首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The plant pathogenic basidiomycete Sclerotium rolfsii produces a wide range of extracellular hemicellulolytic enzymes. To study the effect of β-mannanases in total chlorine free bleaching of softwood pulp, two purified β -mannanases from S. rolfsii, with molecular masses of 42 and 61 kDa, a xylanase preparation from S. rolfsii and combinations of these were tested in a O(QX)P bleaching sequence (O = oxygen delignification, X = treatment with enzymes, Q = chelation of metals, P = treatment with hydrogen peroxide in alkaline solution). A brightness increase of 1.6 and 1.9% ISO was obtained with the 42 and 61 kDa mannanase and a combination of each of these enzymes with xylanases gave a brightness increase of 2.5 and 2.8% ISO, respectively. The effect of mannanases and xylanases was nearly additive. Both mannanases alone caused a lower decrease of the kappa number as compared to xylanases. The mannanases differed in their ability to release oligosaccharides from different mannans. The 61 kDa mannanase liberated larger fragments and caused rapid depolymerisation of mannans, which seems to promote the bleaching of pulp.  相似文献   

2.
Rhizopus oryzae, a zygomycete, was found to decolorize, dechlorinate, and detoxify bleach plant effluent at lower cosubstrate concentrations than the basidiomycetes previously investigated. With glucose at 1 g/liter, this fungus removed 92 to 95% of the color, 50% of the chemical oxygen demand, 72% of the adsorbable organic halide, and 37% of the extractable organic halide in 24 h at temperatures of 25 to 45 degrees C and a pH of 3 to 5. Even without added cosubstrate the fungus removed up to 78% of the color. Monomeric chlorinated aromatic compounds were removed almost completely, and toxicity to zebra fish was eliminated. The fungal mycelium could be immobilized in polyurethane foam and used repeatedly to treat batches of effluent. The residue after treatment was not further improved by exposure to fresh R. oryzae mycelium.  相似文献   

3.
Pretreatment of hemp pulp with xylanase was investigated. Unbleached hemp pulp was treated with commercial xylanase, and then bleached with hydrogen peroxide. Control pulp bleached with out xylanase was compared with xylanase bleached pulp. Application of xylanase was found to have a positive effect on followed peroxide stage in terms of low kappa number and high brightness of pulp.  相似文献   

4.
5.
The potential of crude xylanase from Thermomyces lanuginosus and Xylanase P (a commercial xylanase) was evaluated in bleaching of various paper pulp types. Xylanases released chromophores and reducing sugars and decreased kappa number of pulps. Chlorine-bleached, alkali-extracted bagasse and post-oxygen kraft pulps, pretreated with enzymes, gained over 5 brightness points over controls. Biobleaching of soda-aq pulp with Xylanase P produced chlorine dioxide savings of up to 30% or 4.5 kg chlorine dioxide t–1 pulp.  相似文献   

6.
7.
8.
Aspergillus terricola and Aspergillus ochraceus, isolated from Brazilian soil, were cultivated in Vogel and Adams media supplemented with 20 different carbon sources, at 30 °C, under static conditions, for 120 and 144 h, respectively. High levels of cellulase-free xylanase were produced in birchwood or oat spelt xylan-media. Wheat bran was the most favorable agricultural residue for xylanase production. Maximum activity was obtained at 60 °C and pH 6.5 for A. terricola, and 65 °C and pH 5.0 for A. ochraceus. A. terricola xylanase was stable for 1 h at 60 °C and retained 50% activity after 80 min, while A. ochraceus xylanase presented a t 50 of 10 min. The xylanases were stable in an alkali pH range. Biobleaching of 10 U/g dry cellulose pulp resulted in 14.3% delignification (A. terricola) and 36.4% (A. ochraceus). The brightness was 2.4–3.4% ISO higher than the control. Analysis in SEM showed defibrillation of the microfibrils. Arabinase traces and β-xylosidase were detected which might act synergistically with xylanase.  相似文献   

9.
Reaction of H(2)O(2) with the recombinant SHa(29-231) prion protein resulted in rapid oxidation of multiple methionine residues. Susceptibility to oxidation of individual residues, assessed by mass spectrometry after digestion with CNBr and lysC, was in general a function of solvent exposure. Met 109 and Met 112, situated in the highly flexible amino terminus, and key residues of the toxic peptide PrP (106-126), showed the greatest susceptibility. Met 129, a residue located in a polymorphic position in human PrP and modulating risk of prion disease, was also easily oxidized, as was Met 134. The structural effect of H(2)O(2)-induced methionine oxidation on PrP was studied by CD spectroscopy. As opposed to copper catalyzed oxidation, which results in extensive aggregation of PrP, this reaction led only to a modest increase in beta-sheet structure. The high number of solvent exposed methionine residues in PrP suggests their possible role as protective endogenous antioxidants.  相似文献   

10.
Glucose oxidase enzymes were used to produce hydrogen peroxide from glucose and oxygen in aqueous solutions. Different working conditions, that is, temperature, aeration with liquefied air, presence of cotton fibre and time of enzyme activity, were tested in order to obtain a solution with the highest possible concentration of hydrogen peroxide. The hydrogen peroxide produced was transformed into different peracids which could bleach the cotton fabric under mild conditions, at a pH between 7 and 8 and at a temperature of around 60°C. The conversion or activation of hydrogen peroxide was conducted with the bleach activators TAED, NOBS and TBBC. The concentrations of hydrogen peroxide and peracids in the solutions were measured with sodium thiosulphate titrations.

The results indicated that the formation of hydrogen peroxide with glucose oxidase was effective under optimal conditions, which are 50°C, pH 4.6 and aeration. Convenient activators for the conversion of hydrogen peroxide into peracids were TAED and TBBC, which enabled attainment of a relatively high degree of whiteness at pH 7.5 and temperature 50°C. Using the activator NOBS under these conditions did not provide enough peracid to markedly improve whiteness.  相似文献   

11.
Pretreatment of lignocellulosic materials with alkaline hydrogen peroxide greatly increases their susceptibility to enzymatic cellulose hydrolysis. During the course of the pretreatment reaction (18 h), the pH rises slowly, increasing from pH 11.5 to a final pH > 12. As a result, most of the hemicellulose in the lignocellulosic substrate becomes solubilized. Maintaining the reaction pH near the optimum of 11.5 prevents hemicellulose solubilization and decreases the time required for effective pretreatment to about 6 h. Alkaline peroxide pretreatment is most effective on lignocellulose from monocotyledonous plants, especially members of the family Gramineae. Enzymatic saccharification efficiencies > 90% of theoretical were attained from high yielding perennial grasses such as big bluestem (Andropogon gerardi) and Indian grass (Sorghastrum nutans) after alkaline peroxide pretreatment.  相似文献   

12.
Paper sheets from olive tree wood pulp obtained by soda, sulphite or kraft pulping were studied to examine the influence of pulp beating on properties of the paper sheets.Paper sheets from kraft and sulphite pulps exhibited the highest resistance, and sulphite pulp the highest brightness. Soda pulp required more intensive beating than did kraft or sulphite pulps; in fact, the PFI beater had be operated at a 40–50% higher number of beating revolutions to obtain soda pulp with 70–80° SR.The breaking length, stretch, burst index and tear index of paper sheets obtained from kraft pulp, beaten to a Shopper–Riegler index of 70–80° SR were 20–30%, 30–50%, 50–60% and 15–35% higher, respectively, than those of sheets obtained from soda pulp.  相似文献   

13.
This study evaluates the bleaching efficiency of the hydrogen peroxide bleaching process combined with laccase-mediated system pretreatment (LMS-HPBP) in the treatment of scoured cotton fabric. By changing the factors of laccase-mediated system pretreatment and the hydrogen peroxide bleaching process and examining the subsequent whiteness value and retained tensile strength of the samples, we find three LMS-HPBP processes that are more environment friendly than the conventional hydrogen peroxide bleaching process (CHPBP): (i) bleaching with lower dosage of hydrogen peroxide; (ii) bleaching at reduced temperature; (iii) bleaching for shortened duration. Whiteness, retained tensile strength and K/S values of cotton fabric samples treated by i-iii processes were similar to or higher than those by CHPBP. X-ray diffraction (XRD) analysis also demonstrated that the three processes rendered fabric of both lower crystallinity and bigger crystallite size than those by CHPBP. In addition, the "green" short-flow process was developed to treat cotton fabric and the results obtained shows this method is feasible as a new energy-saving process.  相似文献   

14.
GroEL undergoes an important functional and structural transition when oxidized with hydrogen peroxide (H2O2) concentrations between 15 and 20mM. When GroEL was incubated for 3h with 15 mM H2O2, it retained its quaternary structure, chaperone and ATPase activities. Under these conditions, GroEL's cysteine and tyrosine residues remained intact. However, all the methionine residues of the molecular chaperone were oxidized to the corresponding methionine-sulfoxides under these conditions. The oxidation of the methionine residues was verified by the inability of cyanogen bromide to cleave at the carboxyl side of the modified methionine residues. The role for the proportionately large number (23) of methionine residues in GroEL has not been identified. Methionine residues have been reported to have an antioxidant activity in proteins against a variety of oxidants produced in biological systems including H2O2. The carboxyl-terminal domain of GroEL is rich in methionine residues and we hypothesized that these residues are involved in the protection of GroEL's functional structure by scavenging H2O2. When GroEL was further incubated for the same time, but with increasing concentrations of H2O2 (>15 mM), the oxidation of GroEL's cysteine residues and a significant decrease of the tyrosine fluorescence due to the formation of dityrosines were observed. Also, at these higher concentrations of H2O2, the inability of GroEL to hydrolyze ATP and to assist the refolding of urea-unfolded rhodanese was observed.  相似文献   

15.
The carbohydrate oxidase from Microdochium nivale (CAOX), heterologously expressed in Aspergillus oryzae, and cellobiose dehydrogenase from Myriococcum thermophilum (MtCDH), were assessed for their ability to generate bleaching species at a pH suitable for liquid detergents. The substrate specificities of CAOX and MtCDH were analyzed on a large variety of soluble and insoluble substrates, using oxygen as an electron receptor. Even insoluble substrates like cellulose were oxidized from both CAOX and MtCDH, but only MtCDH produced H2O2 on cotton as the sole substrate. To enhance the amount of cello-oligosaccharides formed from cotton as substrates for CAOX and MtCDH, various cellulases were used in combination with MtCDH or CAOX, leading to a 10-fold increase in H2O2. As model substrates for colored stains, the degradation of pure anthocyanins and stain removal of blueberry stains by CAOX and MtCDH was examined in the absence and presence of a horseradish peroxidase. Both enzymes were able to produce an amount of H2O2 sufficient to decolorize the pure anthocyanins within 2 h and showed significant cleaning benefits on the stains.  相似文献   

16.
Pulp from agricultural residues (wheat straw) was bleached with the DEPD (chlorine dioxide-extraction with soda and hydrogen peroxide-chlorine dioxide) or P sequence (hydrogen peroxide) after enzymatic pretreatment with cartazyme HS.The enzymatic pretreatment increases the final brightness of the pulp after bleaching with the P and DEPD sequences (+3.7%) and saves bleaching reagents (from 3.5 to 5.2%); however, it also decreases the pulp yield (from 9.3 to 14.1%) and breaking length (from 20.2 to 13.2%), burst index (from 13.1 to 8.2%) and tear index (from 4.2% to 16.8%) of the paper sheets formed from the pulp.The authors wish to express their gratitude to DGICyT, Spanish Ministry of Education and Science, for financial support granted for the realization of this work as part of Project PB 91-0841.  相似文献   

17.
The Cr(VI)-mediated free radical generation from cystein, penicillamine, hydrogen peroxide, and model lipid hydroperoxides was investigated utilizing the electron spin resonance (ESR) spin trapping technique. Incubation of Cr(VI) with cysteine (Cys) generated cysteinyl radical. Radical yield depended on the relative concentrations of Cr(VI) and Cys. The radical generation became detectable at a cysteine: Cr(VI) ration of about 5, reached its highest level at a ratio of 30, and declined thereafter. Cr(VI) or Cys alone did not generate a detectable amount of free radicals. Similar results were obtained with penicillamine. Incubation of Cr(VI), Cys or penicillamine adn H2O2 led to hydroxyl (·OH) radical generation, which was verified by quantitative competition experiments utilizing ethanol. The mechanism for ·OH radical generation is considered to be a Cr(VI)-mediated Fenton-like reaction. When model lipid hydroperoxides such as t-butylhydroperoxide and cumene hydroperoxide were used in place of H2O2, hydroperoxide-derived free radicals were produced. Since thiols, such as Cys, exist in cellular systems at relatively high concentrations, Cr(VI)-mediated free radical generation in the presence of thiols may participate in the mechanisms of Cr(VI)-induced toxicity and carcinogenesis.  相似文献   

18.
19.
In search for compounds, able to protect nuclear DNA in cells exposed to oxidative stress, extracts from olive leaves, olive fruits, olive oil and olive mill waste water were tested by using the “single cell gel electrophoresis” methodology (comet assay). Jurkat cells in culture were exposed to continuously generated hydrogen peroxide (11.8±1.5 μM per min) by direct addition into the growth medium of the appropriate amount of the enzyme “glucose oxidase” in the presence or absence of the tested total extracts. The protective effects of the tested extracts or isolated compounds were evaluated from their ability to decrease hydrogen peroxide-induced formation of single strand breaks in the nuclear DNA, while the toxic effects were estimated from the increase of DNA damage when the extracts or isolated compounds were incubated directly with the cells. Significant protection was observed in extracts from olive oil and olive mill waste water. However, above a concentration of 100 μg/ml olive oil extracts exerted DNA damaging effects by themselves in the absence of any H2O2. Extracts from olive leaves and olive fruits although protective, were also able to induce DNA damage by themselves. Main compounds isolated from the above described total extracts, like oleuropein glucoside, tyrosol, hydroxytyrosol and caffeic acid, were tested in the same experimental system and found to exert cytotoxic (oleuropein glucoside), no effect (tyrosol) or protective effects (hydroxytyrosol and caffeic acid). In conclusion, cytoprotective as well as cytotoxic compounds with potential pharmaceutical properties were detected in extracts from olive oil related sources by using the comet assay methodology.  相似文献   

20.
Parameters influencing the mutagenic properties of spent bleaching liquors from sulphite pulps have been studied. In addition a comparison has been made between the properties of spent liquors from sulphite and kraft pulp bleaching. In the sulphite process the cooking base had no influence on the mutagenicity of the chlorination stage. In contrast, removing the extractives before chlorination especially for dissolving pulp resulted in an increase in mutagenic activity. The mutagenicity decreased significantly after substituting 40% of the chlorine with chlorine dioxide. Sequential addition of chlorine and chlorine dioxide resulted in higher activity than simultaneous or premixed chlorination as observed for liquors from kraft pulp. Increasing the pH of the extracts or addition of sulphur dioxide decreased the mutagenicity. Expressed as 10(7) revertants per kappa number and ton pulp the mutagenicity varied between 10 and 40 for sulphite pulp while the corresponding figures for kraft pulp were 100-225.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号