Binding Protein). Here, we show that in Xenopus egg extract, MTBP forms an elongated tetramer with Treslin containing two molecules of each protein. Immunodepletion and add-back experiments show that Treslin–MTBP is rate limiting for replication initiation. It is recruited onto chromatin before S phase starts and recruitment continues during S phase. We show that DDK activity both increases and strengthens the interaction of Treslin–MTBP with licensed chromatin. We also show that DDK activity cooperates with CDK activity to drive the interaction of Treslin–MTBP with TopBP1 which is a regulated crucial step in pre-initiation complex formation. These results suggest how DDK works together with CDKs to regulate Treslin–MTBP and plays a crucial in selecting which origins will undergo initiation.  相似文献   

20.

Background

Linker histone H1 has been studied in vivo and using reconstituted chromatin, but there have been few systematic studies of the effects of the cellular environment on its function. Due to the presence of many other chromatin factors and specific chaperones such as RanBP7/importin beta that regulate histone H1, linker histones likely function differently in vivo than in purified systems.

Methodology/Principal Findings

We have directly compared H1 binding to sperm nuclei in buffer versus Xenopus egg extract cytoplasm, and monitored the effects of adding nuclear import chaperones. In buffer, RanBP7 decondenses sperm nuclei, while H1 binds tightly to the chromatin and rescues RanBP7-mediated decondensation. H1 binding is reduced in cytoplasm, and H1 exhibits rapid FRAP dynamics in cytoplasm but not in buffer. RanBP7 decreases H1 binding to chromatin in both buffer and extract but does not significantly affect H1 dynamics in either condition. Importin beta has a lesser effect than RanBP7 on sperm chromatin decondensation and H1 binding, while a combination of RanBP7/importin beta is no more effective than RanBP7 alone. In extracts supplemented with RanBP7, H1 localizes to chromosomal foci, which increase after DNA damage. Unlike somatic H1, the embryonic linker histone H1M binds equally well to chromatin in cytoplasm compared to buffer. Amino-globular and carboxyl terminal domains of H1M bind chromatin comparably to the full-length protein in buffer, but are inhibited ∼10-fold in cytoplasm. High levels of H1 or its truncations distort mitotic chromosomes and block their segregation during anaphase.

Conclusion/Significance

RanBP7 can decondense sperm nuclei and decrease H1 binding, but the rapid dynamics of H1 on chromatin depend on other cytoplasmic factors. Cytoplasm greatly impairs the activity of individual H1 domains, and only the full-length protein can condense chromatin properly. Our findings begin to bridge the gap between purified and in vivo chromatin systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号