首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Thymus development and function are dependent on the definition of different and graded microenvironments that provide the maturing T cell with the different signals that drive its maturation to a functional T lymphocyte. In these processes, cell-cell interactions, cell migration, and positioning are clues for the correct functioning of the organ. The Eph family of receptor tyrosine kinases and their ligands, the ephrins, has been implicated in all these processes by regulating cytoskeleton and adhesion functioning, but a systemic analysis of their presence and possible functional role in thymus has not yet been conducted. In this regard, the current study combines different experimental approaches for analyzing the expression of four members of the Eph A family and their ligands, ephrins A, in the embryonic and adult rat thymus. The patterns of Eph and ephrin expression in the distinct thymic regions were different but overlapping. In general, the studied Eph A were expressed on thymic epithelial cells, whereas ephrins A seem to be more restricted to thymocytes, although Eph A1 and ephrin A1 are expressed on both cell types. Furthermore, the supply of either Eph A-Fc or ephrin A-Fc fusion proteins to fetal thymus organ cultures interferes with T cell development, suggesting an important role for this family of proteins in the cell mechanisms that drive intrathymic T cell development.  相似文献   

3.
Recent evidence suggests that the zeta-subunit of the TCR complex plays a critical role in transducing signals initiated by the Ag receptor heterodimer. Because thymic maturation involves specific interactions between the TCR complex and thymic stromal cells, the zeta-subunit has been postulated to also play a role in this process. To assess the potential for zeta to contribute to thymocyte maturation, we have used an anti-zeta mAb (TIA-2) to quantitate its expression in mature (CD3bright) and immature (CD3dim and CD3-) populations of human thymocytes. Using both flow cytometric and immunoblotting analysis, we found that the relative expression of TCR-zeta varied directly with the surface expression of CD3. Importantly, TCR-zeta was detected in the majority of CD3- thymocytes, indicating that its expression precedes the surface appearance of CD3:TCR. In thymocytes, TCR-zeta was found to be constitutively phosphorylated on tyrosine residues. The relative expression of phospho-zeta varied directly with the maturational stage of the thymocyte, with the mature (CD3bright), single positive cells accounting for most of the phospho-zeta found in the human thymus. The expression of phospho-zeta could be significantly increased by activating thymocytes with mAb reactive with either CD3 or CD2. These results suggest that TCR-zeta is functionally linked to the major thymocyte activation receptors.  相似文献   

4.
The present study investigates the expression of VLA-4 on thymocytes at various stages of maturation and their capacity to adhere to thymic stromal cells. Whole thymocytes were stained with anti-CD4 and anti-CD8, as well as anti-VLA-4 antibodies. Flow microfluorometric analyses revealed that a) most of CD4-8- (double negative DN) and CD4-8intermediate thymocyte populations expressed large amounts of VLA-4, b) the levels of VLA-4 were considerably and markedly reduced on CD4+8+ (double positive DP) and single positive (SP) (CD4+8- or CD4-8+) populations, respectively. This contrasted with an increase in the levels of LFA-1 along with thymocyte maturation. DN, DP, and SP subsets were isolated and examined for their capacity to express VLA-4 and to adhere to fibronectin (FN) molecules as well as thymic stromal cells expressing FN. DN, DP, and SP subsets were confirmed to express the respective high, low, and very low levels of VLA-4, respectively. Approximately 70% of DN thymocytes became bound to FN-precoated culture plates, whereas 30 to 40% of DP and only 10 to 20% of SP cells adhered to FN. Similar patterns of adhesion were observed between these thymocyte subsets and thymic stromal monolayers. The binding of the DN subset to FN-plates or thymic stromal monolayers was inhibited only marginally by the RGDS peptide, but was efficiently inhibited by V10 peptide (cell-binding sequence that is located in the V region on FN and reacts with the VLA-4 integrin) or anti-VLA-4 antibody. Anti-VLA-4 antibody plus RGDS peptide strongly inhibited DN cell binding to FN-coated plates and thymic stromal monolayers. These results indicate that i) VLA-4 expressed on DN thymocytes functions as an important integrin for interacting with thymic stromal cells; ii) the expression level of this integrin decreases with the progress of thymocyte maturation, and iii) most of the mature thymocytes (SP) are rendered less adhesive to thymic stromal cells by reducing the level of VLA-4 expression.  相似文献   

5.
The thymus provides a specialised microenvironment for the development of T-cell precursors. This developmental programme depends upon interactions with stromal cells such as thymic epithelial cells, which provide signals for proliferation, survival and differentiation. In turn, it has been proposed that development of thymic epithelial cells themselves is regulated by signals produced by developing thymocytes. Evidence in support of this symbiotic relationship, termed thymic crosstalk, comes from studies analysing the thymus of adult mice harbouring blocks at specific stages of thymocyte development, where it is difficult to separate mechanisms regulating the initial development of thymic epithelial cells from those regulating their maintenance. To distinguish between these processes, we have analysed the initial developmental programme of thymic epithelial cells within the embryonic thymus, in either the presence or absence of normal T-cell development. We show that keratin 5+8+ precursor epithelial cells present in the early thymic rudiment differentiate into discrete cortical and medullary epithelial subsets displaying normal gene expression profiles, and acquire functional competence, independently of signals from T-cell precursors. Thus, our findings redefine current models of thymus development and argue against a role for thymocyte-epithelial cell crosstalk in the development of thymic epithelial progenitors.  相似文献   

6.
After entry into thymus, T cell progenitors migrate in the cortex and the medulla while completing their education. Recent reports have documented the dynamic and tortuous behavior of thymocytes. However, other than chemokines and/or segregated thymic substrates, the factors contributing to the dynamic patterns of thymocyte movement are poorly characterized. By combining confocal and dynamic two-photon microscopy, we demonstrate that thymocytes continuously migrate on thymic stromal cell networks. In addition to constituting "roads" for thymocytes, we observed that these networks also provide a scaffold on which dendritic cells attach themselves. These results highlight the central role of stromal microanatomy in orchestrating the multiple cellular interactions necessary for T cell migration/development within the thymus.  相似文献   

7.
Thymic alterations in EphA4-deficient mice   总被引:2,自引:0,他引:2  
In the present work, we have demonstrated in vivo an altered maturation of the thymic epithelium that results in defective T cell development which increases with age, in the thymus of Eph A4-deficient mice. The deficient thymi are hypocellular and show decreased proportions of double-positive (CD4+CD8+) cells which reach minimal numbers in 4-wk-old thymi. The EphA4 (-/-) phenotype correlates with an early block of T cell precursor differentiation that results in accumulation of CD44-CD25+ triple-negative cells and, sometimes, of CD44+CD25- triple-negative thymocytes as well as with increased numbers of apoptotic cells and an important reduction in the numbers of cycling thymocytes. Various approaches support a key role of the thymic epithelial cells in the observed phenotype. Thymic cytoarchitecture undergoes profound changes earlier than those found in the thymocyte maturation. Thymic cortex is extremely reduced and consists of densely packed thymic epithelial cells. Presumably the lack of forward Eph A4 signaling in the Eph A4 -/- epithelial cells affects their development and finally results in altered T cell development.  相似文献   

8.
The thymus plays a crucial role in the development of T lymphocytes by providing an inductive microenvironment in which committed progenitors undergo proliferation, T-cell receptor gene rearrangements and thymocyte differentiate into mature T cells. The thymus microenvironment forms a complex network of interaction that comprises non lymphoid cells (e.g., thymic epithelial cells, TEC), cytokines, chemokines, extracellular matrix elements (ECM), matrix metalloproteinases and other soluble proteins. The thymic epithelial meshwork is the major component of the thymic microenvironment, both morphologically and phenotypically limiting heterogeneous regions in thymic lobules and fulfilling an important role during specific stages of T-cell maturation. The process starts when bone marrow-derived lymphocyte precursors arrive at the outer cortical region of the thymic gland and begin to mature into functional T lymphocytes that will finally exit the thymus and populate the peripheral lymphoid organs. During their journey inside the thymus, thymocytes must interact with stromal cells (and their soluble products) and extracellular matrix proteins to receive appropriate signals for survival, proliferation and differentiation. The crucial components of the thymus microenvironment, and their complex interactions during the T-cell maturation process are summarized here with the objective of contributing to a better understanding of the function of the thymus, as well as assisting in the search for new therapeutic approaches to improve the immune response in various pathological conditions.Key words: thymus, T-cell maturation, thymic microenvironment, thymocyte differantiation, chemokines, extracellular matrix, thymic nurse cells, metalloproteinases  相似文献   

9.
Interactions between thymocytes and thymic stromal cells are essential for thymocyte differentiation, but little evidence has been presented to directly show in vivo functions or interactions of the stromal cells. Among the stromal cells, the thymic epithelial cell has been considered to have profound effect on thymocyte differentiation and maturation. The calcium-depleted medium, originally developed for the culture of mouse epidermal cells, was applied for the culture of the mouse thymic epithelial cells, and successfully, an epithelial cell line, IT-76MHC was obtained from the mouse thymus. IT-76MHC cells were identified as distinct mouse thymic epithelial cells by 1/ mosaic-like arrangement, 2/ presence of well-developed desmosome and 3/ tonofilaments, 4/ positivity for cytokeratin, and 5/ induced expression of MHC class I and II by IFN-gamma treatment. IGF-1, IGF-2, oxytocin and vasopressin were also detected immunohistochemically in IT-76MHC cells. Furthermore, the IT-76MHC thymic epithelial cells, when injected intrathymically in the allogeneic mouse, prolonged the survival of skin graft from the same donor strain that IT-76MHC cells were derived. These results demonstrate that the thymic epithelial cell line IT-76MHC produces modest thymocyte survival factors as well as a growth suppressor, and that IT-76MHC cells have the ability to induce transplantation tolerance probably through their expression of MHC class I and II molecules. Taken altogether, the IT-76MHC thymic epithelial cells have been proved to be useful tools to better understand the in vivo functions of thymic epithelial cells, and to gain a deep insight into their involvement in the critical selection process of thymocytes which still remains obscure. Finally and additionally, literatures so far reported on thymic epithelial cells in culture, especially lines and clones, are reviewed and their identity as well as their functions are discussed.  相似文献   

10.
The thymus plays a crucial role in the development of T lymphocytes providing an inductive microenvironment in which committed progenitors undergo proliferation, T-cell receptor gene rearrangements and thymocyte differentiation into mature T-cells. The thymus microenvironment forms a complex network of interaction that comprises non lymphoid cells (e.g., thymic epithelial cells, TEC), cytokines, chemokines, extracellular matrix elements (ECM), matrix metalloproteinases and other soluble proteins. The thymic epithelial meshwork is the major component of thymic microenvironment, both morphologically and phenotypically limiting heterogeneous regions in thymic lobules and fulfilling an important role during specific stages of T-cell maturation. The process starts when bone marrow–derived lymphocyte precursors arrive at the outer cortical region of the thymic gland and begin to mature into functional T lymphocytes that will finally exit the thymus and populate the peripheral lymphoid organs. During their journey inside the thymus, thymocytes must interact with stromal cells (and their soluble products) and extracellular matrix proteins to receive appropriate signals for survival, proliferation and differentiation. The crucial components of the thymus microenvironment and their complex interactions during the T-cell maturation process with the objective of contributing to a better understanding of the function of the thymus as well as assist in the search for new therapeutic approaches to improve the immune response in various pathological conditions are summarized here.  相似文献   

11.
He XY  Li J  Qian XP  Fu WX  Li Y  Wu L  Chen WF 《Cell research》2004,14(2):125-133
Mouse thymic stromal cell line 4 (MTSC4) is one of the stromal cell lines established in our laboratory. While losing the characteristics of epithelial cells, they express some surface markers shared with thymic dendritic cells (TDCs). To further study the biological functions of these cells, we compared the capability of MTSC4 with TDCs in the induction of thymocyte apoptosis, using thymic reaggregation culture system. Apoptosis of thymocytes induced by MTSC4 and TDCs was measured by Annexin V and PI staining and analyzed by flow cytometry. We found that MTSC4 selectively augmented the apoptosis of CD4^ 8^ (DP) thymocytes. This effect was Fas/FasL independent and could not be blocked by antibodies to MHC class I and class II molecules. In addition, MTSC4 enhanced the apoptosis of DP thymocytes from different strains of mice, which implies that MTSC4-induced thymocyte apoptosis is not mediated by the TCR recognition of self peptide/MHC molecules. In contrast to MTSC4, thymocyte apoptosis induced by TDCs was MHC-restricted. Thus, MHC-independent fashion of stromal-DP thymocyte interaction may be one of the ways to induce thymocyte apoptosis in thymus. Our study has also shown that the interaction of MTSC4 stromal cells and thymocytes is required for the induction of thymocyte apoptosis.  相似文献   

12.
We recently demonstrated the expression of somatostatin (SS) and SS receptor (SSR) subtype 1 (sst1), sst2A, and sst3 in normal human thymic tissue and of sst1 and sst2A on isolated thymic epithelial cells (TEC). We also found an inhibitory effect of SS and octreotide on TEC proliferation. In the present study, we further investigated the presence and function of SSR in freshly purified human thymocytes at various stages of development. Thymocytes represent a heterogeneous population of lymphoid cells displaying different levels of maturation and characterized by specific cell surface markers. In this study, we first demonstrated specific high-affinity 125I-Tyr(11)-labeled SS-14 binding on thymocyte membrane homogenates. Subsequently, by RT-PCR, sst2A and sst3 mRNA expression was detected in the whole thymocyte population. After separation of thymocytes into subpopulations, we found by quantitative RT-PCR that sst2A and sst3 are differentially expressed in intermediate/mature and immature thymocytes. The expression of sst3 mRNA was higher in the intermediate/mature CD3+ fraction compared with the immature CD2+CD3- one, whereas sst2A mRNA was less abundant in the intermediate/mature CD3+ thymocytes. In 7-day-cultured thymocytes, SSR subtype mRNA expression was lost. SS-14 significantly inhibited [3H]thymidine incorporation in all thymocyte cultures, indicating the presence of functional receptors. Conversely, octreotide significantly inhibited [3H]thymidine incorporation only in the cultures of immature CD2+CD3- thymocytes. Subtype sst3 is expressed mainly on the intermediate/mature thymocyte fraction, and most of these cells generally die by apoptosis. Because SS-14, but not octreotide, induced a significant increase in the percentage of apoptotic thymocytes, it might be that sst3 is involved in this process. Moreover, sst3 has recently been demonstrated on peripheral human T lymphocytes, which derive directly from mature thymocytes, and SS analogs may induce apoptosis in these cells. Interestingly, CD14+ thymic cells, which are cells belonging to the monocyte-macrophage lineage, selectively expressed sst2A mRNA. Finally, SSR expression in human thymocytes seems to follow a developmental pathway. The heterogeneous expression of SSR within the human thymus on specific cell subsets and the endogenous production of SS as well as SS-like peptides emphasize their role in the bidirectional interactions between the main cell components of the thymus involved in intrathymic T cell maturation.  相似文献   

13.
Developing thymocytes undergo maturation while migrating through the thymus and ultimately emigrate from the organ to populate peripheral lymphoid tissues. The process of thymic emigration is controlled in part via receptor-ligand interactions between the chemokine stromal-derived factor (SDF)-1, and its cognate receptor CXCR4, and sphingosine 1-phosphate (S1P) and its receptor S1PR. The precise mechanism by which S1P/S1PR and CXCR4/SDF-1 contribute to thymic emigration remains unclear. We proposed that S1P-dependent and -independent mechanisms might coexist and involve both S1P-induced chemoattraction and SDF-1-mediated chemorepulsion or fugetaxis of mature thymocytes. We examined thymocyte emigration in thymi from CXCR4-deficient C57BL/6 embryos in a modified assay, which allows the collection of CD62L(high) and CD69(low) recent thymic emigrants. We demonstrated that single-positive (SP) CD4 thymocytes, with the characteristics of recent thymic emigrants, failed to move away from CXCR4-deficient fetal thymus in vitro. We found that the defect in SP CD4 cell emigration that occurred in the absence of CXCR4 signaling was only partially overcome by the addition of the extrathymic chemoattractant S1P and was not associated with abnormalities in thymocyte maturation and proliferative capacity or integrin expression. Blockade of the CXCR4 receptor in normal thymocytes by AMD3100 led to the retention of mature T cells in the thymus in vitro and in vivo. The addition of extrathymic SDF-1 inhibited emigration of wild-type SP cells out of the thymus by nullifying the chemokine gradient. SDF-1 was also shown to elicit a CXCR4-dependent chemorepellent response from fetal SP thymocytes. These novel findings support the thesis that the CXCR4-mediated chemorepellent activity of intrathymic SDF-1 contributes to SP thymocyte egress from the fetal thymus.  相似文献   

14.
15.
The Eph and ephrin system, consisting of fourteen Eph receptor tyrosine kinase proteins and nine ephrin membrane proteins in vertebrates, has been implicated in the regulation of many critical events during development. Binding of cell surface Eph and ephrin proteins results in bi-directional signals, which regulate the cytoskeletal, adhesive and motile properties of the interacting cells. Through these signals Eph and ephrin proteins are involved in early embryonic cell movements, which establish the germ layers, cell movements involved in formation of tissue boundaries and the pathfinding of axons. This review focuses on two vertebrate models, the zebrafish and mouse, in which experimental perturbation of Eph and/or ephrin expression in vivo have provided important insights into the role and functioning of the Eph/ephrin system.  相似文献   

16.
17.
Developing T cells journey through the different thymic microenvironments while receiving signals that eventually will allow some of them to become mature naive T cells exported to the periphery. This maturation can be visualized by the phenotype of the developing cells. CCR8 is a ss-chemokine receptor preferentially expressed in the thymus. We have developed 8F4, an anti-mouse CCR8 mAb that is able to neutralize the ligand-induced activation of CCR8, and used it to characterize the CCR8 protein expression in the different thymocyte subsets. Taking into account the intrathymic lineage relationships, our data showed that CCR8 expression in thymus followed two transient waves along T cell maturation. The first one took place in CD4(-) CD8(-) double-negative thymocytes, which showed a low CCR8 expression, and the second wave occurred after TCR activation by the Ag-dependent positive selection in CD4(+) CD8(+) double-positive cells. From that maturation stage, CCR8 expression gradually increased as the CD4(+) cell differentiation proceeded, reaching a maximum at the CD4(+) CD8(-) single-positive stage. These CD4(+) cells expressing CCR8 were also CD69(high) CD62L(low) thymocytes, suggesting that they still needed to undergo some differentiation step before becoming functionally competent naive T cells ready to be exported from the thymus. Interestingly, no significant amounts of CCR8 protein were detectable in CD4(-) CD8(+) thymocytes. Our data showing a clear regulation of the CCR8 protein in thymus suggest a relevant role for CCR8 in this lymphoid organ, and identify CCR8 as a possible marker of thymocyte subsets recently committed to the CD4(+) lineage.  相似文献   

18.
The thymic stroma plays a critical role in the generation of T lymphocytes by direct cell-to-cell contacts as well as by secreting growth factors or hormones. The thymic epithelial cells, responsible for thymic hormone secretion, include morphologically and antigenically distinct subpopulations that may exert different roles in thymocyte maturation. The recent development of thymic epithelial cell lines provided an interesting model for studying thymic epithelial influences on T cell differentiation. Treating mouse thymocytes by supernatants from one of TEC line (IT-76M1), we observed an induction of thymocyte proliferation and an increase in the percentages of CD4-/CD8- thymocytes. This proliferation was largely inhibited when thymocytes were incubated with IT-76M1 supernatants together with an anti-thymulin monoclonal antibody, but could be enhanced by pretreating growing epithelial cells by triiodothyronine. We suggest that among the target cells for thymulin within the thymus, some putative precursors of early phenotype might be included.  相似文献   

19.
To analyze the mechanisms responsible for thymocyte proliferation, maturation and migration in the thymus, the rat thymus just after, and recovering from irradiation was studied morphologically. The vascular structures of the rat thymus after a radiation dose of 6 Gy were found to be destroyed on day 3, but had recovered to almost normal by day 7, suggesting that the abrupt recovery of thymus structure after irradiation was due primarily to this change in vascular structure. Furthermore, the epithelial tissues in the thymic cortex appeared to contribute to this abrupt proliferation, and possibly to the abrupt maturation of thymocytes, while medullary epithelial tissues remained sparse and appeared inactive for a relatively long period. These findings are considered important for understanding the interrelationship between thymic epithelial cells and thymocytes with respect to thymocyte proliferation, maturation and migration.  相似文献   

20.
Thymocyte differentiation occurs within the thymic microenvironment, consisting of distinct cell types and extracellular matrix (ECM) elements. One of these ECM proteins is laminin. Previous experiments showed that laminin mediates interactions between thymocytes and thymic epithelial cells (TEC) in mice. Since, laminin comprises a family of related isoforms, we searched for laminin isoform expression in the human thymus. We found constitutive gene expression of various laminin chains in TEC preparations, comprising laminin-111 and laminin-211 isoforms. Immunocytochemistry revealed a selective laminin-211 distribution in the thymic lobules. In vitro functional assays revealed that laminin-211 enhances TEC/thymocyte adhesion and thymocyte release from thymic nurse cells, as well as the reconstitution of these complexes. Conversely, these interactions are blocked by monoclonal antibodies specific for laminin-211 and the laminin receptor VLA-6. Our results reinforce the notion that distinct laminin isoforms in the human thymus are relevant for lymphoepithelial interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号