首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eph receptor tyrosine kinases and their ephrin ligands are involved in some of the most important steps during the development of the central nervous system, including cell migration, axon guidance, topographic mapping and synapse formation. Moreover, in the adult, they have been implicated in plasticity and regulation of neural stem cell function. One member of the Eph family, EphA4, can bind to both classes of ephrins and may have multiple functions in nervous system development. In order to look for potential sites of EphA4 action during central nervous system development, we conducted a spatio-temporal analysis of EphA4 protein expression. We used immunohistochemistry in preference to in situ hybridization because of the high likelihood that EphA4 protein is expressed on axon tracts, long distances from EphA4 mRNA. In the telencephalon, EphA4 was expressed in the developing cortex from embryonic day 11 (E11) and, later, on major cortical tracts including the corpus callosum and cortico-spinal tract. Robust EphA4 expression was also found in the hippocampus and fornix, and cells and tracts in the striatum. In the diencephalon, the thalamus, the hypothalamus and thalamo-cortical projection were strongly positive. In the mesencephalon, a number of different nuclei were weakly positive, most prominently the red nucleus. In the rhombencephalon, many nuclei were strongly positive including the cerebellum and one of its afferent paths, the inferior cerebellar peduncle, as well as the olivary region. In the spinal cord, there was a dynamic pattern of expression through development, with persistent expression in the dorsal funiculus and ventral grey matter.  相似文献   

2.
EphA4-dependent axon guidance is mediated by the RacGAP alpha2-chimaerin   总被引:1,自引:0,他引:1  
Neuronal network formation in the developing nervous system is dependent on the accurate navigation of nerve cell axons and dendrites, which is controlled by attractive and repulsive guidance cues. Ephrins and their cognate Eph receptors mediate many repulsive axonal guidance decisions by intercellular interactions resulting in growth cone collapse and axon retraction of the Eph-presenting neuron. We show that the Rac-specific GTPase-activating protein alpha2-chimaerin binds activated EphA4 and mediates EphA4-triggered axonal growth cone collapse. alpha-Chimaerin mutant mice display a phenotype similar to that of EphA4 mutant mice, including aberrant midline axon guidance and defective spinal cord central pattern generator activity. Our results reveal an alpha-chimaerin-dependent signaling pathway downstream of EphA4, which is essential for axon guidance decisions and neuronal circuit formation in vivo.  相似文献   

3.
Ephrins are cell surface-associated ligands for Eph receptor tyrosine kinases and are implicated in repulsive axon guidance and cell migration. EphA2, 3, and 4 receptors and one of their cognate ligands, ephrin-A2, are expressed by cells in the subventricular zone and ganglionic eminence of the embryonic day 14.5 telencephalon and by neural precursor cells in vitro. Activation of EphA receptors in dissociated neural precursor cells in vitro facilitates the commitment to neuronal fates. The majority of ephrin-A1-induced neurons is immunoreactive for tyrosine hydroxylase. Blocking the signal by the extracellular domain of EphA in forebrain slices results in a decrease in neurogenesis. Extracellular signal-regulated kinase is activated by the ligand binding to EphA receptors and is involved in the neurogenesis through EphA receptors. Rap1, but not Ras, is activated in response to ephrin-A1. Our results identify EphA receptors as positive regulators of the mitogen-activated protein kinase pathway that exerts neurogenesis of neural precursor cells from the developing central nervous system.  相似文献   

4.
Intercellular signaling via the Eph receptor tyrosine kinases and their ligands, the ephrins, acts to shape many regions of the developing brain. One intriguing consequence of Eph signaling is the control of mixing between discrete cell populations in the developing hindbrain, contributing to the formation of segregated rhombomeres. Since the thalamus is also a parcellated structure comprised of discrete nuclei, might Eph signaling play a parallel role in cell segregation in this brain structure? Analyses of expression reveal that several Eph family members are expressed in the forming thalamus and that cells expressing particular receptors form cellular groupings as development proceeds. Specifically, expression of receptors EphA4 or EphA7 and ligand ephrin-A5 is localized to distinct thalamic domains. EphA4 and EphA7 are often coexpressed in regions of the forming thalamus, with each receptor marking discrete thalamic domains. In contrast, ephrin-A5 is expressed by a limited group of thalamic cells. Within the ventral thalamus, EphA4 is present broadly, occasionally overlapping with ephrin-A5 expression. EphA7 is more restricted in its expression and is largely nonoverlapping with ephrin-A5. In mutant mice lacking one or both receptors or ephrin-A5, the appearance of the venteroposterolateral (VPL) and venteroposteromedial (VPM) nuclear complex is altered compared to wild type mice. These in vivo results support a role for Eph family members in the definition of the thalamic nuclei. In parallel, in vitro analysis reveals a hierarchy of mixing among cells expressing ephrin-A5 with cells expressing EphA4 alone, EphA4 and EphA7 together, or EphA7 alone. Together, these data support a model in which EphA molecules promote the parcellation of discrete thalamic nuclei by limiting the extent of cell mixing.  相似文献   

5.
Intercellular signaling via the Eph receptor tyrosine kinases and their ligands, the ephrins, acts to shape many regions of the developing brain. One intriguing consequence of Eph signaling is the control of mixing between discrete cell populations in the developing hindbrain, contributing to the formation of segregated rhombomeres. Since the thalamus is also a parcellated structure comprised of discrete nuclei, might Eph signaling play a parallel role in cell segregation in this brain structure? Analyses of expression reveal that several Eph family members are expressed in the forming thalamus and that cells expressing particular receptors form cellular groupings as development proceeds. Specifically, expression of receptors EphA4 or EphA7 and ligand ephrin-A5 is localized to distinct thalamic domains. EphA4 and EphA7 are often coexpressed in regions of the forming thalamus, with each receptor marking discrete thalamic domains. In contrast, ephrin-A5 is expressed by a limited group of thalamic cells. Within the ventral thalamus, EphA4 is present broadly, occasionally overlapping with ephrin-A5 expression. EphA7 is more restricted in its expression and is largely nonoverlapping with ephrin-A5. In mutant mice lacking one or both receptors or ephrin-A5, the appearance of the venteroposterolateral (VPL) and venteroposteromedial (VPM) nuclear complex is altered compared to wild type mice. These in vivo results support a role for Eph family members in the definition of the thalamic nuclei. In parallel, in vitro analysis reveals a hierarchy of mixing among cells expressing ephrin-A5 with cells expressing EphA4 alone, EphA4 and EphA7 together, or EphA7 alone. Together, these data support a model in which EphA molecules promote the parcellation of discrete thalamic nuclei by limiting the extent of cell mixing.  相似文献   

6.
Eph receptors and their membrane-associated ephrin ligands regulate cell-cell interactions during development. The biochemical and biologic functions of this receptor tyrosine kinase family are still being elucidated but include roles in nervous system segmentation, axon pathfinding, and angiogenesis. To isolate murine orthologs of three zebrafish Eph family members (zek1, zek2, and zek3), we have used a degenerate RT-PCR-based cloning method specific for members of the Eph family. Although this method was effective for isolation of Eph receptor cDNAs, including members of both the A and B subfamilies, our results suggested that zek1 may not have a murine ortholog. The isolated cDNAs were also used to generate RNA in situ hybridization probes to examine the expression patterns of murine EphA2, A3, A4, A7, B1, B2, and B4 in 9.5-dpc mouse embryos. In addition to the expected abundant expression of these Eph receptors in the developing CNS and the presence of EphB receptors in vascular tissues, several of the EphA receptors were expressed in discrete regions of the developing vasculature. These results suggest a role for both EphA and EphB receptors in vascular development.  相似文献   

7.
Ephrins and Eph receptor tyrosine kinases are cell‐surface molecules that serve a multitude of functions in cell–cell communication in development, physiology, and disease. EphA4 is a promiscuous member of the EphA subclass of Eph receptors and can bind to both EphrinAs and EphrinBs. In addition to its well‐established roles in guiding the development of neuronal connectivity, EphA4 has been implicated for a role in synaptic plasticity, vascular formation, axon regeneration, and central nervous system repair following injury. However, the study of its role in the adult stage has been hampered by confounding developmental defects in EphA4 germline mutants. Here, we report the generation and molecular characterization of an EphA4 conditional allele along with a novel null allele with a knockin fluorescent reporter gene (mCFP). The conditional allele will be useful in ascertaining postdevelopmental and/or cell type‐specific function of EphA4 in physiology, injury, and disease. genesis 48:101–105, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
9.
Upregulation and activation of developmental axon guidance molecules, such as semaphorins and members of the Eph receptor tyrosine kinase family and their ligands, the ephrins, play a role in the inhibition of axonal regeneration following injury to the central nervous system. Previously we have demonstrated in a knockout model that axonal regeneration following spinal cord injury is promoted in the absence of the axon guidance protein EphA4. Antagonism of EphA4 was therefore proposed as a potential therapy to promote recovery from spinal cord injury. To further assess this potential, two soluble recombinant blockers of EphA4, unclustered ephrin-A5-Fc and EphA4-Fc, were examined for their ability to promote axonal regeneration and to improve functional outcome following spinal cord hemisection in wildtype mice. A 2-week administration of either of these blockers following spinal cord injury was sufficient to promote substantial axonal regeneration and functional recovery by 5 weeks following injury. Both inhibitors produced a moderate reduction in astrocytic gliosis, indicating that much of the effect of the blockers may be due to promotion of axon growth. These studies provide definitive evidence that soluble inhibitors of EphA4 function offer considerable therapeutic potential for the treatment of spinal cord injury and may have broader potential for the treatment of other central nervous system injuries.  相似文献   

10.
The ephrin/Eph system plays a central role in neuronal circuit formation; however, its downstream effectors are poorly understood. Here we show that alpha-chimerin Rac GTPase-activating protein mediates ephrinB3/EphA4 forward signaling. We discovered a spontaneous mouse mutation, miffy (mfy), which results in a rabbit-like hopping gait, impaired corticospinal axon guidance, and abnormal spinal central pattern generators. Using positional cloning, transgene rescue, and gene targeting, we demonstrated that loss of alpha-chimerin leads to mfy phenotypes similar to those of EphA4(-/-) and ephrinB3(-/-) mice. alpha-chimerin interacts with EphA4 and, in response to ephrinB3/EphA4 signaling, inactivates Rac, which is a positive regulator of process outgrowth. Moreover, downregulation of alpha-chimerin suppresses ephrinB3-induced growth cone collapse in cultured neurons. Our findings indicate that ephrinB3/EphA4 signaling prevents growth cone extension in motor circuit formation via alpha-chimerin-induced inactivation of Rac. They also highlight the role of a Rho family GTPase-activating protein as a key mediator of ephrin/Eph signaling.  相似文献   

11.
Auditory and vestibular afferents enter the brainstem through the VIIIth cranial nerve and find targets in distinct brain regions. We previously reported that the axon guidance molecules EphA4 and EphB2 have largely complementary expression patterns in the developing avian VIIIth nerve. Here, we tested whether inhibition of Eph signaling alters central targeting of VIIIth nerve axons. We first identified the central compartments through which auditory and vestibular axons travel. We then manipulated Eph-ephrin signaling using pharmacological inhibition of Eph receptors and in ovo electroporation to misexpress EphA4 and EphB2. Anterograde labeling of auditory afferents showed that inhibition of Eph signaling did not misroute axons to non-auditory target regions. Similarly, we did not find vestibular axons within auditory projection regions. However, we found that pharmacologic inhibition of Eph receptors reduced the volume of the vestibular projection compartment. Inhibition of EphB signaling alone did not affect auditory or vestibular central projection volumes, but it significantly increased the area of the auditory sensory epithelium. Misexpression of EphA4 and EphB2 in VIIIth nerve axons resulted in a significant shift of dorsoventral spacing between the axon tracts, suggesting a cell-autonomous role for the partitioning of projection areas along this axis. Cochlear ganglion volumes did not differ among treatment groups, indicating the changes seen were not due to a gain or loss of cochlear ganglion cells. These results suggest that Eph-ephrin signaling does not specify auditory versus vestibular targets but rather contributes to formation of boundaries for patterning of inner ear projections in the hindbrain.  相似文献   

12.
Evidence is accumulating that Eph receptor tyrosine kinases and their ligands regulate cell migration and axonal guidance during development. It was previously found that one of the Eph receptors, EphA4, is transiently expressed in subsets of chick embryonic motor neurons. Here, the expression of EphA and ephrin-A subfamily members was further examined, and the dynamic patterns of expression in chick embryonic motor neurons found. EphA3, EphA4, ephrin-A2, and ephrin-A5 were also expressed in the connective tissues of limb muscles and EphA3 and EphA4 expressing motor neurons innervated EphA3 and EphA4 expressing limb muscles, respectively. These spatiotemporal expression patterns suggest that EphA and ephrin-A proteins play important roles in muscle patterning and motor axonal guidance.  相似文献   

13.
14.
Signaling by receptor tyrosine kinases (RTKs) is mediated by their intrinsic kinase activity. Typically, kinase-activating mutations result in ligand-independent signaling and gain-of-function phenotypes. Like other RTKs, Ephs require kinase activity to signal, but signaling by Ephs in vitro also requires clustering by their membrane bound ephrin ligands. The relative importance of Eph kinase activity and clustering for in vivo functions is unknown. We find that knockin mice expressing a mutant form of EphA4 (EphA4(EE)), whose kinase is constitutively activated in the absence of ephrinB ligands, are deficient in the development of thalamocortical projections and some aspects of central pattern generator rhythmicity. Surprisingly, other functions of EphA4 were regulated normally by EphA4(EE), including midline axon guidance, hindlimb locomotion, in vitro growth cone collapse, and phosphorylation of ephexin1. These results suggest that signaling of Eph RTKs follows a multistep process of induced kinase activity and higher-order clustering different from RTKs responding to soluble ligands.  相似文献   

15.
Auditory pathways contain orderly representations of frequency selectivity, which begin at the cochlea and are transmitted to the brainstem via topographically ordered axonal pathways. The mechanisms that establish these tonotopic maps are not known. Eph receptor tyrosine kinases and their ligands, the ephrins, have a demonstrated role in establishing topographic projections elsewhere in the brain, including the visual pathway. Here, we have examined the function of these proteins in the formation of auditory frequency maps. In birds, the first central auditory nucleus, n. magnocellularis (NM), projects tonotopically to n. laminaris (NL) on both sides of the brain. We previously showed that the Eph receptor EphA4 is expressed in a tonotopic gradient in the chick NL, with higher frequency regions showing greater expression than lower frequency regions. Here we misexpressed EphA4 in the developing auditory brainstem from embryonic day 2 (E2) through E10, when NM axons make synaptic contact with NL. We then evaluated topography along the frequency axis using both anterograde and retrograde labeling in both the ipsilateral and contralateral NM-NL pathways. We found that after misexpression, NM regions project to a significantly broader proportion of NL than in control embryos, and that both the ipsilateral map and the contralateral map show this increased divergence. These results support a role for EphA4 in establishing tonotopic projections in the auditory system, and further suggest a general role for Eph family proteins in establishing topographic maps in the nervous system.  相似文献   

16.
Summary Eph receptors and ligands are two families of proteins that control axonal guidance during development. Their expression was originally thought to be developmentally regulated but recent work has shown that several EphA receptors are expressed postnatally. The EphB3 receptors are expressed during embryonic development in multiple regions of the central nervous system but their potential expression and functional role in the adult brain is unknown. We used in situ hybridization, immunohistochemistry, and receptor affinity probe in situ staining to investigate EphB3 receptors mRNA, protein, and ligand (ephrin-B) expression, respectively, in the adult rat brain. Our results indicate that EphB3 receptor mRNA and protein are constitutively expressed in discrete regions of the adult rat brain including the cerebellum, raphe pallidus, hippocampus, entorhinal cortex, and both motor and sensory cortices. The spatial profile of EphB3 receptors was co-localized to regions of the brain that had a high level of EphB3 receptor binding ligands. Its expression pattern suggests that EphB3 may play a role in the maintenance of mature neuronal connections or re-arrangement of synaptic connections during late stages of development.  相似文献   

17.
In this article, we describe the primary structure, the biochemical characterization and the tissue distribution of a novel integrin alpha subunit, named alpha 8. This subunit associates with the integrin beta 1 subunit to form alpha 8 beta 1 heterodimers. By sequence analysis, alpha 8 is more closely related to the alpha 5 and alpha v subunits than to other characterized integrin alpha subunits, but is clearly distinct from each of these. The alpha 8 subunit is expressed at moderate levels in several epithelial cells where its localization adjacent to basal laminae suggests that alpha 8-containing heterodimers interact with at least one extracellular matrix constituent. In embryos, the highest levels of alpha 8 protein expression are seen in the nervous system where alpha 8 is strongly expressed by several classes of projection neurons. The alpha 8 subunit is concentrated in axon tracts, including major projections in the spinal cord, optic system and auditory system. This tissue specific expression and cellular localization suggest that alpha 8-containing integrin receptors might promote axon outgrowth in the embryonic nervous system.  相似文献   

18.
The Eph family is the largest known group of structurally related receptor tyrosine kinases (RTKs). Each Eph receptor has a specific Ephrin ligand, and these function to define spatial boundaries during development. Analyses of EphA4 in mouse, chick, frog and zebrafish embryos have implicated this gene in a number of developmental processes, including maintenance of segmental boundaries, axon guidance, limb development, neural crest migration and patterning of the ear. In order to determine which components of EphA4 function may be primitive for gnathostomes, we cloned EphA4 from the lesser spotted catshark (Scyliorhinus canicula) and examined its expression pattern during shark embryonic development. Consistent with the patterns reported for bony fish and tetrapods, we observed segmental expression of EphA4 in the developing hindbrain and later in the pharyngeal arches of shark embryos. EphA4 was also detected during sensory organogenesis, in the developing ear, eye, nasal pits and lateral line. A dynamic pattern of EphA4 expression occurs during shark fin development, suggesting an early role in outgrowth and patterning of the fin buds and a later role in tissue differentiation. We also observed several novel domains of EphA4 expression that have not been reported in other vertebrates, including external gill buds, dermal denticles, median fins and claspers. While some of these domains may reflect co-option of EphA4 expression to novel sites for development of shark-specific characters, others are more likely to be ancestral patterns of expression that were lost in other vertebrate lineages.Edited by R. P. Elinson  相似文献   

19.
Graded expression of the Eph receptor EphA3 in the retina and its two ligands, ephrin A2 and ephrin A5 in the optic tectum, the primary target of retinal axons, have been implicated in the formation of the retinotectal projection map. Two homeobox containing genes, SOHo1 and GH6, are expressed in a nasal-high, temporal-low pattern during early retinal development, and thus in opposing gradients to EphA3. Retroviral misexpression of SOHo1 or GH6 completely and specifically repressed EphA3 expression in the neural retina, but not in other parts of the central nervous system, such as the optic tectum. Under these conditions, some temporal ganglion cell axons overshot their expected termination zones in the rostral optic tectum, terminating aberrantly at more posterior locations. However, the majority of ganglion cell axons mapped to the appropriate rostrocaudal locations, although they formed somewhat more diffuse termination zones. These findings indicate that other mechanisms, in addition to differential EphA3 expression in the neural retina, are required for retinal ganglion axons to map to the appropriate rostrocaudal locations in the optic tectum. They further suggest that the control of topographic specificity along the retinal nasal-temporal axis is split into several independent pathways already at a very early time in development.  相似文献   

20.
Ephrin (Eph) signaling within the central nervous system is known to modulate axon guidance, synaptic plasticity, and to promote long-term potentiation. We investigated the potential involvement of EphA2 receptors in ischemic stroke-induced brain inflammation in a mouse model of focal stroke. Cerebral ischemia was induced in male C57Bl6/J wild-type (WT) and EphA2-deficient (EphA2−/−) mice by middle cerebral artery occlusion (MCAO; 60 min), followed by reperfusion (24 or 72 h). Brain infarction was measured using triphenyltetrazolium chloride staining. Neurological deficit scores and brain infarct volumes were significantly less in EphA2−/− mice compared with WT controls. This protection by EphA2 deletion was associated with a comparative decrease in brain edema, blood-brain barrier damage, MMP-9 expression and leukocyte infiltration, and higher expression levels of the tight junction protein, zona occludens-1. Moreover, EphA2−/− brains had significantly lower levels of the pro-apoptotic proteins, cleaved caspase-3 and BAX, and higher levels of the anti-apoptotic protein, Bcl-2 as compared to WT group. We confirmed that isolated WT cortical neurons express the EphA2 receptor and its ligands (ephrin-A1–A3). Furthermore, expression of all four proteins was increased in WT primary cortical neurons following 24 h of glucose deprivation, and in the brains of WT mice following stroke. Glucose deprivation induced less cell death in primary neurons from EphA2−/− compared with WT mice. In conclusion, our data provide the first evidence that the EphA2 receptor directly contributes to blood-brain barrier damage and neuronal death following ischemic stroke.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号