首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The extrinsic pathway of apoptosis originates at the membrane and engages membrane death receptors. Tumor necrosis factor receptor 1 (TNF-R1) is a death receptor that transduces both the death and survival signals but the molecular mechanisms via which TNF-R1 mediates these signals remain poorly understood. Recently, it has been reported that the TNF-R1 transduces these signals via two signaling complexes. The first complex (complex I) is formed at the membrane by TNF-R1, TRADD, RIP, TRAF2 and c-IAP1, while the second complex (complex II), formed in the cytosol, predominantly contains FADD and pro-caspases 8/10 but lacks TNF-R1. Complex I is responsible for activating NF-kB and thus, the transduction of survival signals. Complex II, on the other hand, is reported to transduce the apoptotic signals and it does so only if NF-kB is unable to promote upregulation of the anti-apoptotic FLIPL. These findings highlighting the complexities of TNF-R1-mediated signaling events are likely to further the progress in the constantly evolving area of death receptor-dependent signaling pathways.  相似文献   

3.
4.
Kim  Mina  Choi  Sang-Yoon  Lee  Pyeongjae  Hur  Jinyoung 《Neurochemical research》2015,40(9):1792-1798
Neurochemical Research - Microglia is the resident innate immune cells that sense pathogens and tissue injury in the central nervous system. Microglia becomes activated in response to injury,...  相似文献   

5.
Brain inflammation has a critical role in the pathophysiology of brain diseases. Microglia, the resident immune cells in the brain, play an important role in brain inflammation, while brain mast cells are the “first responder” in the injury rather than microglia. Functional aspects of mast cell-microglia interactions remain poorly understood. Our results demonstrated that site-directed injection of the “mast cell degranulator” compound 48/80 (C48/80) in the hypothalamus induced mast cell degranulation, microglial activation, and inflammatory factor production, which initiated the acute brain inflammatory response. “Mast cell stabilizer” disodium cromoglycate (cromolyn) inhibited this effect, including decrease of inflammatory cytokines, reduced microglial activation, inhibition of MAPK and AKT pathways, and repression of protein expression of histamine receptor 1 (H1R), histamine receptor 4 (H4R), protease-activated receptor 2 (PAR2), and toll-like receptor 4 (TLR4) in microglia. We also demonstrated that C48/80 had no effect on microglial activation in mast cell-deficient KitW-sh/W-sh mice. These results implicate that activated brain mast cells trigger microglial activation and stabilization of mast cell inhibits microglial activation-induced central nervous system (CNS) inflammation. Interactions between mast cells and microglia could constitute a new and unique therapeutic target for CNS immune inflammation-related diseases.  相似文献   

6.
7.
International Journal of Peptide Research and Therapeutics - Alzheimer’s disease (AD) is characterized by neuronal necroptosis and neuroinflammation, retardation of these pathological...  相似文献   

8.
9.
10.
The effect of N-methyl-D-aspartate (NMDA) receptor antagonists on cell viability was studied in rat primary cortical cells. NMDA antagonists [MK-801 and 2-amino-5-phosphonovalerate (APV)] induced cell shrinkage, nuclear condensation or fragmentation, and internucleosomal DNA fragmentation. Treatment of cells with MK-801 (an NMDA antagonist) for 1-2 days induced apoptotic cell death in a dose-dependent manner (1 nM to 10 microM). NMDA (25 microM), however, inhibited the MK-801 (0.1 microM)-induced apoptotic cell death. MK-801 and APV decreased the concentration of intracellular calcium ion. Activation of caspase-3 was accompanied by MK-801-induced cell death in a dose-dependent manner, and an inhibitor of caspase-3 reduced the cell death. Further, cycloheximide (0.2 microg/ml) completely protected the cells from MK-801-induced apoptotic cell death and caspase-3 activation. Insulin-like growth factor I completely attenuated MK-801-induced apoptotic cell death and caspase-3 activation. These results demonstrated that the moderate NMDA receptor activation is probably involved in the survival signal of the neuron.  相似文献   

11.
12.
《Endocrine practice》2015,21(1):68-76
ObjectiveTo evaluate real-world outcomes in patients with type 2 diabetes mellitus (T2DM) receiving basal insulin who initiate add-on therapy with a rapid-acting insulin (RAI) or a glucagon-like peptide 1 (GLP-1) receptor agonist.MethodsData were extracted retrospectively from a U.S. health claims database. Adults with T2DM on basal insulin who added an RAI (basal + RAI) or GLP-1 receptor agonist (basal + GLP-1) were included. Propensity score matching (with a 1 up to 3 ratio) was used to control for differences in baseline demographics, clinical characteristics, and health resource utilization. Endpoints included prevalence of hypoglycemia, pancreatic events, all-cause and diabetes-related resource utilization, and costs at 1-year follow-up.ResultsOverall, 6,718 matched patients were included: 5,013 basal + RAI and 1,705 basal + GLP1. Patients in both groups experienced a similar proportion of any hypoglycemic event (P = .4079). Hypoglycemic events leading to hospitalization were higher in the basal + RAI cohort (2.7% vs. 1.8%; P = .0444). The basal + GLP-1 cohort experienced fewer all-cause (13.55% vs. 18.61%; P < .0001) and diabetes-related hospitalizations (11.79% vs. 15.68%; P < .0001). The basal + GLP-1 cohort had lower total all-cause health care costs ($18,413 vs. $20,821; P = .0002) but similar diabetes-related costs ($9,134 vs. $8,985; P < .0001) compared with the basal + RAI cohort.ConclusionsAdd-on therapy with a GLP-1 receptor agonist in T2DM patients receiving basal insulin was associated with fewer hospitalizations and lower total all-cause costs compared with add-on therapy using an RAI and could be considered as an alternative to an RAI in certain patients with T2DM who do not achieve effective glycemic control with basal insulin. (Endocr Pract. 2015; 21:68-76)  相似文献   

13.
We have isolated a new microglial gene, mrf-1, which is upregulated on microglia in response to apoptosis of granule neurons in cerebellar cell cultures. We examined whether or not upregulation of MRF-1 is observed in response to necrotic neuronal death both in vivo and in vitro. Though MRF-1 was detected on ramified/resting microglia in the brain of normal adult rats, activated microglia in the region of the brain where neuronal damage was induced by ischemia were strongly immunostained with anti-MRF-1 anti-body. In the in vitro system, we confirmed, with immunocytochemistry or RT-PCR, that MRF-1 or mrf-1 mRNA were constitutively expressed in ramified microglia at significant but lower levels than in amoeboid one. Moreover, by Northern blot, it was ascertained that expression level of mrf-1 mRNA on microglia was markedly upregulated in response to glutamate-induced death of granule cells in a cerebellar cell culture. These results indicate the following: 1) expression of mrf-1 in microglia may be markedly enhanced upon not only apoptotic but also necrotic neuronal death, and 2) MRF-1 is, thus, an useful marker for identifying all types of microglia in vivo and in vitro.  相似文献   

14.
An opioid receptor like (ORL1) receptor is a member of a family of G-protein coupled receptors. It is a new pharmaceutical target with broad therapeutic potential in the regulation of important biological functions such as nociception, mood disorders, drug abuse, learning or cardiovascular control. The crystal structure of this receptor in complex with an antagonist was determined recently (PDB ID: 4EA3). By removing the ligand and subjecting the empty receptor to molecular dynamics simulation in a solvated lipid membrane we obtained an optimized ORL1 receptor structure which could be used in a subsequent docking study of two structurally similar agonist–antagonist ligand pairs. Ligands were docked to the empty ORL1 receptor (with and without the third intracellular loop, IC3) in different orientations, and the resulting complexes were monitored during molecular dynamics simulation in order to see how the subtle differences in structure of agonists and antagonists might affect ligand–receptor interactions and trigger receptor activation. It was established that agonists and antagonists bound to the same, relatively large, binding site in the receptor, created by residues from transmembrane helices TM2, TM3, TM5, TM6 and TM7 and close to the extra cellular end of the receptor bundle. The key difference between these two types of ligands is interaction with residue Val2836.55 and a flexibility of ligand molecules. Ligands that cannot easily avoid this interaction will initiate movement of the intracellular end of TM6 (by a mechanism which involves Met1343.36 and several aminoacids of TM5) and possibly activate the receptor when assisted by G-protein.  相似文献   

15.
In addition to the classical nuclear estrogen receptor, the expression of non-nuclear estrogen receptors localized to the cell surface membrane (mER) has recently been demonstrated. Estrogen and its receptors have been implicated in the development or progression of numerous neurodegenerative disorders. Furthermore, the pathogenesis of these diseases has been associated with disturbances of two key cellular programs: apoptosis and autophagy. An excess of apoptosis or a defect in autophagy has been implicated in neurodegeneration. The aim of this study was to clarify the role of ER in determining neuronal cell fate and the possible implication of these receptors in regulating either apoptosis or autophagy. The human neuronal cell line SH-SY5Y and mouse neuronal cells in primary culture were thus exposed to chronic minimal peroxide treatment (CMP), a form of subcytotoxic minimal chronic stress previously that mimics multiple aspects of long-term cell stress and represents a limited molecular proxy for neurodegenerative processes. We actually found that either E2 or E2-bovine serum albumin construct (E2BSA, i.e. a non-permeant form of E2) was capable of modulating intracellular cell signals and regulating cell survival and death. In particular, under CMP, the up-regulation of mERα, but not mERβ, was associated with functional signals (ERK phosphorylation and p38 dephosphorylation) compatible with autophagic cytoprotection triggering and leading to cell survival. The mERα trafficking appeared to be independent of the microfilament system cytoskeletal network but was seemingly associated with microtubular apparatus network, i.e., to MAP2 molecular chaperone. Importantly, antioxidant treatments, administration of siRNA to ERα, or the presence of antagonist of ERα hindered these events. These results support that the surface expression of mERα plays a pivotal role in determining cell fate, and that ligand-induced activation of mER signalling exerts a powerful cell-survival signal. These results shed new light on the pathogenetic mechanisms leading to neuronal cell degeneration.  相似文献   

16.
The ability of innate immune cells to sense and respond to impending danger varies by anatomical location. The liver is considered tolerogenic but is still capable of mounting a successful immune response to clear various infections. To understand whether hepatic immune cells tune their response to different infectious challenges, we probed mononuclear cells purified from human healthy and diseased livers with distinct pathogen-associated molecules. We discovered that only the TLR8 agonist ssRNA40 selectively activated liver-resident innate immune cells to produce substantial quantities of IFN-γ. We identified CD161Bright mucosal-associated invariant T (MAIT) and CD56Bright NK cells as the responding liver-resident innate immune cells. Their activation was not directly induced by the TLR8 agonist but was dependent on IL-12 and IL-18 production by ssRNA40-activated intrahepatic monocytes. Importantly, the ssRNA40-induced cytokine-dependent activation of MAIT cells mirrored responses induced by bacteria, i.e., generating a selective production of high levels of IFN-γ, without the concomitant production of TNF-α or IL-17A. The intrahepatic IFN-γ production could be detected not only in healthy livers, but also in HBV- or HCV-infected livers. In conclusion, the human liver harbors a network of immune cells able to modulate their immunological responses to different pathogen-associated molecules. Their ability to generate a strong production of IFN-γ upon stimulation with TLR8 agonist opens new therapeutic opportunities for the treatment of diverse liver pathologies.  相似文献   

17.
The biological roles of estrogen receptor 1 (ERS1), estrogen receptor 2 (ERS2), and aromatase (CYP19A1) genes in the development of non-small cell lung cancer (NSCLC) is unclear, as is the use of their expression as a prognostic factor. The aim of this study was to investigate the prognostic value of estrogen receptors and aromatase mRNA expression, along with aromatase protein concentration, in resected NSCLC patients. Tumor and non-tumor lung tissue samples were analyzed for the mRNA expression of ERS1, ERS2 and CYP19A1 by RT-PCR. Aromatase concentration was measured with an ELISA. A total of 96 patients were included. ERS1 expression was significantly higher in non-tumor tissue than in tumor samples. Two gene expression categories were created for each gene (and protein): high and low. ERS1 high category showed increased overall survival (OS) when compared to the low expression category. Aromatase protein concentration was significantly higher in tumor samples. Higher ERS1 expression in tumor tissues was related to longer overall survival. The analysis of gene expression combinations provides evidence for longer OS when both ERS1 and ERS2 are highly expressed. ESR1, alone or in combination with ERS2 or CYP19A1, is the most determining prognostic factor within the analyzed 3 genes. It seems that ERS1 can play a role in NSCLC prognosis, alone or in combination with other genes such as ERS2 or Cyp19a1. ERS2 in combination with aromatase concentration could have a similar function.  相似文献   

18.
19.
20.
Abstract: The metabotropic glutamate receptor (mGluR) agonist 1-aminocyclopentane-1 S ,3 R -dicarboxylic acid (ACPD) potentiated the accumulation of cyclic AMP induced by either β-adrenergic receptor stimulation (isoproterenol) or direct activation of adenylyl cyclase (AC) with forskolin in rat cerebral cortical astrocytes grown in a defined medium. In contrast, ACPD inhibits the cyclic AMP response in astrocytes cultured in a serum-containing medium. Pharmacological characterization indicated that a group I mGluR, of which only mGluR5 is detectable in these cells, is involved in the potentiation of cyclic AMP accumulation. Potentiation was elicited by mGluR I agonists [e.g., ( R,S )-3,5-dihydroxyphenylglycine (DHPG)], but not by mGluR II or III agonists; it was pertussis toxin resistant and abolished by procedures suppressing mGluR5 function (phorbol ester pretreatment or DHPG-induced receptor down-regulation). Nevertheless, it appears that products generated through the mGluR5 transduction pathway, such as elevated [Ca2+]i or activated protein kinase C (PKC), are not involved in the potentiation as it was not influenced by either the intracellular calcium chelator BAPTA-AM or the PKC inhibitor Ro 31-8220. An inhibitor of phospholipase C, U-73122, markedly attenuated mGluR5-activated phosphoinositide hydrolysis but did not significantly affect the DHPG potentiation of the cyclic AMP response. A mechanism is proposed in which the potentiating effect on AC could be mediated by free βγ complex that is liberated after the agonist-bound mGluR5 interacts with its coupled G protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号