首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) has been proposed to be an epithelial cell receptor for Pseudomonas aeruginosa involved in bacterial internalization and clearance from the lung. We evaluated the role of CFTR in clearing P. aeruginosa from the respiratory tract using transgenic CF mice that carried either the DeltaF508 Cftr allele or an allele with a Cftr stop codon (S489X). Intranasal application achieved P. aeruginosa lung infection in inbred C57BL/6 DeltaF508 Cftr mice, whereas DeltaF508 Cftr and S489X Cftr outbred mice required tracheal application of the inoculum to establish lung infection. CF mice showed significantly less ingestion of LPS-smooth P. aeruginosa by lung cells and significantly greater bacterial lung burdens 4.5 h postinfection than C57BL/6 wild-type mice. Microscopy of infected mouse and rhesus monkey tracheas clearly demonstrated ingestion of P. aeruginosa by epithelial cells in wild-type animals, mostly around injured areas of the epithelium. Desquamating cells loaded with P. aeruginosa could also be seen in these tissues. No difference was found between CF and wild-type mice challenged with an LPS-rough mucoid isolate of P. aeruginosa lacking the CFTR ligand. Thus, transgenic CF mice exhibit decreased clearance of P. aeruginosa and increased bacterial burdens in the lung, substantiating a key role for CFTR-mediated bacterial ingestion in lung clearance of P. aeruginosa.  相似文献   

2.
Patients with cystic fibrosis (CF) develop chronic Pseudomonas aeruginosa lung infection with mucoid strains of P. aeruginosa; these infections cause significant morbidity. The immunological response in these infections is characterized by an influx of neutrophils to the lung and subsequent lung damage over time; however, the underlying mediators to this response are not well understood. We recently reported that IL-23 and IL-17 were elevated in the sputum of patients with CF who were actively infected with P. aeruginosa; however, the importance of IL-23 and IL-17 in mediating this inflammation was unclear. To understand the role that IL-23 plays in initiating airway inflammation in response to P. aeruginosa, IL-23p19(-/-) (IL-23 deficient) and wild-type (WT) mice were challenged with agarose beads containing a clinical, mucoid isolate of P. aeruginosa. Levels of proinflammatory cytokines, chemokines, bacterial dissemination, and inflammatory infiltrates were measured. IL-23-deficient mice had significantly lower induction of IL-17, keratinocyte-derived chemokine (KC), and IL-6, decreased bronchoalveolar lavage (BAL) neutrophils, metalloproteinase-9 (MMP-9), and reduced airway inflammation than WT mice. Despite the reduced level of inflammation in IL-23p19(-/-) mice, there were no differences in the induction of TNF and interferon-gamma or in bacterial dissemination between the two groups. This study demonstrates that IL-23 plays a critical role in generating airway inflammation observed in mucoid P. aeruginosa infection and suggests that IL-23 could be a potential target for immunotherapy to treat airway inflammation in CF.  相似文献   

3.
Several cystic fibrosis (CF) mouse models demonstrate an increased susceptibility to Pseudomonas aeruginosa lung infection, characterized by excessive inflammation and high rates of mortality. Here we developed a model of chronic P. aeruginosa lung disease in mice homozygous for the murine CF transmembrane conductance regulator G551D mutation that provides an excellent model for CF lung disease. After 3 days of infection with mucoid P. aeruginosa entrapped in agar beads, the G551D animals lost substantially more body weight than non-CF control animals and were less able to control the infection, harboring over 40-fold more bacteria in the lung. The airways of infected G551D animals contained altered concentrations of the inflammatory mediators tumor necrosis factor-alpha, KC/N51, and macrophage inflammatory protein-2 during the first 2 days of infection, suggesting that an ineffective inflammatory response is partly responsible for the clearance defect.  相似文献   

4.
The animal model of chronic bronchopulmonary infection using agarose beads laden with Pseudomonas aeruginosa is frequently utilized in cystic fibrosis research, though it is challenging to perform it in mice. This paper reports the most successful methods for the creation of this model. Transtracheal insertion of a 22 G 1" over-the-needle intravenous catheter to preferentially inoculate the right mainstem bronchus using tribromoethanol anaesthesia administered i.p. was better for a successful surgical outcome compared, respectively, to the use of a 27 G (1/2)" needle, bilateral inoculation or an anaesthetic cocktail of xylazine, acepromazine and ketamine administered i.p. Bilateral infection was associated with higher mortality, greater weight loss and higher levels of bronchoalveolar cytokine concentration, compared to mice infected primarily in the right lung. Mucoid clinical strain PA M57-15 was preferred since mucoid clinical strain PA 2192 led to comparatively more severe lesions and higher mortality. Using the same operator for a given task reduced the variability inherent in this model, illustrated using outcome measures such as gross lung pathology. The response of mice inoculated with P. aeruginosa-laden agarose beads was characterized by bronchopulmonary inflammation, high production of cytokines, and significant weight loss; whereas the response to infection with free-living bacteria was characterized by pneumonia, lower production of cytokines and weight loss. The use of free P. aeruginosa pre-mixed with sterile agarose beads may be considered as an alternative to the use of P. aeruginosa-laden agarose beads, since the histopathological features were similar, though further characterization is needed to evaluate its utility as an adequate model of cystic fibrosis.  相似文献   

5.
Pulmonary infection with Pseudomonas aeruginosa and neutrophilic lung inflammation significantly contribute to morbidity and mortality in cystic fibrosis (CF). High-mobility group box 1 protein (HMGB1), a ubiquitous DNA binding protein that promotes inflammatory tissue injury, is significantly elevated in CF sputum. However, its mechanistic and potential therapeutic implications in CF were previously unknown. We found that HMGB1 levels were significantly elevated in bronchoalveolar lavage fluids (BALs) of CF patients and cystic fibrosis transmembrane conductance regulator (CFTR )(-/-) mice. Neutralizing anti-HMGB1 monoclonal antibody (mAb) conferred significant protection against P. aeruginosa-induced neutrophil recruitment, lung injury and bacterial infection in both CFTR(-/-) and wild-type mice. Alveolar macrophages isolated from mice treated with anti-HMGB1 mAb had improved phagocytic activity, which was suppressed by direct exposure to HMGB1. In addition, BAL from CF patients significantly impaired macrophage phagocytotic function, and this impairment was attenuated by HMGB1-neutralizing antibodies. The HMGB1-mediated suppression of bacterial phagocytosis was attenuated in macrophages lacking toll-like receptor (TLR)-4, suggesting a critical role for TLR4 in signaling HMGB1-mediated macrophage dysfunction. These studies demonstrate that the elevated levels of HMGB1 in CF airways are critical for neutrophil recruitment and persistent presence of P. aeruginosa in the lung. Thus, HMGB1 may provide a therapeutic target for reducing bacterial infection and lung inflammation in CF.  相似文献   

6.
Patients with cystic fibrosis have a lesion in the cystic fibrosis transmembrane conductance regulator gene (CFTR), which is associated with abnormal regulation of other ion channels, abnormal glycosylation of secreted and cell surface molecules, and vulnerability to bacterial infection and inflammation in the lung usually leading to the death of these patients. The exact mechanism(s) by which mutation in CFTR leads to lung infection and inflammation is not clear. Mice bearing different mutations in the murine homolog to CFTR (Cftr) (R117H, S489X, Y122X, and DeltaF508, all backcrossed to the C57BL/6J background) were compared with respect to growth and in their ability to respond to lung infection elicited with Pseudomonas aeruginosa-laden agarose beads. Body weights of mice bearing mutations in Cftr were significantly smaller than wild-type mice at most ages. The inflammatory responses to P. aeruginosa-laden agarose beads were comparable in mice of all four Cftr mutant genotypes with respect to absolute and relative cell counts in bronchoalveolar lavage fluid, and cytokine levels (TNF-alpha, IL-1beta, IL-6, macrophage inflammatory protein-2, and keratinocyte chemoattractant) and eicosanoid levels (PGE2 and LTB4) in epithelial lining fluid: the few small differences observed occurred only between cystic fibrosis mice bearing the S489X mutation and those bearing the knockout mutation Y122X. Thus we cannot implicate either misprocessing of CFTR or failure of CFTR to reach the plasma membrane in the genesis of the excess inflammatory response of CF mice. Therefore, it appears that any functional defect in CFTR produces comparable inflammatory responses to lung infections with P. aeruginosa.  相似文献   

7.
We tested whether cystic fibrosis (CF) airway epithelia have larger innate immune responses than non-CF or cystic fibrosis transmembrane conductance regulator (CFTR)-corrected cells, perhaps resulting from ER stress due to retention of DeltaF508CFTR in the endoplasmic reticulum (ER) and activation of cytosolic Ca(2+) (Ca(i)) and nuclear factor (NF)-kappaB signaling. Adenovirus infections of a human CF (DeltaF508/DeltaF508) nasal cell line (CF15) provided isogenic comparisons of wild-type (wt) CFTR and DeltaF508CFTR. In the absence of bacteria, there were no or only small differences among CF15, CF15-lacZ (beta-galactosidase-expressing), CF15-wtCFTR (wtCFTR-corrected), and CF15-DeltaF508CFTR (to test ER retention of DeltaF508CFTR) cells in NF-kappaB activity, interleukin (IL)-8 secretion, Ca(i) responses, and ER stress. Non-CF and CF primary cultures of human bronchial epithelial cells (HBE) secreted IL-8 equivalently. Upon infection with Pseudomonas aeruginosa (PA) or flagellin (key activator for airway epithelia), CF15, CF15-lacZ, CF15-wtCFTR, and CF15DeltaF508CFTR cells exhibited equal PA binding, NF-kappaB activity, and IL-8 secretion; cells also responded similarly to flagellin when both CFTR (forskolin) and Ca(i) signaling (ATP) were activated. CF and non-CF HBE responded similarly to flagellin + ATP. Thapsigargin (Tg, releases ER Ca(2+)) increased flagellin-stimulated NF-kappaB and ER stress similarly in all cells. We conclude that ER stress, Ca(i), and NF-kappaB signaling and IL-8 secretion were unaffected by wt- or DeltaF508CFTR in control and during exposure to PA, flagellin, flagellin + ATP, or flagellin + ATP + forskolin. Tg, but not wt- or DeltaF508CFTR, triggered ER stress. Previous measurements showing hyperinflammatory responses in CF airway epithelia may have resulted from cell-specific, rather than CFTR- or DeltaF508CFTR-specific effects.  相似文献   

8.
The inability of neutrophils to eradicate Pseudomonas aeruginosa within the cystic fibrosis (CF) airway eventually results in chronic infection by the bacteria in nearly 80 percent of patients. Phagocytic killing of P. aeruginosa by CF neutrophils is impaired due to decreased cystic fibrosis transmembrane conductance regulator (CFTR) function and virulence factors acquired by the bacteria. Recently, neutrophil extracellular traps (NETs), extracellular structures composed of neutrophil chromatin complexed with granule contents, were identified as an alternative mechanism of pathogen killing. The hypothesis that NET-mediated killing of P. aeruginosa is impaired in the context of the CF airway was tested. P. aeruginosa induced NET formation by neutrophils from healthy donors in a bacterial density dependent fashion. When maintained in suspension through continuous rotation, P. aeruginosa became physically associated with NETs. Under these conditions, NETs were the predominant mechanism of killing, across a wide range of bacterial densities. Peripheral blood neutrophils isolated from CF patients demonstrated no impairment in NET formation or function against P. aeruginosa. However, isogenic clinical isolates of P. aeruginosa obtained from CF patients early and later in the course of infection demonstrated an acquired capacity to withstand NET-mediated killing in 8 of 9 isolates tested. This resistance correlated with development of the mucoid phenotype, but was not a direct result of the excess alginate production that is characteristic of mucoidy. Together, these results demonstrate that neutrophils can kill P. aeruginosa via NETs, and in vitro this response is most effective under non-stationary conditions with a low ratio of bacteria to neutrophils. NET-mediated killing is independent of CFTR function or bacterial opsonization. Failure of this response in the context of the CF airway may occur, in part, due to an acquired resistance against NET-mediated killing by CF strains of P. aeruginosa.  相似文献   

9.
Chronic lung infections by Pseudomonas aeruginosa strains are a major cause of morbidity and mortality in cystic fibrosis (CF) patients. Although there is no clear evidence for a primary defect in the immune system of CF patients, the host is generally unable to clear P. aeruginosa from the airways. PTX3 is a soluble pattern recognition receptor that plays nonredundant roles in the innate immune response to fungi, bacteria, and viruses. In particular, PTX3 deficiency is associated with increased susceptibility to P. aeruginosa lung infection. To address the potential therapeutic effect of PTX3 in P. aeruginosa lung infection, we established persistent and progressive infections in mice with the RP73 clinical strain RP73 isolated from a CF patient and treated them with recombinant human PTX3. The results indicated that PTX3 has a potential therapeutic effect in P. aeruginosa chronic lung infection by reducing lung colonization, proinflammatory cytokine levels (CXCL1, CXCL2, CCL2, and IL-1β), and leukocyte recruitment in the airways. In models of acute infections and in in vitro assays, the prophagocytic effect of PTX3 was maintained in C1q-deficient mice and was lost in C3- and Fc common γ-chain-deficient mice, suggesting that facilitated recognition and phagocytosis of pathogens through the interplay between complement and FcγRs are involved in the therapeutic effect mediated by PTX3. These data suggested that PTX3 is a potential therapeutic tool in chronic P. aeruginosa lung infections, such as those seen in CF patients.  相似文献   

10.
The porcine lung as a potential model for cystic fibrosis   总被引:1,自引:0,他引:1  
Airway disease currently causes most of the morbidity and mortality in patients with cystic fibrosis (CF). However, understanding the pathogenesis of CF lung disease and developing novel therapeutic strategies have been hampered by the limitations of current models. Although the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) has been targeted in mice, CF mice fail to develop lung or pancreatic disease like that in humans. In many respects, the anatomy, biochemistry, physiology, size, and genetics of pigs resemble those of humans. Thus pigs with a targeted CFTR gene might provide a good model for CF. Here, we review aspects of porcine airways and lung that are relevant to CF.  相似文献   

11.
Recent molecular and cellular studies have shed new light on the basis for the susceptibility of cystic fibrosis (CF) patients to Pseudomonas aeruginosa infection. Changes in airway liquid composition and/or viscosity, enhanced bacterial binding to mucin and epithelial cell receptors, increased innate inflammation owing to disruptions in lipid metabolism and a role for the CFTR protein in bacterial ingestion and clearance have all been postulated. The high P. aeruginosa infection rate in CF patients can potentially be explained by the specificity of the interaction between the CFTR and P. aeruginosa.  相似文献   

12.
Increased life expectancy in cystic fibrosis (CF) is accompanied by an increasing incidence of CF related diabetes (CFRD). Altered immune reactivity occurs in CF, which we hypothesize, is exacerbated by hyperglycemia. Cystic fibrosis transmembrane conductance regulator deficient (CFTR-/-) mice were rendered hyperglycemic by streptozotocin (STZ) to test this hypothesis. CFTR-/-, C57BL/6J, and FVB/NJ mice received either STZ or lactated ringers (LR) (n=5-10). Four weeks later, splenocytes were harvested, mitogen stimulated, and analyzed for cytokine production (IL-2, IL-4, and IL-10) along with stimulation indices (SI). SI of STZ-treated CFTR-/- were elevated compared to LR-treated mice, although both were greater than C57BL/6J and FVB/NJ (p<0.05). Fasting glucose levels of STZ-treated CFTR-/- mice correlated with SI (p<0.003). Stimulated IL-10 concentrations were elevated in STZ-treated CFTR-/- compared to LR-treated animals and controls (p<0.05). IL-2 levels were greater in CFTR-/- mice compared to controls (p<0.05), but unrelated to STZ. Reinforcing generalized cytokine up-regulation in CFTR-/-, IL-4 levels were greater in CFTR-/- mice compared to C57BL/6J, but FVB/NJ mice demonstrated greatest concentrations following STZ. These results suggest that, hyperglycemia may exacerbate the clinical course in CF by impacting immune reactivity. There is clear need to maximize metabolic management in CFRD.  相似文献   

13.
14.
In the clinical setting, mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene enhance the inflammatory response in the lung to Pseudomonas aeruginosa (P. aeruginosa) infection. However, studies on human airway epithelial cells in vitro have produced conflicting results regarding the effect of mutations in CFTR on the inflammatory response to P. aeruginosa, and there are no comprehensive studies evaluating the effect of P. aeruginosa on the inflammatory response in airway epithelial cells with the ΔF508/ΔF508 genotype and their matched CF cell line rescued with wild-type (wt)-CFTR. CFBE41o- cells (ΔF508/ΔF508) and CFBE41o- cells complemented with wt-CFTR (CFBE-wt-CFTR) have been used extensively as an experimental model to study CF. Thus the goal of this study was to examine the effect of P. aeruginosa on gene expression and cytokine/chemokine production in this pair of cells. P. aeruginosa elicited a more robust increase in cytokine and chemokine expression (e.g., IL-8, CXCL1, CXCL2 and TNF-α) in CFBE-wt-CFTR cells compared with CFBE-ΔF508-CFTR cells. These results demonstrate that CFBE41o- cells complemented with wt-CFTR mount a more robust inflammatory response to P. aeruginosa than CFBE41o-ΔF508/ΔF508-CFTR cells. Taken together with other published studies, our data demonstrate that there is no compelling evidence to support the view that mutations in CFTR induce a hyperinflammatory response in human airway epithelial cells in vivo. Although the lungs of patients with CF have abundant levels of proinflammatory cytokines and chemokines, because the lung is populated by immune cells and epithelial cells there is no way to know, a priori, whether airway epithelial cells in the CF lung in vivo are hyperinflammatory in response to P. aeruginosa compared with non-CF lung epithelial cells. Thus studies on human airway epithelial cell lines and primary cells in vitro that propose to examine the effect of mutations in CFTR on the inflammatory response to P. aeruginosa have uncertain clinical significance with regard to CF.  相似文献   

15.
Pseudomonas aeruginosa is an important human pathogen, producing lung infection in individuals with cystic fibrosis (CF), patients who are ventilated and those who are neutropenic. The respiratory epithelium provides the initial barrier to infection. Pseudomonas aeruginosa can enter epithelial cells, although the mechanism of entry and the role of intracellular organisms in its life cycle are unclear. We devised a model of infection of polarized human respiratory epithelial cells with P. aeruginosa and investigated the role of the cystic fibrosis transmembrane conductance regulator (CFTR) in adherence, uptake and IL-8 production by human respiratory epithelial cells. We found that a number of P. aeruginosa strains could invade and replicate within cells derived from a patient with CF. Intracellular bacteria did not produce host cell cytotoxicity over a period of 24 h. When these cells were transfected with wild-type CFTR, uptake of bacteria was significantly reduced and release of IL-8 following infection enhanced. We propose that internalized P. aeruginosa may play an important role in the pathogenesis of infection and that, by allowing greater internalization into epithelial cells, mutant CFTR results in an increased susceptibility of bronchial infection with this microbe.  相似文献   

16.
Recently, we have developed a model of airway inflammation in a CFTR knockout mouse utilizing Aspergillus fumigatus crude protein extract (Af-cpe) to mimic allergic bronchopulmonary aspergillosis (ABPA) 1, an unusual IgE-mediated hypersensitivity syndrome seen in up to 15% of cystic fibrosis (CF) patients and rarely elsewhere. We hypothesized that replacement of CFTR via targeted gene delivery to airway epithelium would correct aberrant epithelial cytokine signaling and ameliorate the ABPA phenotype in CFTR-deficient (CFTR 489X - /-, FABP-hCFTR + / +) mice. CFTR knockout mice underwent intra-tracheal (IT) delivery of recombinant adeno-associated virus serotype 5 (rAAV5Delta-264CFTR) or rAAV5-GFP at 2.58 x 10(12) viral genomes/mouse. All mice were then sensitized with two serial injections (200 microg) of crude Af antigen via the intra-peritoneal (IP) route. Untreated mice were sensitized without virus exposure. Challenges were performed 2 weeks after final sensitization, using a 0.25% solution containing Aspergillus fumigatus crude protein extract delivered by inhalation on three consecutive days. The rAAV5Delta-264CFTR-treated mice had lower total serum IgE levels (172513 ng/ml +/- 1312) than rAAV5-GFP controls (26 892 ng/ml +/- 3715) (p = 0.037) and non-treated, sensitized controls (24 816 +/- 4219 ng/ml). Serum IgG1 levels also were lower in mice receiving the CFTR vector. Interestingly, splenocytes from rAAV5Delta-264CFTR-treated mice secreted less IL-13, INFg, TNFa, RANTES and GM-CSF after ConA stimulation. Gene therapy with rAAV5Delta-264CFTR attenuated the hyper-IgE response in this reproducible CF mouse model of ABPA, with systemic effects also evident in the cytokine response of stimulated splenocytes.  相似文献   

17.
Defective expression or function of the cystic fibrosis transmembrane conductance regulator (CFTR) underlies the hypersusceptibility of cystic fibrosis (CF) patients to chronic airway infections, particularly with Pseudomonas aeruginosa. CFTR is involved in the specific recognition of P. aeruginosa, thereby contributing to effective innate immunity and proper hydration of the airway surface layer (ASL). In CF, the airway epithelium fails to initiate an appropriate innate immune response, allowing the microbe to bind to mucus plugs that are then not properly cleared because of the dehydrated ASL. Recent studies have identified numerous CFTR-dependent factors that are recruited to the epithelial plasma membrane in response to infection and that are needed for bacterial clearance, a process that is defective in CF patients hypersusceptible to infection with this organism.  相似文献   

18.
Infection with the opportunistic pathogen Pseudomonas aeruginosa remains a major health concern. Two P. aeruginosa phenotypes relevant in human disease include motility and mucoidy. Motility is characterized by the presence of flagella and is essential in the establishment of acute infections, while mucoidy, defined by the production of the exopolysaccharide alginate, is critical in the development of chronic infections, such as the infections seen in cystic fibrosis patients. Indeed, chronic infection of the lung by mucoid P. aeruginosa is a major cause of morbidity and mortality in cystic fibrosis patients. We have used Calu-3 human airway epithelial cells to investigate global responses to infection with motile and mucoid P. aeruginosa. The response of airway epithelial cells to exposure to P. aeruginosa motile strains is characterized by a specific increase in gene expression in pathways controlling inflammation and host defense. By contrast, the response of airway epithelia to the stimuli presented by mucoid P. aeruginosa is not proinflammatory and, hence, may not be conducive to the effective elimination of the pathogen. The pattern of gene expression directed by flagellin, but not alginate, includes innate host defense genes, proinflammatory cytokines, and chemokines. By contrast, infection with alginate-producing P. aeruginosa results in an overall attenuation of host responses and an antiapoptotic effect.  相似文献   

19.
20.
The airway is kept sterile by an efficient innate defense mechanism. The cornerstone of airway defense is mucus containing diverse antimicrobial factors that kill or inactivate pathogens. Most of the mucus in the upper airways is secreted by airway submucosal glands. In patients with cystic fibrosis (CF), airway defense fails and the lungs are colonized by bacteria, usually Pseudomonas aeruginosa. Accumulating evidence suggests that airway submucosal glands contribute to CF pathogenesis by failing to respond appropriately to inhalation of bacteria. However, the regulation of submucosal glands by the innate immune system remains poorly understood. We studied the response of submucosal glands to the proinflammatory cytokines interleukin-1β and tumor necrosis factor-α. These are released into the airway submucosa in response to infection with the bacterium P. aeruginosa and are elevated in CF airways. Stimulation with IL-1β and TNF-α increased submucosal gland secretion in a concentration-dependent manner with a maximal secretion rate of 240 ± 20 and 190 ± 40 pl/min, respectively. The half maximal effective concentrations were 11 and 20 ng/ml, respectively. The cytokine effect was dependent on cAMP but was independent of cGMP, nitric oxide, Ca(2+), or p38 MAP kinase. Most importantly, IL-1β- and TNF-α-stimulated secretion was blocked by the CF transmembrane conductance regulator (CFTR) blocker, CFTRinh172 (100 μmol/l) but was not affected by the Ca(2+)-activated Cl(-) channel blocker, niflumic acid (1 μmol/l). The data suggest, that during bacterial infections and resulting release of proinflammatory cytokines, the glands are stimulated to secrete fluid, and this response is mediated by cAMP-activated CFTR, a process that would fail in patients with CF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号