首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Microtubules are polar structures that grow preferentially at one end. Measurement of their rate of directional growth can be used as a polarity indicator to determine their orientation with respect to a nucleation site. The results are interpreted to signify that the microtubules originating from the centrosomes and chromosomes of the mitotic spindle are antiparallel to each other.  相似文献   

2.
Spatial organization of axonal microtubules   总被引:9,自引:8,他引:1       下载免费PDF全文
《The Journal of cell biology》1984,99(4):1289-1295
Several workers have found that axonal microtubules have a uniform polarity orientation. It is the "+" end of the polymer that is distal to the cell body. The experiments reported here investigate whether this high degree of organization can be accounted for on the basis of structures or mechanisms within the axon. Substantial depolymerization of axonal microtubules was observed in isolated, postganglionic sympathetic nerve fibers of the cat subjected to cold treatment; generally less than 10% of the original number of microtubules/micron 2 remained in cross section. The number of cold stable MTs that remained was not correlated with axonal area and they were also found within Schwann cells. Microtubules were allowed to repolymerize and the polarity orientation of the reassembled microtubules was determined. In fibers from four cats, a majority of reassembled microtubules returned with the original polarity orientation. However, in no case was the polarity orientation as uniform as the original organization. The degree to which the original orientation returned in a fiber was correlated with the number of cold-stable microtubules in the fiber. We suggest that stable microtubule fragments serve as nucleating elements for microtubule assembly and play a role in the spatial organization of neuronal microtubules. The extremely rapid reassembly of microtubules that we observed, returning to near control levels within the first 5 min, supports microtubule elongation from a nucleus. However, in three of four fibers examined this initial assembly was followed by an equally rapid, but transient decline in microtubule number to a value that was significantly different than the initial peak. This observation is difficult to interpret; however, a similar transient peak has been reported upon repolymerization of spindle microtubules after pressure induced depolymerization.  相似文献   

3.
Plants can grow straight or in the twisted fashion exhibited by the helical growth of some climbing plants. Analysis of helical-growth mutants from Arabidopsis has indicated that microtubules are involved in the expression of the helical phenotype. Arabidopsis mutants growing with a right-handed twist have been reported to have cortical microtubules that wind around the cell in left-handed helices and vice versa. Microtubular involvement is further suspected from the finding that some helical mutants are caused by single amino acid substitutions in alpha-tubulin and because of the sensitivity of the growth pattern to anti-microtubule drugs. Insight into the roles of microtubules in organ elongation is anticipated from analyses of genes defined by helical mutations. We investigated the helical growth of the Arabidopsis mutant tortifolia1/spiral2 (tor1/spr2), which twists in a right-handed manner, and found that this correlates with a complex reorientation of cortical microtubules. TOR1 was identified by a map-based approach; analysis of the TOR1 protein showed that it is a member of a novel family of plant-specific proteins containing N-terminal HEAT repeats. Recombinant TOR1 colocalizes with cortical microtubules in planta and binds directly to microtubules in vitro. This shows that TOR1 is a novel, plant-specific microtubule-associated protein (MAP) that regulates the orientation of cortical microtubules and the direction of organ growth.  相似文献   

4.
Mechanical properties of brain tubulin and microtubules   总被引:7,自引:0,他引:7       下载免费PDF全文
We measured the elasticity and viscosity of brain tubulin solutions under various conditions with a cone and plate rheometer using both oscillatory and steady shearing modes. Microtubules composed of purified tubulin, purified tubulin with taxol and 3x cycled microtubule protein from pig, cow, and chicken behaved as mechanically indistinguishable viscoelastic materials. Microtubules composed of pure tubulin and heat stable microtubule-associated proteins were also similar but did not recover their mechanical properties after shearing like other samples, even after 60 min. All of the other microtubule samples were more rigid after flow orientation, suggesting that the mechanical properties of anisotropic arrays of microtubules may be substantially greater than those of randomly arranged microtubules. These experiments confirm that MAPs do not cross link microtubules. Surprisingly, under conditions where microtubule assembly is strongly inhibited (either 5 degrees or at 37 degrees C with colchicine or Ca++) tubulin was mechanically indistinguishable from microtubules at 10-20 microM concentration. By electron microscopy and ultracentrifugation these samples were devoid of microtubules or other obvious structures. However, these mechanical data are strong evidence that tubulin will spontaneously assemble into alternate structures (aggregates) in nonpolymerizing conditions. Because unpolymerized tubulin is found in significant quantities in the cytoplasm, it may contribute significantly to the viscoelastic properties of cytoplasm, especially at low deformation rates.  相似文献   

5.
As critical determinants of growth anisotropy in plants, cortical microtubules are thought to constrain the movement of cellulose synthase complexes and thus align newly deposited cellulose microfibrils. We tested this cellulose synthase constraint model using the temperature-sensitive mor1-1 mutant of Arabidopsis. Contrary to predictions, the disruption of cortical microtubules in mor1-1 root epidermal cells led to left-handed root twisting and radial swelling but did not alter the transverse orientation of cellulose microfibrils. We also found that drug-dependent disassembly or hyperstabilization of cortical microtubules did not alter the parallel order of cellulose microfibrils. By measuring cellulose content in mor1-1 seedlings, we verified that cellulose synthesis is not reduced at the restrictive temperature. The independence of cortical microtubule organization and cellulose microfibril alignment was supported by the observation that double mutants of mor1-1 and rsw1-1, the cellulose-deficient mutant with misaligned microfibrils, had additive phenotypes. Our results suggest that cortical microtubules regulate growth anisotropy by some mechanism other than cellulose microfibril alignment or synthesis.  相似文献   

6.
Mitotic spindle orientation in polarized cells determines whether they divide symmetrically or asymmetrically. Moreover, regulated spindle orientation may be important for embryonic development, stem cell biology, and tumor growth. Drosophila neuroblasts align their spindle along an apical/basal cortical polarity axis to self-renew an apical neuroblast and generate a basal differentiating cell. It is unknown whether spindle alignment requires both apical and basal cues, nor have molecular motors been identified that regulate spindle movement. Using live imaging of neuroblasts within intact larval brains, we detect independent movement of both apical and basal spindle poles, suggesting that forces act on both poles. We show that reducing astral microtubules decreases the frequency of spindle movement, but not its maximum velocity, suggesting that one or few microtubules can move the spindle. Mutants in the Lis1/dynactin complex strongly decrease maximum and average spindle velocity, consistent with this motor complex mediating spindle/cortex forces. Loss of either astral microtubules or Lis1/dynactin leads to spindle/cortical polarity alignment defects at metaphase, but these are rescued by telophase. We propose that an early Lis1/dynactin-dependent pathway and a late Lis1/dynactin-independent pathway regulate neuroblast spindle orientation.  相似文献   

7.
Recently, the molecular structures of monomeric and dimeric kinesin constructs in complex with ADP have been determined by X-ray crystallography (Kull et al. 1996; Kozielski et al. 1997 a; Sack et al. 1997). The “motor” or “head” domains have almost identical conformations in the known crystal structures, yet the kinesin dimer is asymmetric: the orientation of the two heads relative to the coiled-coil formed by their neck regions is different. We used small angle solution scattering of kinesin constructs and microtubules decorated with kinesin in order to find out whether these crystal structures are of relevance for kinesin's structure under natural conditions and for its interaction with microtubules. Our preliminary results indicate that the crystal structures of monomeric and dimeric kinesin are similar to their structures in solution, though in solution the center-of-mass distance between the motor domains of the dimer could be slightly greater. The crystal structure of dimeric kinesin can be interpreted as representing two equivalent conformations. Transitions between these or very similar conformational states may occur in solution. Binding of kinesin to microtubules has conformational effects on both, the kinesin and the microtubule. Solution scattering of kinesin decorated microtubules reveals a peak in intensity that is characteristic for the B-surface lattice and that can be used to monitor the axial repeat of the microtubules under various conditions. In decoration experiments, dimeric kinesin dissociates, at least partly, leading to a stoichiometry of 1:1 (one kinesin head per tubulin dimer; Thormählen et al. 1998 a) in contrast to the stoichiometry of 2:1 reported for dimeric ncd. This discrepancy is possibly due to the effect of steric hindrance between kinesin dimers on adjacent binding sites.  相似文献   

8.
We describe here the continuous observations of the polymerization of individual microtubules in vitro by darkfield microscopy. In homogeneous preparations we verify that polymerization can occur onto both ends of microtubules. The assembly of microtubules is polar, with one end growing at three times the rate of the other. The differential rate of elongation can be used to determine the polarity of growth off cellular nucleating centers. We show that the microtubules grow off the proximal end of ciliary axonemes at a growth rate equal to that of the slow growing end of free microtubules, while growth off the distal end proceeds at the same rate as the fast growing end. Applying this technique to microtubule growth from metaphase chromosomes isolated from HeLa and CHO cells, we demonstrate that chromosomes initiate polymerization with the fast growing end facing away from the chromosome nucleation site. The opposite ends of free microtubules show different sensitivities to microtubule depolymerizing agents such as low temperature, Ca++ or colchicine as measured directly by darkfield microscopy. The differing rates of assembly and disassembly of each end of a microtubule suggest that a difference in polarity of growth off nucleating sites could serve as one basis for regulating the polymerization of different groups of microtubules in the same cell.  相似文献   

9.
Cellulose microfibril deposition patterns define the direction of plant cell expansion. To better understand how microfibril alignment is controlled, we examined microfibril orientation during cortical microtubule disruption using the temperature-sensitive mutant of Arabidopsis thaliana, mor1-1. In a previous study, it was shown that at restrictive temperature for mor1-1, cortical microtubules lose transverse orientation and cells lose growth anisotropy without any change in the parallel arrangement of cellulose microfibrils. In this study, we investigated whether a pre-existing template of well-ordered microfibrils or the presence of well-organized cortical microtubules was essential for the cell to resume deposition of parallel microfibrils. We first transiently disrupted the parallel order of microfibrils in mor1-1 using a brief treatment with the cellulose synthesis inhibitor 2,6-dichlorobenzonitrile (DCB). We then analysed the alignment of recently deposited cellulose microfibrils (by field emission scanning electron microscopy) as cellulose synthesis recovered and microtubules remained disrupted at the mor1-1 mutant's non-permissive culture temperature. Despite the disordered cortical microtubules and an initially randomized wall texture, new cellulose microfibrils were deposited with parallel, transverse orientation. These results show that transverse cellulose microfibril deposition requires neither accurately transverse cortical microtubules nor a pre-existing template of well-ordered microfibrils. We also demonstrated that DCB treatments reduced the ability of cortical microtubules to form transverse arrays, supporting a role for cellulose microfibrils in influencing cortical microtubule organization.  相似文献   

10.
Zandomeni K  Schopfer P 《Protoplasma》1994,182(3-4):96-101
Summary Plants respond to mechanical stress by adaptive changes in growth. Although this phenomenon is well established, the mechanism of the perception of mechanical forces by plant cells is not yet known. We provide evidence that the cortical microtubules sub-adjacent to the growth-controlling outer epidermal cell wall of maize coleoptiles respond to mechanical extension and compression by rapidly reorientating perpendicular to the direction of the effective force change. These findings shed new light on many seemingly unrelated observations on microtubule reorientation by growth factors such as light or phytohormones. Moreover, our results suggest that microtubules associated with the plasma membrane are causally involved in sensing vectorial forces and provide vectorial information to the cell that can be utilized in the orientation of plant organ expansion.Abbreviation MT cortical microtubule  相似文献   

11.
Plus-end-tracking proteins (+TIPs) are localized at the fast-growing, or plus end, of microtubules, and link microtubule ends to cellular structures. One of the best studied +TIPs is EB1, which forms comet-like structures at the tips of growing microtubules. The molecular mechanisms by which EB1 recognizes and tracks growing microtubule ends are largely unknown. However, one clue is that EB1 can bind directly to a microtubule end in the absence of other proteins. Here we use an in vitro assay for dynamic microtubule growth with two-color total-internal-reflection-fluorescence imaging to investigate binding of mammalian EB1 to both stabilized and dynamic microtubules. We find that under conditions of microtubule growth, EB1 not only tip tracks, as previously shown, but also preferentially recognizes the GMPCPP microtubule lattice as opposed to the GDP lattice. The interaction of EB1 with the GMPCPP microtubule lattice depends on the E-hook of tubulin, as well as the amount of salt in solution. The ability to distinguish different nucleotide states of tubulin in microtubule lattice may contribute to the end-tracking mechanism of EB1.  相似文献   

12.
Orientation of cortical microtubules (cMTs) is suggested to be affected by mechanical stress existing in cell walls. However, in mutants exhibiting helical (chiral) growth, there is a correlation between orientation of cMTs in outer tissues and helical growth direction. The aim of this research was to examine the effect of a chiral mechanical stimulation on cMTs. For this purpose, the orientation of cMTs was investigated in hypocotyls subjected to either a right- or a left-handed twist, resulting from a steady torque. cMTs were visualised in fixed material using the immunofluorescence method. The cMTs in untouched control hypocotyls were mostly transverse with respect to the cell long axis. In immobilised, but not twisted control hypocotyls, the transverse orientation was also most frequent, while applied twisting resulted in a change in cMT orientation from transverse to oblique. The data provide additional evidence that changes in tissue stress can be reorganized by cortical microtubules.  相似文献   

13.
Soga K  Wakabayashi K  Kamisaka S  Hoson T 《Planta》2006,224(6):1485-1494
We examined the changes in the orientation of cortical microtubules during the hypergravity-induced modification of growth anisotropy (inhibition of elongation growth and promotion of lateral growth) in azuki bean (Vigna angularis Ohwi et Ohashi) epicotyls. The percentage of cells with transverse microtubules was decreased, while that with longitudinal microtubules was increased, in proportion to the logarithm of the magnitude of gravity. The percentage of cells with longitudinal microtubules showed an increase within 0.5 h of transfer of the 1g-grown seedlings to a 300g-hypergravity condition. Lanthanum and gadolinium, blockers of calcium channels, nullified the modification of growth anisotropy and reorientation of microtubules by hypergravity. Horizontal and acropetal hypergravity modified growth anisotropy and reorientation of microtubules, as did basipetal hypergravity, and these changes were not seen in the presence of lanthanum or gadolinium. These results suggest that hypergravity changes activities of lanthanum- and gadolinium-sensitive calcium channels independently of its direction, which may lead to reorientation of cortical microtubules and modification of growth anisotropy in azuki bean epicotyls.  相似文献   

14.
《The Journal of cell biology》1989,109(6):3085-3094
Microtubules in the dendrites of cultured hippocampal neurons are of nonuniform polarity orientation. About half of the microtubules have their plus ends oriented distal to the cell body, and the other half have their minus ends distal; in contrast, microtubules in the axon are of uniform polarity orientation, all having their plus ends distal (Baas, P.W., J.S. Deitch, M. M. Black, and G. A. Banker. 1988. Proc. Natl. Acad. Sci. USA. 85:8335-8339). Here we describe the developmental changes that give rise to the distinct microtubule patterns of axons and dendrites. Cultured hippocampal neurons initially extend several short processes, any one of which can apparently become the axon (Dotti, C. G., and G. A. Banker. 1987. Nature [Lond.]. 330:477-479). A few days after the axon has begun its rapid growth, the remaining processes differentiate into dendrites (Dotti, C. G., C. A. Sullivan, and G. A. Banker. 1988. J. Neurosci. 8:1454-1468). The polarity orientation of the microtubules in all of the initial processes is uniform, with plus ends distal to the cell body, even through most of these processes will become dendrites. This uniform microtubule polarity orientation is maintained in the axon at all stages of its growth. The polarity orientation of the microtubules in the other processes remains uniform until they begin to grow and acquire the morphological characteristics of dendrites. It is during this period that microtubules with minus ends distal to the cell body first appear in these processes. The proportion of minus end-distal microtubules gradually increases until, by 7 d in culture, about equal numbers of dendritic microtubules are oriented in each direction. Thus, the establishment of regional differences in microtubule polarity orientation occurs after the initial polarization of the neuron and is temporally correlated with the differentiation of the dendrites.  相似文献   

15.
By co-injecting fluorescent tubulin and vinculin into fish fibroblasts we have revealed a “cross talk” between microtubules and early sites of substrate contact. This mutuality was first indicated by the targeting of vinculin-rich foci by microtubules during their growth towards the cell periphery. In addition to passing directly over contact sites, the ends of single microtubules could be observed to target several contacts in succession or the same contact repetitively, with intermittent withdrawals. Targeting sometimes involved side-stepping, or the major re-routing of a microtubule, indicative of a guided, rather than a random process. The paths that microtubules followed into contacts were unrelated to the orientation of stress fiber assemblies and targeting occurred also in mouse fibroblasts that lacked a system of intermediate filaments. Further experiments with microtubule inhibitors showed that adhesion foci can: (a) capture microtubules and stabilize them against disassembly by nocodazole; and (b), act as preferred sites of microtubule polymerization, during either early recovery from nocodazole, or brief treatment with taxol. From these and other findings we speculate that microtubules are guided into substrate contact sites and through the motor-dependent delivery of signaling molecules serve to modulate their development. It is further proposed this modulation provides the route whereby microtubules exert their influence on cell shape and polarity.  相似文献   

16.
Auxin-mediated elongation growth of isolated subapical coleoptile segments of maize (Zea mays L.) is controlled by the extensibility of the outer cell wall of the outer epidermis (Kutschera et al., 1987). Here we investigate the hypothesis that auxin controls the extensibility of this wall by changing the orientation of newly deposited microfibrils through a corresponding change in the orientation of cortical microtubules. On the basis of electron micrographs it is shown that cessation of growth after removal of the endogenous source of auxin is correlated with a relative increase of longitudinally orientated microfibrils and microtubules at the inner wall surface. Conversely, reinduction of growth by exogenous auxin is correlated with a relative increase of transversely orientated microfibrils and microtubules at the inner wall surface. These changes can be detected 30–60 min after the removal and addition of auxin, respectively. The functional significance of directional changes of newly desposited wall microfibrils for the control of elongation growth is discussed.  相似文献   

17.
Auxin controls the orientation of cortical microtubules in maize coleoptile segments. We used tyrosinylated alpha-tubulin as a marker to assess auxin-dependent changes in microtubule turnover. Auxin-induced tyrosinylated alpha-tubulin, correlated with an elevated sensitivity of growth to antimicrotubular compounds such as ethyl-N-phenylcarbamate (EPC). We determined the affinity of alpha-tubulin to EPC and found that it was dramatically increased when the tubulin was de-tyrosinylated. By proteolytic cleavage of the carboxy terminal tyrosine, such an increased affinity could be induced in vitro. Thus, the auxin-induced sensitivity of growth to EPC is not caused by an increased affinity for this inhibitor, but caused by a reduced microtubule turnover. Double visualization assays revealed that the transverse microtubules induced by auxin consist predominantly of tyrosinylated alpha-tubulin, whereas the longitudinal microtubules induced by auxin depletion contain de-tyrosinylated alpha-tubulin. The results are discussed in terms of direction-dependent differences in the lifetime of microtubules.  相似文献   

18.
The control of the directionality of cell expansion was investigated using a class of eight genes, the so-called DISTORTED (DIS) genes, that are required for proper expansion of leaf trichomes in Arabidopsis thaliana. By tracing the separation of latex beads placed on the trichome surface, we demonstrate that trichomes grow by diffuse rather than tip growth, and that in dis mutants deviations from the normal orientation of growth can occur in all possible directions. We could not detect any differences in intracellular organization between wild-type and dis-group mutants by electron microscopy. The analysis of double mutants showed that although the expression of the dis phenotype is generally independent of branching and endoreduplication, dis mutations act synthetically in combination lesions in the ZWI gene, which encodes a kinesin motor protein. Using a MAP4:GFP marker line, we show that the organization of cortical microtubules is affected in dis-group mutants. The finding that most dis-group mutants have actin defects suggested to us that actin is involved in organizing the orientation of microtubules. By analyzing the microtubule organization in plants treated with drugs that bind to actin, we verified that actin is involved in the positioning of cortical microtubules and thereby in plant cell expansion.  相似文献   

19.
The microtubule cytoskeleton and the cell wall both play key roles in plant cell growth and division, determining the plant’s final stature. At near weightlessness, tubulin polymerizes into microtubules in vitro, but these microtubules do not self-organize in the ordered patterns observed at 1g. Likewise, at near weightlessness cortical microtubules in protoplasts have difficulty organizing into parallel arrays, which are required for proper plant cell elongation. However, intact plants do grow in space and therefore should have a normally functioning microtubule cytoskeleton. Since the main difference between protoplasts and plant cells in a tissue is the presence of a cell wall, we studied single, but walled, tobacco BY-2 suspension-cultured cells during an 8-day space-flight experiment on board of the Soyuz capsule and the International Space Station during the 12S mission (March–April 2006). We show that the cortical microtubule density, ordering and orientation in isolated walled plant cells are unaffected by near weightlessness, as are the orientation of the cellulose microfibrils, cell proliferation, and cell shape. Likely, tissue organization is not essential for the organization of these structures in space. When combined with the fact that many recovering protoplasts have an aberrant cortical microtubule cytoskeleton, the results suggest a role for the cell wall, or its production machinery, in structuring the microtubule cytoskeleton.  相似文献   

20.
Several conditional-lethal mutant alleles of the single-copy Saccharomyces cerevisiae beta-tubulin and actin genes were used to evaluate the roles of microtubules and actin filaments in the pheromone-induced extension of mating projections. Mutants defective in tubulin assembly form projections indistinguishable in appearance from those formed by wild-type cells. However, the tubulin mutants are unable to move their nuclei into the projections and to orient the spindle pole body associated with each nucleus toward the projection tip. Actin mutants are defective in spatial orientation of cell-surface growth required for formation of normal mating projections. Migration of nuclei into mating projections and Spa2p segregation to projection tips are also defective in actin mutants. Studies with abp1 null mutants showed that the function of the Abp1p actin-binding protein is either not required for projection formation or there are other proteins in yeast with similar functions. Our findings demonstrate that actin is required to restrict cell-surface growth to a defined region for pheromone-induced morphogenesis and suggest that nuclear position and orientation in mating projections depend on direct or indirect interaction of microtubules with actin filaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号