首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to formulate and characterize Eudragit® L100 and Eudragit® L100-poly(lactic-co-glycolic acid) (PLGA) nanoparticles containing diclofenac sodium. Diclofenac generates severe adverse effects with risks of toxicity. Thus, nanoparticles were prepared to reduce these drawbacks in the present study. These nanoparticles were evaluated for surface morphology, particle size and size distribution, percentage drug entrapment, and in vitro drug release in pH 6.8. The prepared nanoparticles were almost spherical in shape, as determined by atomic force microscopy. The nanoparticles with varied size (241–274 nm) and 25.8–62% of entrapment efficiency were obtained. The nanoparticles formulations produced the release profiles with an initial burst effect in which diclofenac sodium release ranged between 38% and 47% within 4 h. The extent of drug release from Eudragit® L100 nanoparticles was up to 92% at 12 h. However, Eudragit®/PLGA nanoparticles showed an initial burst release followed by a slower sustained release. The cumulative release at 72 h was 56%, 69%, and 81% for Eudragit®/PLGA (20:80), Eudragit®/PLGA (30:70) and Eudragit®/PLGA (50:50) nanoparticles, respectively. The release profiles and encapsulation efficiencies depended on the amount of Eudragit in the blend. These data demonstrated the efficacy of these nanoparticles in sustaining the diclofenac sodium release profile.  相似文献   

2.
The preparation of microcapsules consisting of poly(d,l-lactide-co-glycolide) (PLGA) polymer shell and aqueous core is a clear challenge and hence has been rarely addressed in literature. Herein, aqueous core-PLGA shell microcapsules have been prepared by internal phase separation from acetone-water in oil emulsion. The resulting microcapsules exhibited mean particle size of 1.1?±?0.39 μm (PDI?=?0.35) with spherical surface morphology and internal poly-nuclear core morphology as indicated by scanning electron microscopy (SEM). The incorporation of water molecules into PLGA microcapsules was confirmed by differential scanning calorimetry (DSC). Aqueous core-PLGA shell microcapsules and the corresponding conventional PLGA microspheres were prepared and loaded with risedronate sodium as a model drug. Interestingly, aqueous core-PLGA shell microcapsules illustrated 2.5-fold increase in drug encapsulation in comparison to the classical PLGA microspheres (i.e., 31.6 vs. 12.7%), while exhibiting sustained release behavior following diffusion-controlled Higuchi model. The reported method could be extrapolated to encapsulate other water soluble drugs and hydrophilic macromolecules into PLGA microcapsules, which should overcome various drawbacks correlated with conventional PLGA microspheres in terms of drug loading and release.  相似文献   

3.
The current study aimed to develop a prolonged-release pramipexole (PPX) transdermal patch for the treatment of Parkinson’s disease. Permeation parameters of PPX were investigated using human cadaver skin. Pramipexole patches were prepared using DURO-TAK® pressure-sensitive-adhesive (PSA) and evaluated for drug stability, drug loading, in vitro drug release, and in vitro permeation through mouse skin. The results indicated that blends of DURO-TAK® 87-2852 and DURO-TAK® 87-2510 were suitable for creating a prolonged-release PPX patch due to their advantages in drug release, drug loading, and stability. The final formulation consisted of 87-2852/87-2510 (70:30), 10% PG, and 15% PPX and showed a cumulative permeation amount of 1497.19?±?102.90 μg/cm2 with a continuous flux over 6.0 μg/(cm2·h) across human cadaver skin for 7 days. In vivo studies in rats indicated that PPX patch produced a significantly longer (p?<?0.001) half-life (t 1/2, 75.16?±?17.37 h) and mean residence time (MRT, 135.89?±?24.12 h) relative to oral tablets (Sifrol®) and had a relative bioavailability of 51.64?±?21.32%. Therefore, this study demonstrated the feasibility of developing a prolonged-release PPX patch, which proposed the potential to serve as an alternate to conventional oral tablets and may therefore improve patient compliance.  相似文献   

4.
Quinine, a treatment used in chloroquine-resistant falciparum malaria, was loaded into poly(?-caprolactone) or Eudragit® RS100 nanocapsules using Curcuma oil as the oil-based core. Until now, the effect of cationic nanocapsules on malaria has not been reported. A 24 factorial design was adopted using, as independent variables, the concentration of Curcuma oil, presence of quinine, type of polymer, and aqueous surfactant. Diameter, zeta potential, and pH were the responses studied. The formulations were also evaluated for drug content, encapsulation efficiency, photostability, and antimalarial activity against Plasmodium berghei-infected mice. The type of polymer influenced all of the responses studied. Quinine-loaded Eudragit® RS100 (F13) and PCL nanocapsules (F9), both with polysorbate 80 coating, showed nanometric particle size, positive zeta potential, neutral pH, high drug content, and quinine photoprotection ability; thus, these nanocapsules were selected for in vivo tests. Both formulations showed lower levels of parasitemia from the beginning of the experiment (5.78 ± 3.60 and 4.76 ± 3.46% for F9 and F13, respectively) and highest survival mean time (15.3 ± 2.0 and 14.9 ± 5.6 days for F9 and F13, respectively). F9 and F13 showed significant survival curve compared to saline, thus demonstrating that nanoencapsulation improved bioefficacy of QN and co-encapsulated curcuminoids, regardless of the surface charge.  相似文献   

5.
The environmental pollution caused by pesticides is considered a major problem worldwide. Glyphosate is one of the herbicides most widely used, and its use has increased sharply in the last years. In this work, the toxicity of four commercial glyphosate formulations (Eskoba®, Panzer Gold®, Roundup Ultramax® and Sulfosato Touchdown®) was assessed by determining the median effective concentration at 96 h (96 h-EC50) using the microalga Chlorella vulgaris as the biological model. Although the formulations tested are moderately to slightly toxic to C. vulgaris according to the World Health Organization’s toxicity categories for aquatic and terrestrial organisms, this research shows that the four formulations are toxic, with Eskoba® the least toxic and Roundup Ultramax® the most toxic one. A UV/H2O2 remediation process for the detoxification of the samples was tested also. Its effectiveness was evaluated using a C. vulgaris growth inhibition test. Growth inhibition of C. vulgaris did not reach 18.2 %, indicating the efficacy of the UV/H2O2 remediation process to reduce glyphosate toxicity. In some of the samples tested within the first 48 h of the assay, C. vulgaris growth was even increased. The results of the present work suggest that the selected species was a good indicator to determine the toxicity level of glyphosate formulations and shows the relevance of the ecotoxicological tests to evaluate a physicochemical remediation process.  相似文献   

6.
The objectives of this research work were to develop optimized nanoparticulate formulations of poly (d,l-lactic-co-glycolic acid) (PLGA) (85:15) with an anti-AIDS drug stavudine and to evaluate their in-vitro uptake by the macrophages and hepatotoxicity in-vivo. Nanoparticles were prepared by nanoprecipitation method based on a factorial design with varying parameters such as the amounts of polymer and stabilizer used. Physicochemical characterizations such as drugexcipient interaction, surface morphology, particle size, and zeta potential measurements were carried out. The best formulation was selected and tagged with fluorescein isothiocyanate (FITC) for cellular uptake study of the formulation. In-vitro uptake of nanoparticles by macrophages was carried out. Formulation-induced hepatotoxicity was assessed by analyzing some serum hepatotoxic parameters and hepatic histology following 10-day treatment in comparison with the free drug. Nanoparticles exhibited smooth surface with particle size 84–238 nm, high entrapment efficiency (approx 85%), and negative surface charge. Formulations showed a sustained drug release pattern over the study period. In-vitro uptake study by macrophages exhibited a time-dependent profile. In-vivo studies on rats showed improvement in the serum parameters and maintenance of the integrity of the hepatic architecture indicating decreased hepatotoxicity with the formulations as compared to the free drug. The experimental results showed a positive outcome in the development of antiretroviral drug carrier exhibiting sustained drug release, macrophage-targeted delivery characteristics, and having reduced hepatoxicity. This could be beneficial for the management of early stage of HIV infection besides reducing the drug load for effective treatment, thereby offering an attractive option in AIDS therapy.  相似文献   

7.
Jojoba oil-based emulgel formulations were prepared using different concentrations of various gelling agents, such as hydroxypropyl methylcellulose (HPMC) and Carbopol 934 P and combination of both. The prepared emulgels were physically evaluated for their stability after temperature cycle test, centrifugation and long-term shelf storage for 1 year at room temperature. The in vitro release at 37°C was studied to define the effect of the concentration and type of the gelling agent. A comparison between the formulated emulgels and two commercially available products, Candistan® and Canesten® creams, was carried out to judge their efficacy and stability. The prepared emulgels exhibited non-Newtonian shear thinning behavior with little or no thixotropy. Four emulgels showed excellent stability as they demonstrated consistent rheological model under different treatment conditions. The in vitro release test showed variation in the extent of percent drug released. The drug release from the commercial preparation was lower than some of the prepared emulgel formulae. One formula containing combination of the two gelling agents (HPMC and Carbopol 934 P), showed excellent stability and high extent of clotrimazole release was microbiologically evaluated against Candida albicans using cylinder and plate method. The selected formula showed superior antimycotic activity compared to the commercially available formulation. Further in vivo animal studies for the obtained stable formula is recommended.  相似文献   

8.
This study was conducted to develop formulations of hydrocortisone butyrate (HB)-loaded poly(d,l-lactic-co-glycolic acid) nanoparticles (PLGA NP) suspended in thermosensitive gel to improve ocular bioavailability of HB for the treatment of bacterial corneal keratitis. PLGA NP with different surfactants such as polyvinyl alcohol (PVA), pluronic F-108, and chitosan were prepared using oil-in-water (O/W) emulsion evaporation technique. NP were characterized with respect to particle size, entrapment efficiency, polydispersity, drug loading, surface morphology, zeta potential, and crystallinity. In vitro release of HB from NP showed a biphasic release pattern with an initial burst phase followed by a sustained phase. Such burst effect was completely eliminated when nanoparticles were suspended in thermosensitive gels and zero-order release kinetics was observed. In HCEC cell line, chitosan-emulsified NP showed the highest cellular uptake efficiency over PVA- and pluronic-emulsified NP (59.09?±?6.21%, 55.74?±?6.26%, and 62.54?±?3.30%, respectively) after 4 h. However, chitosan-emulsified NP indicated significant cytotoxicity of 200 and 500 μg/mL after 48 h, while PVA- and pluronic-emulsified NP exhibited no significant cytotoxicity. PLGA NP dispersed in thermosensitive gels can be considered as a promising drug delivery system for the treatment of anterior eye diseases.  相似文献   

9.
This study focused on the development of flexible (i.e., deformable) multiple-unit pellets that feature (i) a prolonged drug release, (ii) drug abuse deterrence, and (iii) a minimal risk of alcohol-induced dose dumping (ADD). Deformable pellets were prepared via an advanced continuous one-step hot-melt extrusion (HME) technique, with the drug (i.e., antipyrine and codeine phosphate) fed as an aqueous solution into the molten matrix material (i.e., cornstarch, gum arabic, and xanthan). Formulations that had suitable mechanical characteristics (i.e., high compression strength) were coated with a flexible Aquacoat® ARC film to ensure prolonged release and to avoid ADD. The pellets were characterized in terms of their mechanical properties and in vitro drug release behavior in alcoholic media. All formulations were abuse deterrent: they had a high compression strength and grinding the pellets into powder was impossible. Since the pellets comprising gum arabic and xanthan as a matrix did not remain intact during dissolution testing, they had a very fast drug release rate. Cornstarch-based pellets that swelled but remained intact in the dissolution media had a slower drug release. Coated cornstarch-based pellets had a prolonged release over 8 h and resistance to dose dumping in 20 and 40% ethanol. Our results indicate that cornstarch-based pellets manufactured via the advanced HME process followed by coating are a promising formulation that makes tampering difficult due to a high compression strength combined with robustness in alcoholic media.  相似文献   

10.
The objective of this study was to prepare and evaluate terbutaline sulphate (TBS) bi-layer tablets for once-daily administration. The bi-layer tablets consisted of an immediate-release layer and a sustained-release layer containing 5 and 10 mg TBS, respectively. The sustained-release layer was developed by using Compritol®888 ATO, Precirol® ATO 5, stearic acid, and tristearin, separately, as slowly eroding lipid matrices. A full 4?×?22 factorial design was employed for optimization of the sustained-release layer and to explore the effect of lipid type (X 1), drug–lipid ratio (X 2), and filler type (X 3) on the percentage drug released at 8, 12, and 24 h (Y 1, Y 2, and Y 3) as dependent variables. Sixteen TBS sustained-release matrices (F1–F16) were prepared by melt solid dispersion method. None of the prepared matrices achieved the targeted release profile. However, F2 that showed a relatively promising drug release was subjected to trial and error optimization for the filler composition to develop two optimized matrices (F17 and F18). F18 which consisted of drug–Compritol®888 ATO at ratio (1:6 w/w) and Avicel PH 101/dibasic calcium phosphate mixture of 2:1 (w/w) was selected as sustained-release layer. TBS bi-layer tablets were evaluated for their physical properties, in vitro drug release, effect of storage on drug content, and in vivo performance in rabbits. The bi-layer tablets showed acceptable physical properties and release characteristics. In vivo absorption in rabbits revealed initial high TBS plasma levels followed by sustained levels over 24 h compared to immediate-release tablets.  相似文献   

11.
Greenhouse experiments were conducted on various crops (cucumber, tomato, eggplant, green bean) to ascertain the effects of Break-thru® (polyether-polymethylsiloxane-copolymer, a silicone surfactant) and an oil emulsion, on Beauveria bassiana (Balsamo) Vuillemin (Bb) applications for the control of the two spotted spider mite, Tetranychus urticae Koch. The objectives were to compare a) the efficacy of Bb control when applied in aqueous Break-thru® or an oil emulsion; b) the effects of various concentrations of Bb conidia, as affected by each surfactant; and c) the effects of Break-thru® on the activity of the fungus. Conidia were suspended either in an aqueous Break-thru® or an emulsifiable formulation at different conidial concentrations (1.05 × 106, 2.1 × 106 and 4.2 × 106 conidia ml?1) and sprayed onto leaves 2 weeks after artificial pest inoculation. Two sprays were performed, with an interval of one week from one spray to another, and T. urticae population counts (both motile and egg stages) were made on plant leaves 7 days after each spray. Bb conidia in Break-thru® were more efficacious than conidia in emulsifiable formulation. With the highest rate of conidia (4.2 × 106 conidia ml?1), mortality of adult mites ranged from 60 ± 4.2 (mean ± SE) to 85.7 ± 4.3% in the Break-thru® suspension and 39.4 ± 7 to 61.3 ± 6% in the oil emulsion. Leaf damage index was also substantially reduced from 70% in the unsprayed control to 40% by the application of Bb conidia at the highest rate with Break-thru®. Break-thru® can be combined with Bb in the integrated management of T. urticae and Isolate R444 is a promising candidate for the control of the pest.  相似文献   

12.
In this study, an optimized epichlorohydrin-crosslinked semi-interpenetrating polymer network xerogel matrix system (XePoMas) for the controlled delivery of sulpiride was prepared. The ability of XePoMas to sustain drug release was determined by in vitro and in vivo drug release experiments. Swelling of the xerogel over the 24-h experimental period ranged from 346 to 648%; swelling was observed to increase exponentially over the initial 8 h. In vitro drug release depicted a linear zero order drug release profile with an R 2 value of 0.9956. The ability of the fabricated XePoMas to sustain drug release and enhance bioavailability of sulpiride in vivo was investigated by evaluating the plasma drug concentration over 24 h in the large pig model. The optimized XePoMas formulation was shown to increase intestinal absorption of sulpiride to a greater extent than the marketed product in vivo, with a C max of 830.58 ng/mL after 15 h.  相似文献   

13.
Helicobacter pylori infection remains challenging as it mainly colonized beneath the deep gastric mucosa and adheres to epithelial cells of the stomach. Concanavalin-A (Con-A)-conjugated gastro-retentive poly (lactic-co-glycolic acid) (PLGA) nanoparticles of acetohydroxamic acid (AHA) and clarithromycin (CLR) were prepared and evaluated under in vitro conditions. Solvent evaporation method was employed for preparation of nanoparticles and characterized for particle size distribution, surface morphology, percent drug entrapment, and in vitro drug release in simulated gastric fluid. Optimized nanoparticles were conjugated with Con-A and further characterized for Con-A conjugation efficiency and mucoadhesion and tested for in vitro anti-H. pylori activity. The conjugation with Con-A further sustained the drug release over a period of 8 h when compared to non-conjugated nanoparticles of AHA and CLR. In vitro anti H. pylori study confirmed that Con-A-conjugated nanoparticles containing both drugs, i.e., CLR and AHA, had shown maximum zone of inhibition compared to other formulations. In a nut shell, results suggest that the developed systems could be used for better therapeutic activity against H. pylori infection.  相似文献   

14.
To develop a single-shot vaccine containing diphtheria toxoid (DT) with a sufficient immune response, poly(lactide-co-glycolide) (PLGA) microspheres were prepared by water-in-oil-in-water double emulsification and solvent extraction techniques using low or high-molecular-weight PLGA (LMW-MS or HMW-MS). Stearic acid (SA) was introduced to HMW-MS (HMW/SA-MS) as a release modulator. Mean particle sizes (dvs, μm) varied between the prepared microspheres, with LMW-MS, HMW-MS, and HMW/SA-MS having the sizes of 29.83, 110.59, and 69.5 μm, respectively; however, the protein entrapment and loading efficiency did not vary, with values of 15.2–16.8 μg/mg and 61–75%, respectively. LMW-MS showed slower initial release (~?2 weeks) but faster and higher release of antigen during weeks 3~7 than did HMW-MS. HMW/SA-MS showed rapid initial release followed by a continuous release over an extended period of time (~?12 weeks). Mixed PLGA microspheres (MIX-MS), a combination of HMW/SA-MS and LMW-MS (1:1), demonstrated a sufficient initial antigen release and a subsequent boost release in a pulsatile manner. Serum antibody levels were measured by ELISA after DT immunization of Balb/c mice, and showed a greater response to MIX-MS than to alum-adsorbed DT (control). A lethal toxin challenge test with MIX-MS (a DT dose of 18 Lf) using Balb/c mice revealed complete protection, indicating a good candidate delivery system for a single-shot immunization.  相似文献   

15.
The aim of this work was to develop self-nanoemulsifying liquisolid tablets (SNELT) to enhance the dissolution profile of poorly water-soluble simvastatin. SNELT present a unique technique of incorporating self-nanoemulsifying drug delivery systems (SNEDDS) into tablets. Optimized SNEDDS containing different oils, Cremophor® RH 40 (surfactant) and Transcutol® HP (co-surfactant), at different ratios, were used as liquid vehicles and loaded on carrier material, microcrystalline cellulose (MCC), and coating material, Cab-o-sil® H-5 (nanosize colloidal silicon dioxide) powders at different loading factors (L f ) and fixed excipient ratio (R?=?20). The effect of using different carrier materials, granulated mannitol, crystalline mannitol, and maltodextrin with MCC at different ratios, and different coating materials, Aeroperl® 300 (granulated silicon dioxide) at different excipient ratios (R), was also emphasized. Liquisolid powders with acceptable flowability, compressibility, and tablet weight were compressed into tablets. Results revealed that powders with L f ?=?0.2 possessed the most preferable properties to be tableted. SNELT with MCC and Cab-o-sil® H-5 were able to generate nanoemulsions and to enhance the cumulative percent of drug dissolved at 60 min significantly to reach up to 90%. Furthermore, using carrier material (granulated mannitol/MCC at ratio 3:1) enabled SNELT to disperse into nanoemulsion (Z-average?=?25.7 nm) and improved the dissolution profile significantly to reach 99% at 60 min. Cab-o-sil® H-5 proved to be a better coating material compared to Aeroperl® 300. In conclusion, developed SNELT were promising in enhancing in vitro dissolution of simvastatin and excipients highly affect SNELT’s performance.  相似文献   

16.
We hereby report two instances of dimorphic fungus cultivation in BacT/ALERT®-based bacteriologic media, with the first such characterization of Blastomyces dermatitidis. From a patient with disseminated coccidioidomycosis, routine blood cultures incubated on the MB/BacT® 3D? Microbial Detection System generated a positive signal following 75 h of incubation. B. dermatitidis was isolated from a patient hospitalized with a four-week course of respiratory illness. Organism detection from respiratory specimens via the MB/BacT® 3D? Mycobacteria Detection System occurred 5 days sooner than the routine fungus culture. Etiologic agents of endemic mycoses may be isolated in bacteriologic media employed by continuous monitoring instrumentation.  相似文献   

17.
The effect of a seaweed-derived biostimulant (Kelpak® at 1, 2.5 and 5 % dilution; v/v) on the growth, endogenous cytokinin (CK) and phytochemical content in Eucomis autumnalis (Mill.) Chitt. under hydroponic conditions was evaluated. After 4 months, the stimulatory effect of Kelpak® treatments was more noticeable in the underground organs than in the aerial organs. Total endogenous CK was also higher in plants treated with Kelpak® (c.a. 1000–1200 pmol g?1 DW) compared to control plants (860 pmol g?1 DW). Isoprenoid CKs (which mainly accumulated in the aerial organs) were more dominant than aromatic-type CKs across all the treatments. A total of 11 bioactive chemicals (8 phenolic acids and 3 flavonoids) and eucomic acid known for their diverse biological activities were quantified in the samples. The most abundant compound was p-coumaric acid (6.5 µg g?1 DW) and it was approximately sevenfold higher in 2.5 % Kelpak®-treated plants than in the control. It was also noteworthy that syringic acid only occurred in the underground organs of 5 % Kelpak®-treated plants. Eucomic acid which is a major bioactive compound in E. autumnalis was significantly enhanced in Kelpak® treatments, and the leaves accounted for more than 70 % of the overall content. Thus, Kelpak® elicited a significant influence on the growth, endogenous CK and phytochemical content in E. autumnalis. These findings provide additional evidence of the enormous potential of Kelpak® as a useful biostimulant with practical applications in various agricultural endeavours.  相似文献   

18.
Non-ionic surfactant (NIS) based in situ forming vesicles (ISVs) present an affordable alternative to the traditional systems for the parenteral control of drug release. In this work, NIS based ISVs encapsulating tenoxicam were prepared using the emulsion method. Tenoxicam-loaded ISVs were prepared using a 22.31 full factorial experimental design, where three factors were evaluated as independent variables; type of NIS (A), molar ratio of NIS to Tween®80 (B), and phase ratio of the internal ethyl acetate to the external Captex® oil phase (C). Percentage drug released after 1 h, particle size of the obtained vesicles and mean dissolution time were chosen as the dependent variables. Selected formulation was subjected to morphological investigation, injectability, viscosity measurements, and solid state characterization. Optimum formulation showed spherical nano-vesicles in the size of 379.08 nm with an initial drug release of 37.32% in the first hour followed by a sustained drug release pattern for 6 days. DSC analysis of the optimized formulation confirmed the presence of the drug in an amorphous form with the nano-vesicles. Biological evaluation of the selected formulation was performed on New Zealand rabbits by IM injection. The prepared ISVs exhibited a 45- and 28-fold larger AUC and MRT values, respectively, compared to those of the drug suspension. The obtained findings boost the use of ISVs for the treatment of many chronic inflammatory conditions.  相似文献   

19.
The aim of this study was to develop and validate a discriminating in vitro release test to evaluate rivastigmine transdermal patches. The Exelon® Patch was chosen as a model transdermal product. The studies of in vitro release were designed to determine the impact of the official apparatus chosen (USP apparatus 5 and USP apparatus 6), the rotation speed, and the dissolution medium characteristics on the rivastigmine release profile from transdermal patches. Patches with different drug release profiles were tested in order to evaluate the discriminating power of the in vitro release test developed and validated. Variables such as the apparatus type, the dissolution medium, and the rotation speed have a significant influence on the drug release characteristics from a transdermal patch. The in vitro release methodologies using the USP apparatus 5 at 50 rpm and USP apparatus 6 at 25 rpm using the medium phosphate-buffered saline pH 7.4 were considered discriminative and adequate to characterize the rivastigmine (RV) release from a commercial transdermal patch, Exelon® Patch.  相似文献   

20.
In situ gelling formulations allow easy application to the target area. Gelation is induced by physiological stimuli at the site of application where the formula attains semisolid properties and exerts sustained drug release. In situ gelling formulations containing either 3% meloxicam (Mx) or 2% minocycline HCl (MH) were prepared for local application into the periodontal pockets. Gel formulations were based on the thermosensitive Pluronic® (Pl) and the pH-sensitive Carbopol® (C) polymers. C gels were prepared in combination with HPMC (H) to decrease its acidity. The total percent drug released from Pl formulae was 21.72% after 1 week for Mx and 85% after 3 days for MH. Their release kinetics data indicated anomalous non-Fickian behavior that could be controlled by both diffusion and chain relaxation. Addition of MH to C/H gels (1:2.5) resulted in liquefaction, followed by drug precipitation. Regarding C/H gel containing Mx, it showed a prolonged release rate up to 7 days with an initial burst effect; the kinetics data revealed Fickian-diffusion mechanism. The in vitro antibacterial activity studies for MH gel in Pl revealed that the drug released exceeded the minimum inhibitory concentration (MIC) of MH against Staphylococcus aureus ATCC 6538; placebo gel showed no effect on the microorganism. Clinical evaluation of Pl gels containing either Mx or MH showed significant improvement in chronic periodontitis patients, manifested by decrease in pocket depth and gingival index and increase in bone density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号