首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although dual inhibition of Cyclooxygenase-2 (COX-2) and 5-Lipoxygenase (5-LOX) enzymes is highly effective than targeting COX or LOX alone, there are only a few reports of examining such compounds in case of colorectal cancers (CRC). In the present work we report that the novel di-tert-butyl phenol-based dual inhibitors DTPSAL, DTPBHZ, DTPINH, and DTPNHZ exhibit significant cytotoxicity against human CRC cell lines. Molecular docking studies revealed a good fit of these compounds in the COX-2 and 5-LOX protein cavities. The inhibitors show significant inhibition of COX-2 and 5-LOX activities and are effective against a panel of human colon cancer cell lines including HCA-7, HT-29, SW480 and intestinal Apc10.1 cells as well as the hyaluronan synthase-2 (Has2) enzyme over-expressing colon cancer cells, through inhibition of the Hyaluronan/CD44v6 cell survival pathway. Western blot analysis and qRT-PCR analyses indicated that the di-tert-butyl phenol-based dual inhibitors reduce the expression of COX-2, 5-LOX, and CD44v6 in human colon cancer HCA-7 cells, while the combination of CD44v6shRNA and DTPSAL has an additional inhibitory effect on CD44v6 mRNA expression. The synergistic inhibitory effect of Celecoxib and Licofelone on CD44v6 mRNA expression suggests that the present dual inhibitors down-regulate cyclooxygenase and lipoxygenase enzymes through CD44v6. The compounds also exhibited enhanced antiproliferative potency compared to standard dual COX/LOX inhibitor, viz. Licofelone. Importantly, the HA/CD44v6 antagonist CD44v6shRNA in combination with synthetic compounds had a sensitizing effect on the cancer cells which enhanced their antiproliferative potency, a finding which is crucial for the anti-proliferative potency of the novel synthetic di-tert-butyl phenol based dual COX–LOX inhibitors in colon cancer cells.  相似文献   

2.
Inflammation is associated with the development of several diseases comprising cancer and cardiovascular disease. Agents that suppress cyclooxygenase (COX) and lipoxygenase (LOX) enzymes, besides chemokines have been suggested to minimise inflammation. Here, a variety of novel heterocyclic and non-heterocyclic compounds were prepared from novel three furanone derivatives. The structures of all synthesised compounds were confirmed by elemental and spectral analysis including mass, IR, and 1H-NMR spectroscopy. Anti-inflammatory activities of these synthesised compounds were examined in vitro against COX enzymes, 15-LOX, and tumour necrosis factor-α (TNF-α), using inhibition screening assays. The majority of these derivatives showed significant to high activities, with three pyridazinone derivatives (5b, 8b, and 8c) being the most promising anti-inflammatory agents with dual COX-2/15-LOX inhibition activities along with high TNF-α inhibition activity.  相似文献   

3.
Retrospective epidemiological studies have suggested that chronic treatment with nonsteroidal anti-inflammatory drugs (NSAIDs) provides some degree of protection from Alzheimer's disease (AD). Although most NSAIDs inhibit the activity of cyclooxygenase (COX), the rate-limiting enzyme in the production of prostanoids from arachidonic acid (AA), the precise mechanism through which NSAIDs act upon AD pathology remains to be elucidated. Classical NSAIDs like indomethacin inhibit both the constitutive COX-1 and the inducible COX-2 enzymes. In the present work, we characterize the protective effect of the indomethacin on the neurotoxicity elicited by amyloid-β protein (Aβ, fragments 25–35 and 1–42) alone or in combination with AA added exogenously as well as its effects on COX-2 expression. We also compared the neuroprotective effects of indomethacin with the selective COX-1, COX-2 and 5-LOX inhibitors, SC-560, NS-398 and NDGA, respectively. Our results show that indomethacin protected from Aβ and AA toxicity in naive and differentiated human neuroblastoma cells with more potency than SC-560 while, NS-398 only protected neurons from AA-mediated toxicity. Present results suggest that Aβ toxicity can be reversed more efficiently by the non-selective COX inhibitor indomethacin suggesting its role in modulating the signal transduction pathway involved in the mechanism of Aβ neurotoxicity.  相似文献   

4.
Glycyrrhiza glabra and its phytoconstituents have been known to possess widespread pharmacological properties as an anti-inflammatory, anti-viral, antitumour and hepatoprotective drug. In this study, we examined the inhibitory potential of extract of G. glabra (GutGard™) root and its phytoconstituents (glabridin, glycyrrhizin, and isoliquiritigenin) on both cyclooxygenase (COX) and lipoxygenase (LOX) products in order to understand the mechanism of its anti-inflammatory action. Inhibitory effect of GutGard™ and its phytoconstituents on lipopolysaccharide (LPS) induced prostaglandin E2 (PGE2), calcimycin (A23187) induced thromboxane (TXB2), and leukotriene (LTB4) release was studied using murine macrophages (J774A.1) and human neutrophil (HL-60) cells. Results revealed that, G. glabra and glabridin significantly inhibited PGE2, TXB2 (COX) and LTB4 (LOX), while, isoliquiritigenin exerted inhibitory effect only against COX products but failed to suppress LOX product. However, glycyrrhizin at the tested concentrations failed to exhibit inhibitory effect on both COX and LOX products. Here, we report for the first time that G. glabra (almost devoid of glycyrrhizin) exhibits anti-inflammatory property likely through the inhibition of PGE2, TXB2 and LTB4 in mammalian cell assay system, which could be influenced in part by glabridin and isoliquiritigenin.  相似文献   

5.
Oxylipins are oxygenated derivatives of polyunsaturated fatty acids, generated by COX, LOX and CYP enzymes, that regulate various aspects of endothelial cell physiology. Although 15-LOX and its products are positively associated with atherosclerosis, the relevant mechanisms have not been explored. The current study examined the effects of PD146176 (PD), a putative 15-LOX inhibitor, on EA.hy926 endothelial cell functions in the growing and confluent states. The effects of PD on endothelial cell oxylipin production (profiled by LC/MS/MS), cell viability, proliferation, eNOS activity, ICAM-1 and VE-cadherin levels were assessed. The contribution of signaling pathways relevant to endothelial function (p38 MAPK, Akt, PPARα) were also investigated. PD treatment for 30 min did not block formation of individual 15-LOX oxylipins, but 20 μM PD stimulated the accumulation of total LOX and COX products, while reducing several individual CYP products generated by epoxygenase. At 20 μM, the accumulated total oxylipins were primarily LOX-derived (86%) followed by COX (12%) and CYP (2%). PD altered cell functions by upregulating p38 MAPK and PPARα and downregulating Akt in a dose-dependent fashion. These observations suggest a link between PD-induced changes in oxylipins and altered endothelial cell functions via specific signaling pathways. In conclusion, the results of this study imply that PD does not function as a 15-LOX inhibitor in EA.hy926 endothelial cells, and instead inhibits CYP epoxygenase. These findings suggest that the cellular function changes induced by PD may be contingent upon its ability to modulate total oxylipin production, particularly by the LOX and CYP families.  相似文献   

6.
Non-steroidal anti-inflammatory drugs (NSAIDs) are used primarily for the treatment of inflammatory diseases. However, certain NSAIDs also have a chemopreventive effect on the development of human colorectal and other cancers. NSAIDs inhibit cyclooxygenase-1 (COX-1) and/or cyclooxygenase-2 (COX-2) activity and considerable evidence supports a role for prostaglandins in cancer development. However, the chemopreventive effect of NSAIDs on colorectal and other cancers appears also to be partially independent of COX activity. COX inhibitors also alter the expression of a number of genes that influence cancer development. One such gene is NAG-1 (NSAID-Activated Gene), a critical gene regulated by a number of COX inhibitors and chemopreventive chemicals. Therefore, this article will discuss the evidence supporting the conclusion that the chemo-preventive activity of COX inhibitors is mediated, in part, by altered gene expression with an emphasis on NAG-1 studies. This review may also provide new insights into how chemicals and environmental factors influence cancer development. In view of the cardiovascular and gastrointestinal toxic side effects of COX-2 inhibitors and non-selective COX inhibitors, respectively, the results presented here may provide the basis for the development of a new family of anti-tumorigenic compounds acting independent of COX inhibition.  相似文献   

7.
8.
Abstract

The hypothesis that sulfocoumarin acting as inhibitors of human carbonic anhydrase (CA, EC 4.2.1.1) cancer-associated isoforms hCA IX and – hCA XII is being able to also inhibit thioredoxin reductase was verified and confirmed. The dual targeting of two cancer cell defence mechanisms, i.e. hypoxia and oxidative stress, may both contribute to the observed antiproliferative profile of these compounds against many cancer cell lines. This unprecedented dual anticancer mechanism may lead to a new approach for designing innovative therapeutic agents.  相似文献   

9.
Abstract Receptor-mediated stimulation of Dictyostelium cells by the aggregative chemoattractant cyclic AMP leads to a complex excitatory response resulting in chemotaxis and the synthesis and release of cyclic AMP as the relayed chemotactic signal. However, the mechanism of this stimulus-response coupling is not well understood. In this study, we show that a number of compounds, best known as inhibitors of cyclooxygenase activity in mammalian cells, prevent cyclic AMP receptor-mediated cell excitation and cyclic AMP accumulation in aggregation-competent Dictyostelium cells. These observations suggest that some eicosanoid-like compound(s) may be involved in stimulus-response coupling in this organism, as is the case in higher eukaryotic cells.  相似文献   

10.
In the pancreatic islet, eicosanoids may arise from both cyclooxygenase- and lipoxygenase-dependent metabolism of arachidonic acid. The inclusion of inhibitors of selective steps in these pathways indicated that in cultured neonatal rat islets, arachidonic acid may be metabolised through both pathways, concurrent with insulin release stimulated by D-glucose, D-glyceraldehyde and 2-ketoisocaproate. The effects of the inhibitors suggested that the products of the lipoxygenase pathway were necessary for the stimulatory effects of nutrients to be observed. In contrast to glucose, where insulin release was stimulated in the presence of inhibitors of cyclooxygenase, the stimulatory action of D-glyceraldehyde, 2-ketoisocaproate and melittin was only minimally affected by these inhibitors, although it was inhibited by lipoxygenase inhibition. These findings support a major stimulatory role for products of the lipoxygenase pathway of arachidonic acid metabolism in nutrient-induced secretion, and a negative or modulatory role of cyclooxygenase pathway products on glucose-stimulated insulin release in the neonatal islet.  相似文献   

11.
Many arachidonic acid metabolites function in growth signaling for epithelial cells, and we previously reported the expression of the major arachidonic acid enzymes in human breast cancer cell lines. To evaluate the role of the 5-lipoxygenase (5-LO) pathway on breast cancer growth regulation, we exposed cells to insulinlike growth factor-1 or transferrin, which increased the levels of the 5-LO metabolite, 5(S)-hydrooxyeicosa-6E,8C,11Z,14Z-tetraenoic acid (5-HETE), by radioimmunoassay and high-performance liquid chromatography. Addition of 5-HETE to breast cancer cells resulted in growth stimulation, whereas selective biochemical inhibitors of 5-LO reduced the levels of 5-HETE and related metabolites. Application of 5-LO or 5-LO activating protein-directed inhibitors, but not a cyclooxygenase inhibitor, reduced growth, increased apoptosis, down-regulated bcl-2, up-regulated bax, and increased G1 arrest. Exposure of breast cancer cells to a 5-LO inhibitor up-regulated peroxisome proliferator-activated receptor (PPAR)a and PPARg expression, and these same cells were growth inhibited when exposed to relevant PPAR agonists. These results suggest that disruption of the 5-LO signaling pathway mediates growth arrest and apoptosis in breast cancer cells. Additional experiments suggest that this involves the interplay of several factors, including the loss of growth stimulation by 5-LO products, the induction of PPARg, and the potential activation of PPARg by interactions with shunted endoperoxides.  相似文献   

12.
13.
We recently reported that the treatment of V-79 and HeLa cells with nitric oxide synthase (NOS) inhibitor N-nitro-L-arginine methyl ester (L-NAME) significantly reduced the level of the radiation-induced unstable chromosome aberrations. The stereoisomer D-NAME had no effect.We suggest that the radioprotective effect of L-NAME resulted from the action on the generation reactive radicals due to the inhibition of the NOS-activity. We tested this suggestion on the NO-resistant (ECV-304) and NO-sensitive (HeLa) cells, which were treated with L-NAME or aminoguanidine or D-NAME or cysteamine before gamma-irradiation. There are no significantly differences in radiosensitivity between these cells estimated after exposure by gamma-rays with different doses. However, the radioprotective effect of the NOS-inhibitors manifested only for HeLa. D-NAME had no radioprotective effect neither HeLa nor ECV-304. In contrast NOS-inhibitors, cysteamine treatment EVC-304 reduced the radiation-induced level chromosome aberrations almost twofold. The different mechanisms of the modification of cellular radiosensitivity are discussed.  相似文献   

14.
15.
16.
Novel aggregation inhibitors blocked serotonin uptake by human blood platelets in concentrations ranging from 0.7 +/- 0.1 microM to 237.5 +/- 35.7 microM; a modified procedure, validated by kinetic analysis, was employed in which pH drift was minimized to 0.03 during the active assay period. Structural features in carbamoylpiperidine and nipecotoylpiperazine derivatives which actually constitute molecular probes, and show remarkable specificity for aggregation-inhibitory target sites, disclosed striking differences between the latter and serotonin receptors or other loci affecting serotonin uptake.  相似文献   

17.
Chymotrypsin and trypsin inhibitors persist throughout all developmental instars of Aedes aegypti. After a blood meal, inhibitor activity against chymotrypsin was more than double that of sugar-fed females, but only weak activity was detected in midguts where proteinase inhibitors has been thought to regulate proteinases during blood digestion. A fourfold increase in the ratio of abdominal/thoracic inhibitor activity after the blood meal strongly suggested that fat body, or other abdominal tissues, represent the major source of inhibitor. Chymotrypsin inhibitor activity was deposited in maturing oocytes. Similar results were obtained with blood-fed Anopheles albimanus. Chymotrypsin inhibitor was active against different mosquito proteinases and against bovine α-chymotrypsin and trypsin, but not against subtilisin, pancreatic elastase, or fungal proteases; chymotrypsin inhibitors did not interfere with bacterial growth. The hypothesis on the regulation of blood digestion through the action of proteinase inhibitors during the gonotrophic cycle was abandoned and its involvement in the phenoloxidase cascade in the mosquito egg chorion is suggested instead. Arch. Insect Biochem. Physiol. 36:315–333, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

18.
Using an in situ cross-linkable hydrogel that mimics the extracellular matrix (ECM), cancer cells were encapsulated and injected in vivo following a “tumor engineering” strategy for orthotopic xenografts. Specifically, we created several three-dimensional (3D) human tumor xenografts and evaluated the tumor response to BrP-LPA, a novel dual function LPA antagonist/ATX inhibitor (LPAa/ATXi). First, we describe the model system and the optimization of semi-synthetic ECM (sECM) compositions and injection parameters for engineered xenografts. Second, we summarize a study to compare angiogenesis inhibition in vivo, comparing BrP-LPA to the kinase inhibitor sunitinib maleate (Sutent). Third, we compare treatment of engineered breast tumors with LPAa/ATXi alone with treatment with Taxol. Fourth, using a re-optimized sECM for non-small cell lung cancer cells, we created reproducibly sized subcutaneous lung tumors and evaluated their response to treatment with LPAa/ATXi. Fifth, we summarize the data on the use of LPAa/ATXi to treat a model for colon cancer metastasis to the liver. Taken together, these improved, more realistic xenografts show considerable utility for evaluating the potential of novel anti-metastatic, anti-proliferative, and anti-angiogenic compounds that modify signal transduction through the LPA signaling pathway.  相似文献   

19.
A study of the cartilage differentiation of mesenchymal stem cells (MSCs) would be of particular interest since one strategy for cell-based treatment of cartilage defects emphasizes the use of cells that are in a differentiated state. The present study has attempted to evaluate the effects of two well-known glycogen synthase kinase-3 inhibitors, including lithium chloride (LiCl) and SB216763 on a human marrow-derived MSC (hMSC) chondrogenic culture. Passaged-3 MSCs were condensed into small pellets and cultivated in the following groups based on the supplementation of chondrogenic medium: transforming growth factor (TGF)-β1, TGF-β1 + LiCl, TGF-β1 + SB216763, TGF-β3, TGF-β3 + LiCl, and TGF-β3 + SB216763. The cultures were maintained for 21 days and then analyzed for expression of Sox9, aggrecan, collagen II, β-catenin, and axin genes. Deposition of glycosaminoglycan (GAG) in the cartilage matrix was also measured for certain cultures. The presence of both LiCl and SB216763 along with TGF-β in the MSC chondrogenic culture led to the up-regulation of cartilage-specific genes. TGF-β3 appeared much better than TGF-β1. Based on our findings, SB216763 was more effective in up-regulation of cartilage-specific genes. These chondrogenic effects appeared to be mediated through the Wnt signaling pathway since β-catenin and axin tended to be up-regulated and down-regulated, respectively. In the culture with SB216763 + TGF-β3, significantly more GAG was deposited (P < 0.05). In conclusion, addition of either SB216763 or LiCl to hMSC chondrogenic culture up-regulates cartilage-specific gene expression and enhances GAG deposition in the culture.  相似文献   

20.
Low uniformity in illumination across the image plane impairs the ability of a traditional epifluorescence microscope to quantify fluorescence intensities. Two microlens arrays (MLAs) were introduced into the illumination path of two different epifluorescence microscope systems to improve the uniformity of the illumination. Measurements of the uniformity of illumination were performed with a CCD camera in the focal plane and with fluorescent beads in the image plane. In semi critical alignment, a uniformity of illumination of 15-23% was found compared with 1-2% in the modified system. Coefficient of variation (CV) of fluorescent beads measured on the unmodified system was 20.4% ± 5.3% in semi critical alignment and 10.8% ± 1.3% in Koehler alignment. On the MLA systems, CV was 7.9% ± 2.0% and on a flow cytometer, the CV was 6.7% ± 0.7%. Implementation of MLAs in an epifluorescence microscope improves the uniformity of illumination, thereby reducing the variation in detection of fluorescent signals of the measured objects and becomes equivalent to that of flow cytometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号