共查询到20条相似文献,搜索用时 0 毫秒
1.
Rittiner JE Korboukh I Hull-Ryde EA Jin J Janzen WP Frye SV Zylka MJ 《The Journal of biological chemistry》2012,287(8):5301-5309
Numerous receptors for ATP, ADP, and adenosine exist; however, it is currently unknown whether a receptor for the related nucleotide adenosine 5'-monophosphate (AMP) exists. Using a novel cell-based assay to visualize adenosine receptor activation in real time, we found that AMP and a non-hydrolyzable AMP analog (deoxyadenosine 5'-monophosphonate, ACP) directly activated the adenosine A(1) receptor (A(1)R). In contrast, AMP only activated the adenosine A(2B) receptor (A(2B)R) after hydrolysis to adenosine by ecto-5'-nucleotidase (NT5E, CD73) or prostatic acid phosphatase (PAP, ACPP). Adenosine and AMP were equipotent human A(1)R agonists in our real-time assay and in a cAMP accumulation assay. ACP also depressed cAMP levels in mouse cortical neurons through activation of endogenous A(1)R. Non-selective purinergic receptor antagonists (pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid and suramin) did not block adenosine- or AMP-evoked activation. Moreover, mutation of His-251 in the human A(1)R ligand binding pocket reduced AMP potency without affecting adenosine potency. In contrast, mutation of a different binding pocket residue (His-278) eliminated responses to AMP and to adenosine. Taken together, our study indicates that the physiologically relevant nucleotide AMP is a full agonist of A(1)R. In addition, our study suggests that some of the physiological effects of AMP may be direct, and not indirect through ectonucleotidases that hydrolyze this nucleotide to adenosine. 相似文献
2.
Ellen V. Langemeijer Dennis Verzijl Stefan J. Dekker Ad P. IJzerman 《Purinergic signalling》2013,9(1):91-100
The concept of functional selectivity offers great potential for the development of drugs that selectively activate a specific intracellular signaling pathway. During the last few years, it has become possible to systematically analyse compound libraries on G protein-coupled receptors (GPCRs) for this ‘biased’ form of signaling. We screened over 800 compounds targeting the class of adenosine A1 receptors using a β-arrestin-mediated signaling assay in U2OS cells as a G protein-independent readout for GPCR activation. A selection of compounds was further analysed in a G protein-mediated GTPγS assay. Additionally, receptor affinity of these compounds was determined in a radioligand binding assay with the agonist [3H]CCPA. Of all compounds tested, only LUF5589 9 might be considered as functionally selective for the G protein-dependent pathway, particularly in view of a likely overestimation of β-arrestin signaling in the U2OS cells. Altogether, our study shows that functionally selective ligands for the adenosine A1 receptor are rare, if existing at all. A thorough analysis of biased signaling on other GPCRs also reveals that only very few compounds can be considered functionally selective. This might indicate that the concept of functional selectivity is less common than speculated. 相似文献
3.
Over the past decade, many lines of investigation have shown that receptor-mediated signaling exhibits greater diversity than
previously appreciated. Signal diversity arises from numerous factors, which include the formation of receptor dimers and
interplay between different receptors. Using adenosine A1 receptors as a paradigm of G protein-coupled receptors, this review focuses on how receptor-receptor interactions may contribute
to regulation of the synaptic transmission within the central nervous system. The interactions with metabotropic dopamine,
adenosine A2A, A3, neuropeptide Y, and purinergic P2Y1 receptors will be described in the first part. The second part deals with interactions between A1Rs and ionotropic receptors, especially GABAA, NMDA, and P2X receptors as well as ATP-sensitive K+ channels. Finally, the review will discuss new approaches towards treating neurological disorders. 相似文献
4.
With the aim of finding new adenosine receptor (AR) ligands presenting the 3-amidocoumarin scaffold, a study focusing on the discovery of new chemical entities was carried out. The synthesized compounds 1–8 were evaluated in radioligand binding (A1, A2A and A3) and adenylyl cyclase activity (A2B) assays in order to determine their affinity for human AR subtypes. The 3-benzamide derivative 4 showed the highest affinity of the whole series and was more than 30-fold selective for the A3 AR (Ki = 3.24 μM). The current study supported that small structural changes in this scaffold allowed modulating the affinity resulting in novel promising classes of A1, A2A, and/or A3 AR ligands. We also performed docking calculations in hA2A and hA3 to identify the hypothetical binding mode for the most active compounds. In addition, some ADME properties were calculated in order to better understand the potential of these compounds as drug candidates. 相似文献
5.
Daniela Catarzi Flavia Varano Matteo Falsini Katia Varani Fabrizio Vincenzi Silvia Pasquini Diego Dal Ben Vittoria Colotta 《Bioorganic & medicinal chemistry letters》2018,28(9):1484-1489
With the aim of finding new adenosine receptor (AR) ligands, a preliminary investigation focusing on the thieno[2,3-d]pyridazin-5(4H)-one scaffold was undertaken. The synthesized compounds 1–11 were evaluated for their binding at hA1, hA2A and hA3 ARs and efficacy at hA2B subtype in order to determine the affinity at the human adenosine receptor subtypes. Small structural changes on this scaffold highly influenced affinity; compound 5 (5-ethyl-7-(thiazol-2-yl)thieno[2,3-d]pyridazin-4(5H)-one) emerged as the best of this series. The simplicity of the synthetic process, the capability of the scaffold to be easily decorated, together with the predicted ADME properties confirm the role of these compounds as promising hits. A molecular docking investigation at the hA1AR crystal structure was performed to rationalize the SARs of the herein reported thienopyridazinones. 相似文献
6.
Bolcato C Cusan C Pastorin G Spalluto G Cacciari B Klotz KN Morizzo E Moro S 《Purinergic signalling》2008,4(1):39-46
In the last few years, many efforts have been made to search for potent and selective human A3 adenosine antagonists. In particular, one of the most promising human A3 adenosine receptor antagonists is represented by the pyrazolo-triazolo-pyrimidine family. This class of compounds has been
strongly investigated from the point of view of structure-activity relationships. In particular, it has been observed that
fundamental requisites for having both potency and selectivity at the human A3 adenosine receptors are the presence of a small substituent at the N8 position and an unsubstitued phenyl carbamoyl moiety at the N5 position. In this study, we report the role of the N5-bond type on the affinity and selectivity at the four adenosine receptor subtypes. The observed structure-activity relationships
of this class of antagonists are also exhaustively rationalized using the recently published ligand-based homology modeling
approach. 相似文献
7.
Mammalian olfactory receptors (ORs) appear to have the capacity to couple to multiple G protein-coupled signaling pathways in a ligand-dependent selective manner. To better understand the mechanisms and molecular range of such ligand selectivity, we expressed the mouse eugenol OR (mOR-EG) in HEK293T cells together with Gα15 to monitor activation of the phospholipase-C (PLC) signaling pathway and/or Gαolf to monitor activation of the adenylate cyclase (AC) signaling pathway, resulting in intracellular Ca2+ release and/or Ca2+ influx through a cyclic nucleotide-gated channel, respectively. PLC-dependent responses differed dynamically from AC-dependent responses, allowing them to be distinguished when Gα15 and Gαolf were co-expressed. The dynamic difference in readout was independent of the receptor, the heterologous expression system, and the ligand concentration. Of 17 reported mOR-EG ligands tested, including eugenol, its analogs, and structurally dissimilar compounds (mousse cristal, nootkatone, orivone), some equally activated both signaling pathways, some differentially activated both signaling pathways, and some had no noticeable effect even at 1–5 mM. Our findings argue that mOR-EG, when heterologously expressed, can couple to two different signaling pathways in a ligand selective manner. The challenge now is to determine the potential of mOR-EG, and perhaps other ORs, to activate multiple signaling pathways in a ligand selective manner in native ORNs. 相似文献
8.
Firooznia F Cheung AW Brinkman J Grimsby J Gubler ML Hamid R Marcopulos N Ramsey G Tan J Wen Y Sarabu R 《Bioorganic & medicinal chemistry letters》2011,21(7):1933-1936
The highly potent but modestly selective N-(2-amino-4-methoxy-benzothiazol-7-yl)-N-ethyl-acetamide derivative 2 was selected as the starting point for the design of novel selective A2B antagonists, due to its excellent potency, and good drug-like properties. A series of compounds containing nonaromatic amides or ureas of five- or six-membered rings, and also bearing an m-trifluoromethyl-phenyl group (shown to impart superior potency) was prepared and evaluated for their selectivity against the A2A and A1 receptors. This work resulted in the identification of compound 30, with excellent potency and high selectivity against both A2A and A1 receptors. 相似文献
9.
S. Jamal Mustafa 《Molecular and cellular biochemistry》1980,31(2):67-87
Summary There is strong evidence in favor of a major role for adenosine in the metabolic regulation of blood flow to the heart. The exact nature of the molecular and cellular events leading to the vasodilatation by adenosine are poorly understood. In the present report we have provided experimental evidence that; (i) hypoxia of cardiac cells resulted in the production of adenosine (and its degradative products) which can be responsible for the hypoxic dilation observed by several workers; (ii) the release of metabolites such as potassium and inorganic phosphate was unchanged due to a 30-minute hypoxia of cardiac cells; (iii) the release of prostaglandin E but not F was enhanced due to hypoxia of cardiac cells which may be due to the storage pools in the cells; (iv) prostaglandin E1, E2 and F2 inhibited the uptake of adenosine at pharmacological concentrations but not at physiological concentrations; (v) prostaglandin synthetase inhibitors (aspirin and indomethacin) nonspecifically inhibited the uptake of adenosine in the cardiac cells; (vi) lowering of pH resulted in inhibition in the uptake of adenosine and its incorporation into adenine nucleotides in cardiac cells; (vii) lowering the pH of the perfusion medium resulted in the increased release of perfusate adenosine (and its degradative products) with a simultaneous increase in coronary blood flow; (ix) specific adenosine receptor sites were found in cardiac muscle, coronary arteries, and carotid arteries of the dog and rabbit aorta, which satisfy the basic characteristic of receptor binding; and (x) these receptor binding sites were different from the adenosine uptake protein and were competitively blocked by theophylline or aminophylline. It is concluded that adenosine plays a major role in blood flow regulation to the heart and acts through specific receptors to produce vasodilatation. 相似文献
10.
Hintermann S Hurth K Nozulak J Tintelnot-Blomley M Aichholz R Blanz J Kaupmann K Mosbacher J 《Bioorganic & medicinal chemistry letters》2011,21(5):1523-1526
A novel series of agonists at the benzodiazepine binding site of the GABAA receptor was prepared by functionalizing a known template. Adding substituents to the pyrazolone-oxygen of CGS-9896 led to a number of compounds with selectivities for either α2- or α1-containing GABAA receptor subtypes offering an entry into indications such as anxiety and insomnia. In this communication, structure-activity relationship and efforts to increase in vitro stabilities are discussed. 相似文献
11.
Cawston EE Lam PC Harikumar KG Dong M Ball AM Augustine ML Akgün E Portoghese PS Orry A Abagyan R Sexton PM Miller LJ 《The Journal of biological chemistry》2012,287(22):18618-18635
Allosteric binding pockets in peptide-binding G protein-coupled receptors create opportunities for the development of small molecule drugs with substantial benefits over orthosteric ligands. To gain insights into molecular determinants for this pocket within type 1 and 2 cholecystokinin receptors (CCK1R and CCK2R), we prepared a series of receptor constructs in which six distinct residues in TM2, -3, -6, and -7 were reversed. Two novel iodinated CCK1R- and CCK2R-selective 1,4-benzodiazepine antagonists, differing only in stereochemistry at C3, were used. When all six residues within CCK1R were mutated to corresponding CCK2R residues, benzodiazepine selectivity was reversed, yet peptide binding selectivity was unaffected. Detailed analysis, including observations of gain of function, demonstrated that residues 6.51, 6.52, and 7.39 were most important for binding the CCK1R-selective ligand, whereas residues 2.61 and 7.39 were most important for binding CCK2R-selective ligand, although the effect of substitution of residue 2.61 was likely indirect. Ligand-guided homology modeling was applied to wild type receptors and those reversing benzodiazepine binding selectivity. The models had high predictive power in enriching known receptor-selective ligands from related decoys, indicating a high degree of precision in pocket definition. The benzodiazepines docked in similar poses in both receptors, with C3 urea substituents pointing upward, whereas different stereochemistry at C3 directed the C5 phenyl rings and N1 methyl groups into opposite orientations. The geometry of the binding pockets and specific interactions predicted for ligand docking in these models provide a molecular framework for understanding ligand selectivity at these receptor subtypes. Furthermore, the strong predictive power of these models suggests their usefulness in the discovery of lead compounds and in drug development programs. 相似文献
12.
13.
Sergey Ryzhov Bong Hwan Sung Qinkun Zhang Alissa Weaver Richard J. Gumina Italo Biaggioni Igor Feoktistov 《Purinergic signalling》2014,10(3):477-486
Adenosine levels increase in ischemic hearts and contribute to the modulation of that pathological environment. We previously showed that A2B adenosine receptors on mouse cardiac Sca1+CD31− mesenchymal stromal cells upregulate secretion of paracrine factors that may contribute to the improvement in cardiac recovery seen when these cells are transplanted in infarcted hearts. In this study, we tested the hypothesis that A2B receptor signaling regulates the transition of Sca1+CD31− cells, which occurs after myocardial injury, into a myofibroblast phenotype that promotes myocardial repair and remodeling. In vitro, TGFβ1 induced the expression of the myofibroblast marker α-smooth muscle actin (αSMA) and increased collagen I generation in Sca1+CD31− cells. Stimulation of A2B receptors attenuated TGFβ1-induced collagen I secretion but had no effect on αSMA expression. In vivo, myocardial infarction resulted in a rapid increase in the numbers of αSMA-positive cardiac stromal cells by day 5 followed by a gradual decline. Genetic deletion of A2B receptors had no effect on the initial accumulation of αSMA-expressing stromal cells but hastened their subsequent decline; the numbers of αSMA-positive cells including Sca1+CD31− cells remained significantly higher in wild type compared with A2B knockout hearts. Thus, our study revealed a significant contribution of cardiac Sca1+CD31− cells to the accumulation of αSMA-expressing cells after infarction and implicated A2B receptor signaling in regulation of myocardial repair and remodeling by delaying deactivation of these cells. It is plausible that this phenomenon may contribute to the beneficial effects of transplantation of these cells to the injured heart.
Electronic supplementary material
The online version of this article (doi:10.1007/s11302-014-9410-y) contains supplementary material, which is available to authorized users. 相似文献14.
Francisco Ciruela 《生物化学与生物物理学报:生物膜》2010,1798(1):9-371
Adenosine is a well known neuromodulator in the central nervous system. As a consequence, adenosine can be beneficial in certain disorders and adenosine receptors will be potential targets for therapy in a variety of diseases. Adenosine receptors are G protein-coupled receptors, and are also expressed in a large variety of cells and tissues. Using these receptors as a paradigm of G protein-coupled receptors, the present review focus on how protein-protein interactions might contribute to neurotransmitter/neuromodulator regulation, based on the fact that accessory proteins impinge on the receptor/G protein interaction and therefore modulate receptor functioning. Besides affecting receptor signaling, these accessory components also play a key role in receptor trafficking, internalization and desensitization, as it will be reviewed here. In conclusion, the finding of an increasing number of adenosine receptors interacting proteins, and specially the molecular and functional integration of these accessory proteins into receptorsomes, will open new perspectives in the understanding of particular disorders where these receptors have been proved to be involved. 相似文献
15.
Nisar SP Cunningham M Saxena K Pope RJ Kelly E Mundell SJ 《The Journal of biological chemistry》2012,287(29):24505-24515
We have recently shown in a patient with mild bleeding that the PDZ-binding motif of the platelet G protein-coupled P2Y(12) receptor (P2Y(12)R) is required for effective receptor traffic in human platelets. In this study we show for the first time that the PDZ motif-binding protein NHERF1 exerts a major role in potentiating G protein-coupled receptor (GPCR) internalization. NHERF1 interacts with the C-tail of the P2Y(12)R and unlike many other GPCRs, NHERF1 interaction is required for effective P2Y(12)R internalization. In vitro and prior to agonist stimulation P2Y(12)R/NHERF1 interaction requires the intact PDZ binding motif of this receptor. Interestingly on receptor stimulation NHERF1 no longer interacts directly with the receptor but instead binds to the receptor via the endocytic scaffolding protein arrestin. These findings suggest a novel model by which arrestin can serve as an adaptor to promote NHERF1 interaction with a GPCR to facilitate effective NHERF1-dependent receptor internalization. 相似文献
16.
Lambertucci C Cristalli G Dal Ben D Kachare DD Bolcato C Klotz KN Spalluto G Volpini R 《Purinergic signalling》2007,3(4):339-346
A new series of 2,6,9-trisubstituted adenines (5–14) have been prepared and evaluated in radioligand binding studies for their affinity at the human A1, A2A and A3 adenosine receptors and in adenylyl cyclase experiments for their potency at the human A2B subtype. From this preliminary study the conclusion can be drawn that introduction of bulky chains at the N
6 position of 9-propyladenine significantly increased binding affinity at the human A1 and A3 adenosine receptors, while the presence of a chlorine atom at the 2 position resulted in a not univocal effect, depending
on the receptor subtype and/or on the substituent present in the N
6 position. However, in all cases, the presence in the 2 position of a chlorine atom favoured the interaction with the A2A subtype. These results demonstrated that, although the synthesized compounds were found to be quite inactive at the human
A2B subtype, adenine is a useful template for further development of simplified adenosine receptor antagonists with distinct
receptor selectivity profiles. 相似文献
17.
18.
Psychological stress has long been associated with effects on immune function and disease. In particular, differential effects
of acute and chronic stress on skin immunity occur in the rodent restraint stress model, with acute stress enhancing and chronic
stress suppressing cutaneous hypersensitivity. Extracellular levels of adenosine are known to modulate diverse biological
activities in the CNS and peripheral tissues and serve an important protective function against physiological stressors such
as inflammation and ischemia. In this study, we utilized the restraint stress model and the skin sensitizer dinitrofluorobezene
to test the hypothesis that perceived stress influences contact hypersensitivity through an adenosine A1 receptor-mediated mechanism. We subjected hapten-sensitized A1 receptor knockout (A1 KO) mice and their wild-type (WT) littermates to either acute (2.5 h) or chronic (5 h daily × 4 weeks)
restraint stress, followed by hapten re-challenge of the pinna. Daily measurements of the resulting pinna swellings from each
group were compared to reactions in non-stressed controls. In WT mice, pinna swelling was augmented in acutely stressed mice
and suppressed in the chronically stressed group. In contrast, contact hypersensitivity responses in the A1 KO mice failed
to be affected by either acute or chronic stress. Absence of the adenosine A1 receptor did not affect levels of plasma corticosterone or urine catecholamines under these stressful conditions but did
lead to reduced numbers of circulating neutrophil granulocytes compared to stressed WT animals. These results suggest that
the adenosine A1 receptor pathway plays a role in the process by which perceived psychological stress influences the contact hypersensitivity
response. 相似文献
19.
Urata H Nomura K Wada S Akagi M 《Biochemical and biophysical research communications》2007,360(2):459-463
One of the intriguing applications of aptamers is sensing molecules. In principle, an aptamer can specifically recognize and bind to a unique ligand, leading to a structural change of an aptamer. By acquiring information for the structural change, the detection of the ligand can be achieved. To design and explore an aptamer molecule to detect adenosine, we have synthesized some ATP aptamer variants labeled with donor and acceptor fluorophores. Although the fluorescent response of the aptamer variants was highly dependent on experimental temperature, we have found one of the variants showing suitable fluorescent response by titration with adenosine. The aptamer variant showed remarkable selectivity for adenosine over the other ribonucleosides. On the other hand, the enantio-specificity of the aptamer variant in the ligand recognition was not enough to selectively detect d-adenosine over l-adenosine. 相似文献
20.
Kwang H. Ahn Mariam M. Mahmoud Joong-Youn Shim Debra A. Kendall 《The Journal of biological chemistry》2013,288(14):9790-9800
The cannabinoid receptor 1 (CB1) is a G protein-coupled receptor primarily expressed in brain tissue that has been implicated in several disease states. CB1 allosteric compounds, such as , offer enormous potential as drugs over orthosteric ligands, but their mechanistic, structural, and downstream effects upon receptor binding have not been established. Previously, we showed that ORG27569 enhances agonist binding affinity to CB1 but inhibits G protein-dependent agonist signaling efficacy in HEK293 cells and rat brain expressing the CB1 receptor (Ahn, K. H., Mahmoud, M. M., and Kendall, D. A. (2012) J. Biol. Chem. 287, 12070–12082). Here, we identify the mediators of CB1 receptor internalization and ORG27569-induced G protein-independent signaling. Using siRNA technology, we elucidate an ORG27569-induced signaling mechanism for CB1 wherein β-arrestin 1 mediates short term signaling to ERK1/2 with a peak at 5 min and other upstream kinase components including MEK1/2 and c-Src. Consistent with these findings, we demonstrate co-localization of CB1-GFP with red fluorescent protein-β-arrestin 1 upon ORG27569 treatment using confocal microscopy. In contrast, we show the critical role of β-arrestin 2 in CB1 receptor internalization upon treatment with CP55940 (agonist) or treatment with ORG27569. These results demonstrate for the first time the involvement of β-arrestin in CB1-biased signaling by a CB1 allosteric modulator and also define the differential role of the two β-arrestin isoforms in CB1 signaling and internalization. ORG27569相似文献