首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Viral infections are known to have a detrimental effect on grapevine yield and performance, but there is still a lack of knowledge about their effect on the quality and safety of end products. Vines of Vitis vinifera cv. Nebbiolo clone 308, affected simultaneously by Grapevine leafroll-associated virus 1 (GLRaV-1), Grapevine virus A (GVA), and Rupestris stem pitting associated virus (RSPaV), were subjected to integrated analyses of agronomical performance, grape berry characteristics, instrumental texture profile, and proteome profiling. The comparison of performance and grape quality of healthy and infected vines cultivated in a commercial vineyard revealed similar shoot fertility, number of clusters, total yield, with significant differences in titratable acidity, and resveratrol content. Also some texture parameters such as cohesiveness and resilience were altered in berries of infected plants. The proteomic analysis of skin and pulp visualized about 400 spots. The ANOVA analysis on 2D gels revealed significant differences among healthy and virus-infected grape berries for 12 pulp spots and 7 skin spots. Virus infection mainly influenced proteins involved in the response to oxidative stress in the berry skin, and proteins involved in cell structure metabolism in the pulp.  相似文献   

2.
Flavanone 3-hydroxylase (EC 1.14.11.9, F3H) plays a key role in anthocyanin biosynthesis, and sugars enhance anthocyanin accumulation and F3H expression in some other plants. However, information about the relationship between sugars, anthocyanin accumulation and F3H expression in grape berries has been little reported. Present experiment was done with sliced grape berry system. The optimum fruit developmental stage, sugar concentration, and incubation time in sugar induction anthocyanin accumulation and F3H expression were determined. Mannose and 2-deoxyglucose, glucose analogs known to be phosphorylated by hexokinase but are poorly metabolized, obviously induced the anthocyanin accumulation and F3H expression, whereas 3-O-methylglucose and 6-deoxyglucose, glucose analogs transported inside the cell but not substrates for hexokinase, did not induce them. Glucosamine and mannoheptulose, the specific inhibitors of hexokinase, blocked the activation induced by sugar on both anthocyanin accumulation and F3H expression.  相似文献   

3.
以4年生‘贝达’嫁接的早熟葡萄品种‘瑞都香玉’为试材,研究设施促早栽培条件下,紫外光、蓝光和红蓝光不同光质补光对果实品质的影响,结果表明: 促早栽培节能日光温室内环境属于典型的弱蓝紫光和弱紫外光环境.与对照(未补光)相比,夜间6 h的蓝光和紫外光补光处理可显著加快葡萄果实发育过程中质量和果粒纵横径的增大、果实糖含量的升高以及酸含量的下降,红蓝光效果不明显.果实成熟期紫外光补光处理果实的单粒质量最高,蓝光与红蓝光处理显著高于对照;蓝光补光处理果实葡萄糖、果糖和总糖含量最高,紫外光次之,红蓝光略高于对照.与对照相比,蓝光补光处理可显著加快果实中里那醇、α-萜品醇、橙花醇等萜烯类组分含量高峰的出现,而紫外光、红蓝光补光处理差异较小.果实成熟期蓝光补光处理果实中里那醇、香茅醇等萜烯类物质含量最高,紫外光补光处理里那醇含量较高,香叶醇、己醛、E-2-己烯醛等主要香气物质的含量最高,而红蓝光补光处理里那醇的含量与对照相比有所降低.紫外光、蓝光和红蓝光3种光质补光处理均增加了果实中醛酮类物质的种类及含量.表明蓝光补光处理果实发育最快,成熟最早,糖含量最高,里那醇等萜烯类物质含量高峰出现的时间最早;紫外光补光处理果实的单粒质量最大,主要萜烯类组分含量高;红蓝光补光处理对改善果实品质的效果不明显.  相似文献   

4.
Leaves are an important contributor toward berry sugar and nitrogen (N) accumulation, and leaf area, therefore, affects fruit composition during grapevine (Vitis vinifera) berry ripening. The aim of this study was to investigate the impact of leaf presence on key berry quality attributes in conjunction with the accumulation of primary berry metabolites. Shortly after the start of véraison (berry ripening), potted grapevines were defoliated (total defoliation and 25% of the control), and the accumulation of berry soluble solids, N and anthocyanins were compared to that of a full leaf area control. An untargeted approach was undertaken to measure the content in primary metabolites by gas chromatography/mass spectrometry. Partial and full defoliation resulted in reduced berry sugar and anthocyanin accumulation, while total berry N content was unaffected. The juice yeast assimilable N (YAN), however, increased upon partial and full defoliation. Remobilized carbohydrate reserves allowed accumulation of the major berry sugars during the absence of leaf photoassimilation. Berry anthocyanin biosynthesis was strongly inhibited by defoliation, which could relate to the carbon (C) source limitation and/or increased bunch exposure. Arginine accumulation, likely resulting from reserve translocation, contributed to increased YAN upon defoliation. Furthermore, assessing the implications on various products of the shikimate pathway suggests the C flux through this pathway to be largely affected by leaf source limitation during fruit maturation. This study provides a novel investigation of impacts of leaf C and N source presence during berry maturation, on the development of key berry quality parameters as underlined by alterations in primary metabolism.  相似文献   

5.
6.
7.
8.
Surveys were carried out in Tunisian table grape vineyards for assessing the occurrence and distribution of grapevine leafroll-associated viruses (GLRaVs). Leafroll symptoms were commonly observed in most of the surveyed vineyards. Samples were randomly collected from 712 individual vines for laboratory testing. Enzyme-linked immunosorbent assay (ELISA) tests showed that 81.5% of the vines were infected by one (35.7%) or more (45.8%) viruses. GLRaV-3 was the most widespread virus (76.3%), followed by GLRaV-5 (38.5 %), GLRaV-6 (13.2%), GLRaV-1 (9.1%), GLRaV-2 (6.3%), and GLRaV-7 (0.9%). GLRaV-3 and GLRaV–5, two mealybug-transmissible Ampeloviruses, were present in mixture in 35.9% of samples. The highest infection rate was found in Cape Bon region (81.7 %), where cv. Italia had an infection rate of 79.5%. Superior seedless, the main cultivar in Sidi Bouzid, had 75% infection. GLRaV-6 and -7 were detected for the first time in Tunisia.  相似文献   

9.
The effects of viruses on grape production and must quality are not fully understood. In this study, the evaluation of the impact of different virus infections on performance of the main autochthonous grapevine varieties of Mallorca (Callet, Manto Negro and Moll) was pursued. Therefore, a large number of vines were observed in field conditions over 4 years and tested by enzyme-linked immunosorbent assay for viruses listed by the international certification programmes. In each variety, some specific virus infections resulted to be more effective than the others in inducing losses in production. In Callet, yield (Y) reduction was over 20% in plants infected by Grapevine fanleaf virus (GFLV). In Moll, plants subject to more than one infection showed over 40% Y decrease. In Manto Negro, the most surprising results were obtained, because plants showed almost 40% Y reduction because of Grapevine leafroll-associated virus-1 (GLRaV-1) infection. In addition, virus infections were linked to some must quality parameter increase in Manto Negro and Moll, but in the majority of cases it was an indirect effect, because the decrease in production parameters played a predominant role by producing an important concentration effect. However, in Manto Negro, anthocyanin content decrease was directly related to GFLV infection.  相似文献   

10.
Kiwifruit vines are perennial plants grown in climates varying from maritime to continental. To determine key responses to temperature, vines were heated at different stages of fruit development, and vine growth and fruit composition examined. Heating vines during fruit starch accumulation caused a major shift in partitioning towards vegetative growth and dramatically reduced fruit carbohydrate and vitamin C. In the following season, growth and flowering were severely reduced. Heating vines during fruit cell division had minimal long‐term effects, whereas heating during fruit maturation delayed starch degradation and fruit ripening and affected growth in the following season. When vines were removed from heat, fruit dry matter, starch and sugar levels were always reduced but hexose : sucrose ratios and inositol were raised. Heating vines affected expression of two sucrose synthase genes, but this did not correlate with reduction in fruit carbohydrate. Activity and expression of l ‐galactose dehydrogenase decreased as fruit developed, suggesting some vitamin C biosynthesis must take place in the fruit. Activity and expression of actinidin increased in response to heat. The results of this study have demonstrated both short and long‐term plant responses to elevated temperatures in woody perennials, and that the timing of heat exposure has severe consequences for vitamin C levels in fruit.  相似文献   

11.
The production of anthocyanins in fruit tissues is highly controlled at the developmental level. We have studied the expression of flavonoid biosynthesis genes during the development of bilberry (Vaccinium myrtillus) fruit in relation to the accumulation of anthocyanins, proanthocyanidins, and flavonols in wild berries and in color mutants of bilberry. The cDNA fragments of five genes from the flavonoid pathway, phenylalanine ammonia-lyase, chalcone synthase, flavanone 3-hydroxylase, dihydroflavonol 4-reductase, and anthocyanidin synthase, were isolated from bilberry using the polymerase chain reaction technique, sequenced, and labeled with a digoxigenin-dUTP label. These homologous probes were used for determining the expression of the flavonoid pathway genes in bilberries. The contents of anthocyanins, proanthocyanidins, and flavonols in ripening bilberries were analyzed with high-performance liquid chromatography-diode array detector and were identified using a mass spectrometry interface. Our results demonstrate a correlation between anthocyanin accumulation and expression of the flavonoid pathway genes during the ripening of berries. At the early stages of berry development, procyanidins and quercetin were the major flavonoids, but the levels decreased dramatically during the progress of ripening. During the later stages of ripening, the content of anthocyanins increased strongly and they were the major flavonoids in the ripe berry. The expression of flavonoid pathway genes in the color mutants of bilberry was reduced. A connection between flavonol and anthocyanin synthesis in bilberry was detected in this study and also in previous data collected from flavonol and anthocyanin analyses from other fruits. In accordance with this, models for the connection between flavonol and anthocyanin syntheses in fruit tissues are presented.  相似文献   

12.
During maturation, Vitis vinifera berries accumulate a large amount of several anthocyanins in the epidermal tissue, whereas their precursors and intermediates are ubiquitously synthesized within the fruit. Up to date, several mechanisms of flavonoid transport at subcellular level have been hypothesized, but it is not possible to identify a general model applicable in every plant tissue and organ. Recently, a putative anthocyanin carrier, homologue to mammalian bilitranslocase (BTL) (TC 2.A.65.1.1), was found in Dianthus caryophyllus petal microsomes. In the present paper, an immunohistochemical and immunochemical analysis, using an antibody raised against a BTL epitope, evidences the expression and function of such a transporter in V. vinifera berries (cv. Merlot). Specific localisations of the putative carrier within berry tissues together with expression changes during different developmental stages are shown. Water stress induces an increase in protein expression in both skin and pulp samples. A bromosulfalein (BSP) uptake activity, inhibitable by the BTL antibody, is detected in berry mesocarp microsomes, with K (m) = 2.39 microM BSP and V (max) = 0.29 micromol BSP min(-1) mg(-1) protein. This BSP uptake is also competitively inhibited by quercetin (K (i) = 4 microM). A putative role for this carrier is discussed in relation to the membrane transport of secondary metabolites.  相似文献   

13.
Grapevine (Vitis vinifera) roots and leaves represent major carbohydrate and nitrogen (N) sources, either as recent assimilates, or mobilized from labile or storage pools. This study examined the response of root and leaf primary metabolism following defoliation treatments applied to fruiting vines during ripening. The objective was to link alterations in root and leaf metabolism to carbohydrate and N source functioning under conditions of increased fruit sink demand. Potted grapevine leaf area was adjusted near the start of véraison to 25 primary leaves per vine compared to 100 leaves for the control. An additional group of vines were completely defoliated. Fruit sugar and N content development was assessed, and root and leaf starch and N concentrations determined. An untargeted GC/MS approach was undertaken to evaluate root and leaf primary metabolite concentrations. Partial and full defoliation increased root carbohydrate source contribution towards berry sugar accumulation, evident through starch remobilization. Furthermore, root myo‐inositol metabolism played a distinct role during carbohydrate remobilization. Full defoliation induced shikimate pathway derived aromatic amino acid accumulation in roots, while arginine accumulated after full and partial defoliation. Likewise, various leaf amino acids accumulated after partial defoliation. These results suggest elevated root and leaf amino N source activity when leaf N availability is restricted during fruit ripening. Overall, this study provides novel information regarding the impact of leaf source restriction, on metabolic compositions of major carbohydrate and N sources during berry maturation. These results enhance the understanding of source organ carbon and N metabolism during fruit maturation.  相似文献   

14.
Most of the thousands of grapevine cultivars (Vitis vinifera L.) can be divided into two groups, red and white, based on the presence or absence of anthocyanin in the berry skin, which has been found from genetic experiments to be controlled by a single locus. A regulatory gene, VvMYBA1, which could activate anthocyanin biosynthesis in a transient assay, was recently shown not to be transcribed in white berries due to the presence of a retrotransposon in the promoter. We have found that the berry colour locus comprises two very similar genes, VvMYBA1 and VvMYBA2, located on a single bacterial artificial chromosome. Either gene can regulate colour in the grape berry. The white berry allele of VvMYBA2 is inactivated by two non-conservative mutations, one leads to an amino acid substitution and the other to a frame shift resulting in a smaller protein. Transient assays showed that either mutation removed the ability of the regulator to switch on anthocyanin biosynthesis. VvMYBA2 sequence analyses, together with marker information, confirmed that 55 white cultivars all contain the white berry allele, but not red berry alleles. These results suggest that all extant white cultivars of grape vines have a common origin. We conclude that rare mutational events occurring in two adjacent genes were essential for the genesis of the white grapes used to produce the white wines and white table grapes we enjoy today.  相似文献   

15.
The most obvious effect of sunlight exclusion from grape clusters is the inhibition of anthocyanin biosynthesis in the berry skin so that no color develops. Two-dimensional gel electrophoresis coupled with mass spectrometry was used to characterize the proteins isolated from berry skins that developed under sunlight exclusion versus those from sunlight-exposed berries. Among more than 1500 spots resolved in stained gels, the accumulation patterns of 96 spots differed significantly between sunlight-excluded berry skin and that of sunlight-exposed control berries. Seventy-two proteins, including 35 down-regulated and 37 up-regulated proteins, were identified and categorized. Proteins involved in photosynthesis and secondary metabolism, especially UDP-glucose:flavonoid 3-O-glucosyltransferase (UFGT), the key step for anthocyanin biosynthesis in grape berry skin, were accumulated less in the absence of sunlight. Several isoforms of heat shock proteins were also down-regulated. The proteins that were over-accumulated in sunlight-excluded berry skin were more often related to energy production, glycolysis, the tricarboxylic-acid cycle, protein synthesis and biogenesis of cellular components. Their putative role is discussed in terms of their relevance to sunlight exclusion processes.  相似文献   

16.
Effect of hepatitis A virus infection on cell metabolism in vitro   总被引:8,自引:0,他引:8  
Hepatitis A virus (HAV), when inoculated into cultures of the PLC/PRF/5 cell line which produces the surface antigen of hepatitis B virus (HBsAg), showed growth characteristics different from those of other picornaviruses. Antigen of HAV (HAAg) is expressed only about 10 days after infection. No major impact on the overall macromolecular biosynthesis of the host cells is observed. The growth rate of HAV-infected and uninfected cells was comparable, although the plating efficiency of infected cells was lower. Different hormonal factors were tested for their ability to stimulate viral antigen expression. Dexamethasone or prostaglandin E1 added to the culture medium increased HAAg expression; insulin reduced expression. Persistent infection of hepatoma cells by HAV never led to a cytolytic infection. In temperature-shift experiments, an adverse effect on the expression of HAAg and HBsAg was observed. In all experiments, the amounts of HBsAg in HAV-infected cells were reduced. On the whole, no major influence on host-cell metabolism is observed in cells persistently infected with HAV. Cell-mediated immunological response as a mechanism of pathological changes in HAV-infected liver is, therefore, more likely than a cytopathological effect.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号